首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Martin P 《Current biology : CB》2004,14(4):R150-R151
A novel actin-binding protein, Shroom, localises to precisely those cells that will constrict during cranial neural tube closure and appears pivotal in regulating the apical constrictions that drive epithelial foldings in vertebrate embryos.  相似文献   

3.
Remodeling of epithelial sheets plays important roles in animal morphogenesis. Shroom3 is known to regulate the apical constriction of epithelial cells. Here, we show that Shroom3 binds ROCKs and recruits them to the epithelial apical junctions. We identified the Shroom3-binding site (RII-C1) on ROCKs, and found that RII-C1 could antagonize the Shroom3-ROCK interaction, interfering with the action of Shroom3 on cell morphology. In the invaginating neural plate/tube, Shroom3 colocalized with ROCKs at the apical junctions; Shroom3 depletion or RII-C1 expression in the tube removed these apically localized ROCKs, and concomitantly blocked neural tube closure. Closing neural plate exhibited peculiar cell assemblies, including rosette formation, as well as a planar-polarized distribution of phosphorylated myosin regulatory light chain, but these were abolished by ROCK inhibition or RII-C1 expression. These results demonstrate that the Shroom3-ROCK interaction is crucial for the regulation of epithelial and neuroepithelial cell arrangement and remodeling.  相似文献   

4.
Shroom is an actin-associated determinant of cell morphology that is required for neural tube closure in both mice and frogs. Shroom regulates this process by causing apical constriction of epithelial cells via a pathway involving myosin II. Here we report on characterization of the Shroom-related proteins Apxl and KIAA1202 and their role in cell architecture. Shroom, Apxl, and KIAA1202 exhibit differing abilities to interact with the actin cytoskeleton. In fibroblasts, Shroom readily associates with actin stress fibers and induces bundling, Apxl is found on cortical actin, and KIAA1202 is localized to a cytoplasmic population of F-actin. In epithelial cells, Apxl and KIAA1202 do not induce apical constriction as Shroom does, but have the capacity to do so if targeted to the apical junctional complex. To determine whether the activity of Shroom-like proteins is conserved in invertebrates, we have tested the ability of the lone Shroomrelated protein in Drosophila, CG8603, to activate the constriction pathway. A chimeric protein consisting of the Shroom targeting domain and the Drosophila protein elicits constriction. Finally, we show that Apxl is involved in regulating the cytoskeletal organization and architecture of endothelial cells. We predict that the ability of Shroom-like proteins to regulate cellular morphology is conserved in evolution and is regulated in part by subcellular localization.  相似文献   

5.
All animal cells utilize a specialized set of cytoskeletal proteins to determine their overall shape and the organization of their intracellular compartments and organelles. During embryonic development, the dynamic nature of the actin cytoskeleton is critical for virtually all morphogenic events requiring changes in cell shape, migration, adhesion, and division. The behavior of the actin cytoskeleton is modulated by a myriad of accessory proteins. Shroom3 is an actin binding protein that regulates neural tube morphogenesis by eliciting changes in cell shape through a myosin II-dependent pathway. The Shroom-related gene SHROOM4 (formerly called KIAA1202) has also been implicated in neural development, as mutations in this gene are associated with human X-linked mental retardation. To better understand the function of Shrm4 in embryonic development, we have cloned mouse Shroom4 and characterized its protein product in vivo and in vitro. Shroom4 is expressed in a wide range of cell types during mouse development, including vascular endothelium and the polarized epithelium of the neural tube and kidney. In endothelial cells and embryo fibroblasts, endogenous Shroom4 co-distributes with myosin II to a distinct cytoplasmic population of F-actin and ectopic expression of Shroom4 in multiple cell types enhances or induces the formation of this actin-based structure. This localization is mediated, at least in part, by the direct interaction of Shroom4 and F-actin. Our results suggest that Shroom4 is a regulator of cytoskeletal architecture that may play an important role in vertebrate development.  相似文献   

6.
Changes in the shape of neuroepithelial cells, particularly apical constriction, are generally thought to play a major role in generating the driving forces for neural tube formation. Our previous study [Nagele and Lee (1987) J. Exp. Zool., 241:197-205] has shown that, in the developing midbrain region of stage 8+ chick embryos, neuroepithelial cells showing the greatest degree of apical constriction are concentrated at sites of enhanced bending of the neuroepithelium (i.e., the floor and midlateral walls of neural tube), suggesting that driving forces resulting from apical constriction are concentrated at these sites during closure of the neural tube. In the present study, we have used morphometric methods to 1) measure regional variations in the degree of apical constriction and apical surface folding at selected regions along the anteroposterior axis of stage 8+ chick embryos, which closely resemble the various ontogenetic phases of neural tube formation, and 2) investigate how forces resulting from apical constriction are distributed within the neuroepithelium during transformation of the neural plate into a neural tube. Results show that, during neural tube formation, driving forces resulting from apical constriction are not distributed uniformly throughout the neuroepithelium but rather are concentrated sequentially at three distinct locations: 1) the floor (during transformation of the neural plate to a V-shaped neuroepithelium), 2) the midlateral walls (during transformation of the V-shaped neuroepithelium into a C-shaped neuroepithelium), and 3) the upper walls (during the transformation of the C-shaped neuroepithelium into a closed neural tube).  相似文献   

