首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Disease-causing mutations have been identified in various entities of autosomal dominant ataxia and in Friedreich's ataxia. However, no molecular pathogenic factor is known to cause idiopathic cerebellar ataxias. We investigated the CAG/CTG trinucleotide repeats causing spinocerebellar ataxia types 1, 2, 3, 6, 7, 8 and 12, and the GAA repeat of the frataxin gene in 124 patients apparently suffering from idiopathic sporadic ataxia, including 20 patients with the clinical diagnosis of multiple system atrophy. Patients with a positive family history, a typical Friedreich phenotype, or symptomatic ataxia were excluded. Genetic analyses uncovered the most common Friedreich mutation in 10 patients with an age at onset between 13 and 36 years. The SCA6 mutation was present in nine patients with disease onset between 47 and 68 years of age. The CTG repeat associated with SCA8 was expanded in three patients. One patient had SCA2 attributable to a de novo mutation from a paternally transmitted, intermediate allele. We did not identify the SCA1, SCA3, SCA7 or SCA12 mutation in idiopathic sporadic ataxia patients. No trinucleotide repeat expansion was detected in the MSA subgroup. This study has revealed the genetic basis in 19% of apparently idiopathic ataxia patients. SCA6 is the most frequent mutation in late onset cerebellar ataxia. The frataxin trinucleotide expansion should be investigated in all sporadic ataxia patients with onset before age 40, even when the phenotype is atypical for Friedreich's ataxia.  相似文献   

2.
Spinocerebellar ataxia type 10 (SCA10) is an autosomal dominant neurodegenerative disease characterized by cerebellar ataxia and seizures. The disease is caused by a large ATTCT repeat expansion in the ATXN10 gene. The first families reported with SCA10 were of Mexican origin, but the disease was soon after described in Brazilian families of mixed Portuguese and Amerindian ancestry. The origin of the SCA10 expansion and a possible founder effect that would account for its geographical distribution have been the source of speculation over the last years. To unravel the mutational origin and spread of the SCA10 expansion, we performed an extensive haplotype study, using closely linked STR markers and intragenic SNPs, in families from Brazil and Mexico. Our results showed (1) a shared disease haplotype for all Brazilian and one of the Mexican families, and (2) closely-related haplotypes for the additional SCA10 Mexican families; (3) little or null genetic distance in small normal alleles of different repeat sizes, from the same SNP lineage, indicating that they are being originated by a single step mechanism; and (4) a shared haplotype for pure and interrupted expanded alleles, pointing to a gene conversion model for its generation. In conclusion, we show evidence for an ancestral common origin for SCA10 in Latin America, which might have arisen in an ancestral Amerindian population and later have been spread into the mixed populations of Mexico and Brazil.  相似文献   

3.
Spinocerebellar ataxia type 3 (SCA3), or Machado—Joseph disease (MJD), is an autosomal dominantly-inherited disease that produces progressive problems with movement. It is caused by the expansion of an area of CAG repeats in a coding region of ATXN3. The number of repeats is inversely associated with age at disease onset (AO) and is significantly associated with disease severity; however, the degree of CAG expansion only explains 50 to 70% of variance in AO. We tested two SNPs, rs709930 and rs910369, in the 3’ UTR of ATXN3 gene for association with SCA3/MJD risk and with SCA3/MJD AO in an independent cohort of 170 patients with SCA3/MJD and 200 healthy controls from mainland China. rs709930 genotype frequencies were statistically significantly different between patients and controls (p = 0.001, α = 0.05). SCA3/MJD patients carrying the rs709930 A allele and rs910369 T allele experienced an earlier onset, with a decrease in AO of approximately 2 to 4 years. The two novel SNPs found in this study might be genetic modifiers for AO in SCA3/MJD.  相似文献   

