首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of neurotransmitters in the activity of resting state networks has been gaining attention and has become a field of research with magnetic resonance spectroscopy (MRS) being one of the key techniques. MRS permits the measurement of γ-aminobutyric acid (GABA) and glutamate levels, the central biochemical constituents of the excitation-inhibition balance in vivo. The inhibitory effects of GABA in the brain have been largely investigated in relation to the activity of resting state networks in functional magnetic resonance imaging (fMRI). In this study GABA concentration in the posterior cingulate cortex (PCC) was measured using single voxel spectra acquired with standard point resolved spectroscopy (PRESS) from 20 healthy male volunteers at 3 T. Resting state fMRI was consecutively measured and the values of GABA/Creatine+Phosphocreatine ratio (GABA ratio) were included in a general linear model matrix as a step of dual regression analysis in order to identify voxels whose neuroimaging metrics during rest were related to individual levels of the GABA ratio. Our data show that the connection strength of putamen to the default-mode network during resting state has a negative linear relationship with the GABA ratio measured in the PCC. These findings highlight the role of PCC and GABA in segregation of the motor input, which is an inherent condition that characterises resting state.  相似文献   

2.
Glutamate in the peripheral nervous system is involved in neuropathic pain, yet we know little how nerve injury alters responses to this neurotransmitter in primary sensory neurons. We recorded neuronal responses from the ex-vivo preparations of the dorsal root ganglia (DRG) one week following a chronic constriction injury (CCI) of the sciatic nerve in adult rats. We found that small diameter DRG neurons (<30 µm) exhibited increased excitability that was associated with decreased membrane threshold and rheobase, whereas responses in large diameter neurons (>30 µm) were unaffected. Puff application of either glutamate, or the selective ionotropic glutamate receptor agonists alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainic acid (KA), or the group I metabotropic receptor (mGluR) agonist (S)-3,5-dihydroxyphenylglycine (DHPG), induced larger inward currents in CCI DRGs compared to those from uninjured rats. N-methyl-D-aspartate (NMDA)-induced currents were unchanged. In addition to larger inward currents following CCI, a greater number of neurons responded to glutamate, AMPA, NMDA, and DHPG, but not to KA. Western blot analysis of the DRGs revealed that CCI resulted in a 35% increase in GluA1 and a 60% decrease in GluA2, the AMPA receptor subunits, compared to uninjured controls. mGluR1 receptor expression increased by 60% in the membrane fraction, whereas mGluR5 receptor subunit expression remained unchanged after CCI. These results show that following nerve injury, small diameter DRG neurons, many of which are nociceptive, have increased excitability and an increased response to glutamate that is associated with changes in receptor expression at the neuronal membrane. Our findings provide further evidence that glutamatergic transmission in the periphery plays a role in nociception.  相似文献   

3.
4.
5.
SUMMARY 1. The plasticity of sensory neurons following the injury to their axons is very important for prognosis of recovery of afferent fibers with different modality. It is evident that the response of dorsal root ganglion (DRG) neurons after peripheral axotomy is different depending on the deficiency in neurotrophic factors from peripheral region. The loss of cells appears earlier and is more severe in B-cells (small, dark cells with unmyelinated axons) than in A-cells (large, light cells with myelinated axons).2. We studied using immunohistochemical methods the response of DRG neurons to dorsal rhizotomy and combined injury of central and peripheral neuronal processes. A quantitative analysis of DRG neurons tagged by the selective markers isolectin B4 (IB4) and the heavy molecular component of the neurofilament triplet (NF200) antibody, selective for subpopulations of small and large/medium DRG neurons, respectively, was performed after dorsal rhizotomy, peripheral axotomy, and their combination.3. The number of NF200+-neurons is reduced substantially after both dorsal rhizotomy and peripheral axotomy, while the decrease of IB4+-neurons is observed only in combined injury, i.e., dorsal rhizotomy accompanied with sciatic nerve injury.4. Our results show that distinct subpopulations of DRG neurons respond differently to the injury of their central processes. The number of NF200+-neurons decreases to greater degree following dorsal rhizotomy in comparison to IB4+-neurons.  相似文献   