4.
A large, non-coding ATTCT repeat expansion causes the neurodegenerative disorder, spinocerebellar ataxia type 10 (SCA10). In a subset of SCA10 patients, interruption motifs are present at the 5’ end of the expansion and strongly correlate with epileptic seizures. Thus, interruption motifs are a predictor of the epileptic phenotype and are hypothesized to act as a phenotypic modifier in SCA10. Yet, the exact internal sequence structure of SCA10 expansions remains unknown due to limitations in current technologies for sequencing across long extended tracts of tandem nucleotide repeats. We used the third generation sequencing technology, Single Molecule Real Time (SMRT) sequencing, to obtain full-length contiguous expansion sequences, ranging from 2.5 to 4.4 kb in length, from three SCA10 patients with different clinical presentations. We obtained sequence spanning the entire length of the expansion and identified the structure of known and novel interruption motifs within the SCA10 expansion. The exact interruption patterns in expanded SCA10 alleles will allow us to further investigate the potential contributions of these interrupting sequences to the pathogenic modification leading to the epilepsy phenotype in SCA10. Our results also demonstrate that SMRT sequencing is useful for deciphering long tandem repeats that pose as “gaps” in the human genome sequence.  相似文献   

5.

Purpose

A broad spectrum of diseases can manifest cerebellar ataxia. In this study, we investigated whether proton magnetic resonance spectroscopy (MRS) may help differentiate spinocerebellar ataxias (SCA) from multiple systemic atrophy- cerebellar type (MSA-C).

Material and Methods

This prospective study recruited 156 patients with ataxia, including spinocerebellar ataxia (SCA) types 1, 2, 3, 6 and 17 (N = 94) and MSA-C (N = 62), and 44 healthy controls. Single voxel proton MRS in the cerebellar hemispheres and vermis were measured. The differences were evaluated using nonparametric statistic tests.

Results

When compared with healthy controls, the cerebellar and vermis NAA/Cr and NAA/Cho were lower in all patients(p<0.002). The Cho/Cr was lower in SCA2 and MSA-C (p<0.0005). The NAA/Cr and Cho/Cr were lower in MSA-C or SCA2 comparing with SCA3 or SCA6. The MRS features of SCA1 were in between (p<0.018). The cerebellar NAA/Cho was lower in SCA2 than SCA1, SCA3 or SCA6 (p<0.04). The cerebellar NAA/Cho in MSA-C was lower than SCA3 (p<0.0005). In the early stages of diseases (SARA score<10), significant lower NAA/Cr and NAA/Cho in SCA2, SCA3, SCA6 or MSA-C were observed comparing with healthy controls (p<0.017). The Cho/Cr was lower in MSA-C or SCA2 (p<0.0005). Patients with MSA-C and SCA2 had lower NAA/Cr and Cho/Cr than SCA3 or SCA6 (p<0.016).

Conclusion

By using MRS, significantly lower NAA/Cr, Cho/Cr and NAA/Cho in the cerebellar hemispheres and vermis were found in patients with ataxia (SCAs and MSA-C). Rapid neuronal degeneration and impairment of membrane activities were observed more often in patients with MSA-C than those with SCA, even in early stages. MRS could also help distinguish between SCA2 and other subtypes of SCAs. MRS ratios may be of use as biomarkers in early stages of disease and should be further assessed in a longitudinal study.  相似文献   

6.
The dominant cerebellar ataxias (ADCAs) represent a clinically and genetically heterogeneous group of disorders linked by progressive deterioration in balance and coordination. The utility of genetic classification of the ADCAs has been highlighted by the striking variability in clinical phenotype observed within families and the overlap in clinical phenotype observed between those with different genotypes. The recent demonstration that spinocerebellar ataxia type 2 (SCA2) is caused by a CAG repeat expansion within the ataxin-2 gene has allowed us to determine the frequency of SCA2 compared with SCA1, SCA3/Machado-Joseph disease (MJD), and dentatorubropallidoluysian atrophy (DRPLA) in patients with sporadic and inherited ataxia. SCA2 accounts for 13% of patients with ADCA (without retinal degeneration), intermediate between SCA1 and SCA3/MJD, which account for 6% and 23%, respectively. Together, SCA1, SCA2, and SCA3/MJD constitute >40% of the mutations leading to ADCA I in our population. No patient without a family history of ataxia, or with a pure cerebellar or spastic syndrome, tested positive for SCA1, SCA2, or SCA3. No overlap in ataxin-2 allele size between normal and disease chromosomes, or intermediate-sized alleles, were observed. Repeat length correlated inversely with age at onset, accounting for approximately 80% of the variability in onset age. Haplotype analysis provided no evidence for a single founder chromosome, and diverse ethnic origins were observed among SCA2 kindreds. In addition, a wide spectrum of clinical phenotypes was observed among SCA2 patients, including typical mild dominant ataxia, the MJD phenotype with facial fasciculations and lid retraction, and early-onset ataxia with a rapid course, chorea, and dementia.  相似文献   

7.
Spinocerebellar ataxia (SCA) type 10, an autosomal dominant disease characterized by cerebellar ataxia, is caused by a novel pentanucleotide (ATTCT) repeat expansion in the SCA10 gene. Although clinical features of the disease are well characterized, nothing is known so far about the affected SCA10 gene product, ataxin-10 (Atx-10). We have cloned the rat SCA10 gene and expressed the corresponding protein in HEK293 cells. Atx-10 has an apparent molecular mass of approximately 55 kDa and belongs to the family of armadillo repeat proteins. In solution, it tends to form homotrimeric complexes, which associate via a tip-to-tip contact with the concave sides of the molecules facing each other. Atx-10 immunostaining of mouse and human brain sections revealed a predominantly cytoplasmic and perinuclear localization with a clear restriction to olivocerebellar regions. Knock down of SCA10 in primary neuronal cells by small interfering RNAs resulted in an increased apoptosis of cerebellar neurons, arguing for a loss-of-function phenotype in SCA10 patients.  相似文献   

8.
We analyzed the SCA8 CTA/CTG repeat in a large group of Japanese subjects. The frequency of large alleles (85-399 CTA/CTG repeats) was 1.9% in spinocerebellar ataxia (SCA), 0.4% in Parkinson disease, 0.3% in Alzheimer disease, and 0% in a healthy control group; the frequency was significantly higher in the group with SCA than in the control group. Homozygotes for large alleles were observed only in the group with SCA. In five patients with SCA from two families, a large SCA8 CTA/CTG repeat and a large SCA6 CAG repeat coexisted. Age at onset was correlated with SCA8 repeats rather than SCA6 repeats in these five patients. In one of these families, at least one patient showed only a large SCA8 CTA/CTG repeat allele, with no large SCA6 CAG repeat allele. We speculate that the presence of a large SCA8 CTA/CTG repeat allele influences the function of channels such as alpha(1A)-voltage-dependent calcium channel through changing or aberrant splicing, resulting in the development of cerebellar ataxia, especially in homozygous patients.  相似文献   

9.
The expansion of polyglutamine tracts in a variety of proteins causes devastating, dominantly inherited neurodegenerative diseases, including six forms of spinal cerebellar ataxia (SCA). Although a polyglutamine expansion encoded in a single allele of each of the responsible genes is sufficient for the onset of each disease, clinical observations suggest that interactions between these genes may affect disease progression. In a screen for modifiers of neurodegeneration due to SCA3 in Drosophila, we isolated atx2, the fly ortholog of the human gene that causes a related ataxia, SCA2. We show that the normal activity of Ataxin-2 (Atx2) is critical for SCA3 degeneration and that Atx2 activity hastens the onset of nuclear inclusions associated with SCA3. These activities depend on a conserved protein interaction domain of Atx2, the PAM2 motif, which mediates binding of cytoplasmic poly(A)-binding protein (PABP). We show here that PABP also influences SCA3-associated neurodegeneration. These studies indicate that the toxicity of one polyglutamine disease protein can be dramatically modulated by the normal activity of another. We propose that functional links between these genes are critical to disease severity and progression, such that therapeutics for one disease may be applicable to others.  相似文献   