6.
7.
Growth cone responses to guidance cues provide the basis for neuronal pathfinding. Although many cues have been identified, less is known about how signals are translated into the cytoskeletal rearrangements that steer directional changes during pathfinding. Here we show that the response of dorsal root ganglion (DRG) neurons to Semaphorin 3A gradients can be divided into two steps: growth cone collapse and retraction. Collapse is inhibited by overexpression of myosin IIA or growth on high substrate-bound laminin-1. Inhibition of collapse also prevents retractions; however collapse can occur without retraction. Inhibition of myosin II activity with blebbistatin or by using neurons from myosin IIB knockouts inhibits retraction. Collapse is associated with movement of myosin IIA from the growth cone to the neurite. Myosin IIB redistributes from a broad distribution to the rear of the growth cone and neck of the connecting neurite. High substrate-bound laminin-1 prevents or reverses these changes. This suggests a model for the Sema 3A response that involves loss of growth cone myosin IIA to facilitate actin meshwork instability and collapse, followed by myosin IIB concentration at the rear of the cone and neck region where it associates with actin bundles to drive retraction.  相似文献   

8.
The dorsal striatum integrates inputs from multiple brain areas to coordinate voluntary movements, associative plasticity, and reinforcement learning. Its projection neurons consist of the GABAergic medium spiny neurons (MSNs) that express dopamine receptor type 1 (D1) or dopamine receptor type 2 (D2). Cholinergic interneurons account for a small portion of striatal neuron populations, but they play important roles in striatal functions by synapsing onto the MSNs and other local interneurons. By combining the modified rabies virus with specific Cre- mouse lines, a recent study mapped the monosynaptic input patterns to MSNs. Because only a small number of extrastriatal neurons were labeled in the prior study, it is important to reexamine the input patterns of MSNs with higher labeling efficiency. Additionally, the whole-brain innervation pattern of cholinergic interneurons remains unknown. Using the rabies virus-based transsynaptic tracing method in this study, we comprehensively charted the brain areas that provide direct inputs to D1-MSNs, D2-MSNs, and cholinergic interneurons in the dorsal striatum. We found that both types of projection neurons and the cholinergic interneurons receive extensive inputs from discrete brain areas in the cortex, thalamus, amygdala, and other subcortical areas, several of which were not reported in the previous study. The MSNs and cholinergic interneurons share largely common inputs from areas outside the striatum. However, innervations within the dorsal striatum represent a significantly larger proportion of total inputs for cholinergic interneurons than for the MSNs. The comprehensive maps of direct inputs to striatal MSNs and cholinergic interneurons shall assist future functional dissection of the striatal circuits.  相似文献   

9.
10.
11.
The retrograde transport of horseradish peroxidase (HRP) and immunocytochemistry for glutamic acid decarboxylase (GAD) have been employed to examine whether local circuit neurons (LCNs) exist in the dorsal column nuclei (DCN) and whether these neurons may be GABA-ergic. Observations focused on the dorsal part of the middle cuneate nucleus (MCd), since this region has been previously shown to contain projecting neurons whose axons terminate almost exclusively in the contralateral thalamus. After large injections of HRP in the nucleus ventralis posterolateralis and surrounding structures of the feline thalamus, the majority of neurons in MCd are labeled. These represent about 89% of the neurons in MCd as counted in 40-μm frozen sections, and about 69% as counted in plastic-embedded, 2.5-μm-thick section. Unlabeled by the same injections are some medium to largeneurons at the dorsal rim of MCd, and many characteristically small (X ±250/μm2) neurons at the periphery of the cell clusters formed by thalamic-projecting neurons. These small neurons represent 10-12% of the neuronal population of MCd, as counted in 40-μm-thick frozen sections, and about 30%, as counted in plastic-embedded, 2.5-μm-thick sections. Neurons in this size range are also unlabeled after injection of retrograde tracer in the pretectal area, inferior and superior colliculi, inferior olivary complex, and/or spinal cord. These injections, however, result in the labeling of neurons along the dorsal rim of MCd and/or in other regions of the cuneate nucleus.