10.
Spinocerebellar ataxia type 31 (SCA31) is an adult-onset autosomal-dominant neurodegenerative disorder showing progressive cerebellar ataxia mainly affecting Purkinje cells. The SCA31 critical region was tracked down to a 900 kb interval in chromosome 16q22.1, where the disease shows a strong founder effect. By performing comprehensive Southern blot analysis and BAC- and fosmid-based sequencing, we isolated two genetic changes segregating with SCA31. One was a single-nucleotide change in an intron of the thymidine kinase 2 gene (TK2). However, this did not appear to affect splicing or expression patterns. The other was an insertion, from 2.5–3.8 kb long, consisting of complex penta-nucleotide repeats including a long (TGGAA)n stretch. In controls, shorter (1.5–2.0 kb) insertions lacking (TGGAA)n were found only rarely. The SCA31 repeat insertion''s length inversely correlated with patient age of onset, and an expansion was documented in a single family showing anticipation. The repeat insertion was located in introns of TK2 and BEAN (brain expressed, associated with Nedd4) expressed in the brain and formed RNA foci in the nuclei of patients'' Purkinje cells. An electrophoretic mobility-shift assay showed that essential splicing factors, serine/arginine-rich splicing factors SFRS1 and SFRS9, bind to (UGGAA)n in vitro. Because (TGGAA)n is a characteristic sequence of paracentromeric heterochromatin, we speculate that the insertion might have originated from heterochromatin. SCA31 is important because it exemplifies human diseases associated with “inserted” microsatellite repeats that can expand through transmission. Our finding suggests that the ectopic microsatellite repeat, when transcribed, might cause a disease involving the essential splicing factors.  相似文献   

11.
The aim of this study was to correlate magnetic resonance spectroscopy (MRS) measurements, including that for the N-acetyl aspartate (NAA)/creatine (Cr) ratio in the vermis (denoted V-NAA), right cerebellar hemisphere (R-NAA), and left (L-NAA) cerebellar hemisphere, with the clinical scale for the assessment and rating of ataxia (SARA) score for patients with spinocerebellar ataxia (SCA) types 2, 3, and 6. A total of 24 patients with SCA2, 48 with SCA3, and 16 with SCA6 were recruited; 12 patients with SCA2, 43 with SCA3, and 8 with SCA6 underwent detailed magnetic resonance neuroimaging. Forty-four healthy, age-matched individuals without history of neurologic disease served as control subjects. V-NAA and patient age were used to calculate the predicted age at which a patient with SCA2 or SCA3 would reach an onset V-NAA value. Results showed the following: the NAA/Cr ratio decreased with increasing age in patients with SCA but not in control subjects; the SARA score increased progressively with age and duration of illness; V-NAA showed a better correlation with SARA score than R-NAA in patients with SCA2 or SCA3; the ratio of age to V-NAA correlated well with CAG repeat number; the retrospectively predicted age of onset for SCA2 and SCA3 was consistent with patient-reported age of onset; R-NAA showed a better correlation with SARA score than V-NAA in patients with SCA6; V-NAA and R-NAA correlated with clinical severity (SARA score) in patients with SCA. The correlation between CAG repeat number and age could be expressed as a simple linear function, which might explain previous observations claiming that the greater the CAG repeat number, the earlier the onset of illness and the faster the disease progression. These findings support the use of MRS values to predict age of disease onset and to retrospectively evaluate the actual age of disease onset in SCA.  相似文献   