In adult, colchicine-treated cats, the use of anti-GAD serum reveals a population of labeled neurons uniformly distributed throughout the DCN. In MCd, these are small (X =±235 μm2) neurons mainly intercalated between cell clusters, and represent about 25% of the neuronal population of this nuclear subdivision as counted in plastic-embedded, 2.5-μm-thick sections. Labeled processes densely infiltrate the cell clusters, and labeled varicosities appear to cover the soma and dendrites of unlabeled neurons. At the electron-microscopic level, most labeled profiles contain vesicles and correpond to F boutons usually involved in “axoaxonic” contacts with terminals of dorsal root afferent and presynaptic to dendrites. Other vesicle-containing, GAD-positive endings seem to correspond to the P boutons described by Ellis and Rustioni (1981) and are believed to be, at least in part, of dendritic origin. It is suggested that GAD-positive neurons are GABA-ergic LCNs and that these can mediate both pre- and postsynaptic inhibition. Their integrative role is likely to be more complex than postulated by previous electrophysiological studies.  相似文献   

12.
Thalamic deep brain stimulation (DBS) is an effective treatment for tremor, but the mechanisms of action remain unclear. Previous studies of human thalamic neurons to noted transient rebound bursting activity followed by prolonged inhibition after cessation of high frequency extracellular stimulation, and the present study sought to identify the mechanisms underlying this response. Recordings from 13 thalamic neurons exhibiting low threshold spike (LTS) bursting to brief periods of extracellular stimulation were made during surgeries to implant DBS leads in 6 subjects with Parkinson''s disease. The response immediately after cessation of stimulation included a short epoch of burst activity, followed by a prolonged period of silence before a return to LTS bursting. A computational model of a population of thalamocortical relay neurons and presynaptic axons terminating on the neurons was used to identify cellular mechanisms of the observed responses. The model included the actions of neuromodulators through inhibition of a non-pertussis toxin sensitive K+ current (IKL), activation of a pertussis toxin sensitive K+ current (IKG), and a shift in the activation curve of the hyperpolarization-activated cation current (Ih). The model replicated well the measured responses, and the prolonged inhibition was associated most strongly with changes in IKG while modulation of IKL or Ih had minimal effects on post-stimulus inhibition suggesting that neuromodulators released in response to high frequency stimulation are responsible for mediating the post-stimulation bursting and subsequent long duration silence of thalamic neurons. The modeling also indicated that the axons of the model neurons responded robustly to suprathreshold stimulation despite the inhibitory effects on the soma. The findings suggest that during DBS the axons of thalamocortical neurons are activated while the cell bodies are inhibited thus blocking the transmission of pathological signals through the network and replacing them with high frequency regular firing.  相似文献   

13.
14.
Neurochemical Research - The brain uses mainly glucose as fuel with an index of glucose to oxygen utilization close to 6, the maximal index if all glucose was completely oxidized. However, this...  相似文献   

15.
  相似文献   

16.
Stimulation of neurons with brain-derived neurotrophic factor (BDNF) results in robust induction of SORLA, an intracellular sorting receptor of the VPS10P domain receptor gene family. However, the relevance of SORLA for BDNF-induced neuronal responses has not previously been investigated. We now demonstrate that SORLA is a sorting factor for the tropomyosin-related kinase receptor B (TrkB) that facilitates trafficking of this BDNF receptor between synaptic plasma membranes, post-synaptic densities, and cell soma, a step critical for neuronal signal transduction. Loss of SORLA expression results in impaired neuritic transport of TrkB and in blunted response to BDNF in primary neurons; and it aggravates neuromotoric deficits caused by low BDNF activity in a mouse model of Huntington’s disease. Thus, our studies revealed a key role for SORLA in mediating BDNF trophic signaling by regulating the intracellular location of TrkB.  相似文献   