12.
A hexanucleotide repeat expansion in C9ORF72 has been established as a common cause of frontotemporal dementia (FTD). However, the minimum repeat number necessary for disease pathogenesis is not known. The aims of our study were to determine the frequency of the C9ORF72 repeat expansion in two FTD patient collections (one Australian and one Spanish, combined n = 190), to examine C9ORF72 expansion allele length in a subset of FTD patients, and to examine C9ORF72 allele length in ‘non-expansion’ patients (those with <30 repeats). The C9ORF72 repeat expansion was detected in 5–17% of patients (21–41% of familial FTD patients). For one family, the expansion was present in the proband but absent in the mother, who was diagnosed with dementia at age 68. No association was found between C9ORF72 non-expanded allele length and age of onset and in the Spanish sample mean allele length was shorter in cases than in controls. Southern blotting analysis revealed that one of the nine ‘expansion-positive’ patients examined, who had neuropathologically confirmed frontotemporal lobar degeneration with TDP-43 pathology, harboured an ‘intermediate’ allele with a mean size of only ∼65 repeats. Our study indicates that the C9ORF72 repeat expansion accounts for a significant proportion of Australian and Spanish FTD cases. However, C9ORF72 allele length does not influence the age at onset of ‘non-expansion’ FTD patients in the series examined. Expansion of the C9ORF72 allele to as little as ∼65 repeats may be sufficient to cause disease.  相似文献   

13.
β-III spectrin is present in the brain and is known to be important in the function of the cerebellum. Heterozygous mutations in SPTBN2, the gene encoding β-III spectrin, cause Spinocerebellar Ataxia Type 5 (SCA5), an adult-onset, slowly progressive, autosomal-dominant pure cerebellar ataxia. SCA5 is sometimes known as “Lincoln ataxia,” because the largest known family is descended from relatives of the United States President Abraham Lincoln. Using targeted capture and next-generation sequencing, we identified a homozygous stop codon in SPTBN2 in a consanguineous family in which childhood developmental ataxia co-segregates with cognitive impairment. The cognitive impairment could result from mutations in a second gene, but further analysis using whole-genome sequencing combined with SNP array analysis did not reveal any evidence of other mutations. We also examined a mouse knockout of β-III spectrin in which ataxia and progressive degeneration of cerebellar Purkinje cells has been previously reported and found morphological abnormalities in neurons from prefrontal cortex and deficits in object recognition tasks, consistent with the human cognitive phenotype. These data provide the first evidence that β-III spectrin plays an important role in cortical brain development and cognition, in addition to its function in the cerebellum; and we conclude that cognitive impairment is an integral part of this novel recessive ataxic syndrome, Spectrin-associated Autosomal Recessive Cerebellar Ataxia type 1 (SPARCA1). In addition, the identification of SPARCA1 and normal heterozygous carriers of the stop codon in SPTBN2 provides insights into the mechanism of molecular dominance in SCA5 and demonstrates that the cell-specific repertoire of spectrin subunits underlies a novel group of disorders, the neuronal spectrinopathies, which includes SCA5, SPARCA1, and a form of West syndrome.  相似文献   

14.
Genetic anticipation – increasing severity and a decrease in the age of onset with successive generations of a pedigree – is clearly present in autosomal dominant cerebellar ataxia (ADCA). Anticipation is correlated with expansion of the CAG/CTG repeat sequence to sizes above those in the normal range through the generations of a pedigree. Genetic heterogeneity has been demonstrated for ADCA, with four cloned genes (SCA1, SCA2, SCA3/MJD, and SCA6) and three mapped loci (SCA4, SCA5 and SCA7). Another related dominant ataxia, dentatorubral-pallidoluysian atrophy (DRPLA), presents anticipation with CAG/CTG repeat expansions. We had previously analysed ADCA patients who had not shown repeat expansions in cloned genes for CAG/CTG repeat expansions by the repeat expansion detection method (RED) and had detected expansions of between 48 and 88 units in 17 unrelated familial cases. We present here an analysis of 13 genes and expressed sequence tags (ESTs) containing 10 or more CAG/ CTG repeat sequences selected from public databases in the 17 unrelated ADCA patients. Of the 13 selected genes and ESTs, 9 were found to be polymorphic with heterozygosities ranging between 0.09 and 0.80 and 2 to 17 alleles. In ADCA patients none of the loci showed expansions above the normal range of the CAG/CTG repeat sequences, excluding them as the mutation causing ADCA. Received: 28 May 1997 / Accepted: 30 June 1997  相似文献   

15.
The autosomal dominant cerebellar ataxias (ADCAs) are a clinically and genetically heterogeneous group of disorders. The clinical symptoms include cerebellar dysfunction and associated signs from dysfunction in other parts of the nervous system. So far, five spinocerebellar ataxia (SCA) genes have been identified: SCA1, SCA2, SCA3, SCA6, and SCA7. Loci for SCA4 and SCA5 have been mapped. However, approximately one-third of SCAs have remained unassigned. We have identified a Mexican American pedigree that segregates a new form of ataxia clinically characterized by gait and limb ataxia, dysarthria, and nystagmus. Two individuals have seizures. After excluding all known genetic loci for linkage, we performed a genomewide search and identified linkage to a 15-cM region on chromosome 22q13. A maximum LOD score of 4.3 (recombination fraction 0) was obtained for D22S928 and D22S1161. This distinct form of ataxia has been designated "SCA10." Anticipation was observed in the available parent-child pairs, suggesting that trinucleotide-repeat expansion may be the mutagenic mechanism.  相似文献   

16.
Spinocerebellar ataxia type 10 (SCA10) is an autosomal dominant disorder characterized by ataxia, seizures, and anticipation. It is caused by an expanded ATTCT pentanucleotide repeat in intron 9 of a novel gene, designated "SCA10." The ATTCT expansion in SCA10 represents a novel class of microsatellite repeat and is one of the largest found to cause human diseases. The expanded ATTCT repeat is unstably transmitted from generation to generation, and an inverse correlation has been observed between size of repeat and age at onset. In this multifamily study, we investigated the intergenerational instability, somatic and germline mosaicism, and age-dependent repeat-size changes of the expanded ATTCT repeat. Our results showed that (1) the expanded ATTCT repeats are highly unstable when paternally transmitted, whereas maternal transmission resulted in significantly smaller changes in repeat size; (2) blood leukocytes, lymphoblastoid cells, buccal cells, and sperm have a variable degree of mosaicism in ATTCT expansion; (3) the length of the expanded repeat was not observed to change in individuals over a 5-year period; and (4) clinically determined anticipation is sometimes associated with intergenerational contraction rather than expansion of the ATTCT repeat.  相似文献   

17.
Autosomal dominant cerebellar ataxia is a group of clinically and genetically heterogeneous disorders. We carried out genomewide linkage analysis in 15 families with autosomal dominant pure cerebellar ataxia (ADPCA). Evidence for linkage to chromosome 19p markers was found in nine families, and combined multipoint analysis refined the candidate region to a 13.3-cM interval in 19p13.1-p13.2. The remaining six families were excluded for this region. Analysis of CAG-repeat expansion in the alpha1A-voltage-dependent calcium channel (CACNL1A4) gene lying in 19p13.1, recently identified among 8 small American kindreds with ADPCA (spinocerebellar ataxia type 6 [SCA6]), revealed that 8 of the 15 families studied had similar, very small expansion in this gene: all affected individuals had larger alleles (range of CAG repeats 21-25), compared with alleles observed in neurologically normal Japanese (range 5-20 repeats). Inverse correlation between the CAG-repeat number and the age at onset was found in affected individuals with expansion. The number of CAG repeats in expanded chromosomes was completely stable within each family, which was consistent with the fact that anticipation was not statistically proved in the SCA6 families that we studied. We conclude that more than half of Japanese cases of ADPCA map to 19p13.1-p13.2 and are strongly associated with the mild CAG expansion in the SCA6/CACNL1A4 gene.  相似文献   