17.
Quantitative and morphometric observations were carried out on neurons of L3-L6 dorsal root ganglia (DRGs) in control and vitamin-E-deficient rats at different ages. Controls were fed a standard diet and sacrificed at 1 or at 5 months of age; deficient rats were fed a diet without vitamin E from 1 to 5 months of age and then sacrificed. No significant difference in total number of neurons was found, but an increase in neuron sizes, a decrease in nucleus-cytoplasm ratio, and a more circular neuron shape were found in controls with increasing age (from 1 to 5 months). In L3-L6 DRGs of vitamin-E-deficient rats (5 months of age), a higher number of neurons was found than in those of either young or adult controls. Moreover, some morphometric characteristics of neurons in the deficient rats were similar to those of neurons in 1-month-old controls. The findings suggest that vitamin E deficiency can trigger events resulting in appearance of new neurons, possibly anticipating phenomena that normally occur in aging.  相似文献   

18.
By anaerobic procedures, the total number of adherent bacteria was determined on tissue samples obtained from the roof of the dorsal rumen of three sheep. After four washings, 1.91 × 107, 0.34 × 107, and 1.23 × 107 bacteria per cm2 were still attached to the rumen epithelium in sheep 1, 2, and 3, respectively. A total of 95 strains of bacteria were isolated from these three samples. Based on morphology, Gram stain, anaerobiosis, motility, and fermentation end products, they were presumptively identified as follows: Butyrivibrio fibrisolvens, 30 strains; atypical Butyrivibrio, 5 strains; Bacteroides ruminicola, 22 strains; Lactobacillus, 1 strain; and unknown Bacteroides species, 37 strains. For sheep 3, washing the rumen epithelium a total of 10 times reduced the adherent bacterial population by 93% (8.4 × 105 bacteria per cm2). Of 30 strains isolated from this sample, 22 were presumptively identified as Butyrivibrio and Bacteroides types. These results suggest that the epithelium on the roof of the dorsal rumen is primarily colonized by two genera of bacteria, Butyrivibrio and Bacteroides. Most Butyrivibrio and Bacteroides ruminicola strains appeared to be similar to previously isolated rumen strains. However, the unknown Bacteroides species differed considerably from the three species of this genus which are commonly isolated from rumen contents.  相似文献   

19.
20.
Bone metastasis is a complication of advanced breast and prostate cancer. Tumor-secreted Dickkopf homolog 1 (DKK1), an inhibitor of canonical Wnt signaling and osteoblast differentiation, was proposed to regulate the osteoblastic response to metastatic cancer in bone. The objectives of this study were to compare DKK1 expression with the in vivo osteoblastic response in a panel of breast and prostate cancer cell lines, and to discover mechanisms that regulate cancer DKK1 expression. DKK1 expression was highest in MDA-MB-231 and PC3 cells that produce osteolytic lesions, and hence a suppressed osteoblastic response, in animal models of bone metastasis. LnCaP, C4-2B, LuCaP23.1, T47D, ZR-75-1, MCF-7, ARCaP and ARCaPM cancer cells that generate osteoblastic, mixed or no bone lesions had the lowest DKK1 expression. The cell lines with negligible expression, LnCaP, C4-2B and T47D, exhibited methylation of the DKK1 promoter. Canonical Wnt signaling activity was then determined and found in all cell lines tested, even in the MDA-MB-231 and PC3 cell lines despite sizeable amounts of DKK1 protein expression expected to block canonical Wnt signaling. A mechanism of DKK1 resistance in the osteolytic cell lines was investigated and determined to be at least partially due to down-regulation of the DKK1 receptors Kremen1 and Kremen2 in the MDA-MB-231 and PC3 cell lines. Combined DKK1 and Kremen expression in cancer cells may serve as predictive markers of the osteoblastic response of breast and prostate cancer bone metastasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号