18.
We observed a severe autosomal recessive movement disorder in mice used within our laboratory. We pursued a series of experiments to define the genetic lesion underlying this disorder and to identify a cognate disease in humans with mutation at the same locus. Through linkage and sequence analysis we show here that this disorder is caused by a homozygous in-frame 18-bp deletion in Itpr1 (Itpr1Δ18/Δ18), encoding inositol 1,4,5-triphosphate receptor 1. A previously reported spontaneous Itpr1 mutation in mice causes a phenotype identical to that observed here. In both models in-frame deletion within Itpr1 leads to a decrease in the normally high level of Itpr1 expression in cerebellar Purkinje cells. Spinocerebellar ataxia 15 (SCA15), a human autosomal dominant disorder, maps to the genomic region containing ITPR1; however, to date no causal mutations had been identified. Because ataxia is a prominent feature in Itpr1 mutant mice, we performed a series of experiments to test the hypothesis that mutation at ITPR1 may be the cause of SCA15. We show here that heterozygous deletion of the 5′ part of the ITPR1 gene, encompassing exons 1–10, 1–40, and 1–44 in three studied families, underlies SCA15 in humans.  相似文献   

19.
The expansion of polyglutamine tracts in a variety of proteins causes devastating, dominantly inherited neurodegenerative diseases, including six forms of spinal cerebellar ataxia (SCA). Although a polyglutamine expansion encoded in a single allele of each of the responsible genes is sufficient for the onset of each disease, clinical observations suggest that interactions between these genes may affect disease progression. In a screen for modifiers of neurodegeneration due to SCA3 in Drosophila, we isolated atx2, the fly ortholog of the human gene that causes a related ataxia, SCA2. We show that the normal activity of Ataxin-2 (Atx2) is critical for SCA3 degeneration and that Atx2 activity hastens the onset of nuclear inclusions associated with SCA3. These activities depend on a conserved protein interaction domain of Atx2, the PAM2 motif, which mediates binding of cytoplasmic poly(A)-binding protein (PABP). We show here that PABP also influences SCA3-associated neurodegeneration. These studies indicate that the toxicity of one polyglutamine disease protein can be dramatically modulated by the normal activity of another. We propose that functional links between these genes are critical to disease severity and progression, such that therapeutics for one disease may be applicable to others.  相似文献   

20.
The autosomal dominant spinocerebellar ataxias (SCAs) are a group of late-onset, neurodegenerative disorders for which 10 loci have been mapped (SCA1, SCA2, SCA4-SCA8, SCA10, MJD, and DRPLA). The mutant proteins have shown an expanded polyglutamine tract in SCA1, SCA2, MJD/SCA3, SCA6, SCA7, and DRPLA; a glycine-to-arginine substitution was found in SCA6 as well. Recently, an untranslated (CTG)n expansion on chromosome 13q was described as being the cause of SCA8. We have now (1) assessed the repeat size in a group of patients with ataxia and a large number of controls, (2) examined the intergenerational transmission of the repeat, and (3) estimated the instability of repeat size in the sperm of one patient and two healthy controls. Normal SCA8 chromosomes showed an apparently trimodal distribution, with classes of small (15-21 CTGs), intermediate (22-37 CTGs), and large (40-91 CTGs) alleles; large alleles accounted for only0.7% of all normal-size alleles. No expanded alleles (>/=100 CTGs) were found in controls. Expansion of the CTG tract was found in five families with ataxia; expanded alleles (all paternally transmitted) were characterized mostly by repeat-size contraction. There was a high germinal instability of both expanded and normal alleles: in one patient, the expanded allele (152 CTGs) had mostly contraction in size (often into the normal range); in the sperm of two normal controls, contractions were also more frequent, but occasional expansions into the upper limit of the normal size range were also seen. In conclusion, our results show (1) no overlapping between control (15-91) and pathogenic (100-152) alleles and (2) a high instability in spermatogenesis (both for expanded and normal alleles), suggesting a high mutational rate at the SCA8 locus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号