7.
Regulation of cellular adhesion and cytoskeletal dynamics is essential for neurulation, though it remains unclear how these two processes are coordinated. Members of the Ena/VASP family of proteins are localized to sites of cellular adhesion and actin dynamics and lack of two family members, Mena and VASP, in mice results in failure of neural tube closure. The precise mechanism by which Ena/VASP proteins regulate this process, however, is not understood. In this report, we show that Xenopus Ena (Xena) is localized to apical adhesive junctions of neuroepithelial cells during neurulation and that Xena knockdown disrupts cell behaviors integral to neural tube closure. Changes in the shape of the neural plate as well as apical constriction within the neural plate are perturbed in Xena knockdown embryos. Additionally, we demonstrate that Xena is essential for cell-cell adhesion. These results demonstrate that Xena plays an integral role in coordinating the regulation of cytoskeletal dynamics and cellular adhesion during neurulation in Xenopus.  相似文献   

8.
Cell shape changes are critical for morphogenetic events such as gastrulation, neurulation, and organogenesis. However, the cell biology driving cell shape changes is poorly understood, especially in vertebrates. The beginning of Xenopus laevis gastrulation is marked by the apical constriction of bottle cells in the dorsal marginal zone, which bends the tissue and creates a crevice at the blastopore lip. We found that bottle cells contribute significantly to gastrulation, as their shape change can generate the force required for initial blastopore formation. As actin and myosin are often implicated in contraction, we examined their localization and function in bottle cells. F-actin and activated myosin accumulate apically in bottle cells, and actin and myosin inhibitors either prevent or severely perturb bottle cell formation, showing that actomyosin contractility is required for apical constriction. Microtubules were localized in apicobasally directed arrays in bottle cells, emanating from the apical surface. Surprisingly, apical constriction was inhibited in the presence of nocodazole but not taxol, suggesting that intact, but not dynamic, microtubules are required for apical constriction. Our results indicate that actomyosin contractility is required for bottle cell morphogenesis and further suggest a novel and unpredicted role for microtubules during apical constriction.  相似文献   

9.

Neural tube closure is an important and necessary process during the development of the central nervous system. The formation of the neural tube structure from a flat sheet of neural epithelium requires several cell morphogenetic events and tissue dynamics to account for the mechanics of tissue deformation. Cell elongation changes cuboidal cells into columnar cells, and apical constriction then causes them to adopt apically narrow, wedge-like shapes. In addition, the neural plate in Xenopus is stratified, and the non-neural cells in the deep layer (deep cells) pull the overlying superficial cells, eventually bringing the two layers of cells to the midline. Thus, neural tube closure appears to be a complex event in which these three physical events are considered to play key mechanical roles. To test whether these three physical events are mechanically sufficient to drive neural tube formation, we employed a three-dimensional vertex model and used it to simulate the process of neural tube closure. The results suggest that apical constriction cued the bending of the neural plate by pursing the circumference of the apical surface of the neural cells. Neural cell elongation in concert with apical constriction further narrowed the apical surface of the cells and drove the rapid folding of the neural plate, but was insufficient for complete neural tube closure. Migration of the deep cells provided the additional tissue deformation necessary for closure. To validate the model, apical constriction and cell elongation were inhibited in Xenopus laevis embryos. The resulting cell and tissue shapes resembled the corresponding simulation results.

  相似文献   

10.
During early mouse development, a single-layered epithelium is transformed into the three germ layers that are the basis of the embryonic body plan. Here we describe an ENU-induced mutation, limulus (lulu), which disrupts gastrulation and the organization of all three embryonic germ layers. Positional cloning and analysis of additional alleles show that lulu is a null allele of the FERM-domain gene erythrocyte protein band 4.1-like 5 (Epb4.1l5). During gastrulation, some cells in lulu mutants are trapped in the primitive streak at an intermediate stage of the epithelial-mesenchymal transition; as a result, the embryos have very little paraxial mesoderm. Epithelial layers of the later lulu embryo are also disrupted: definitive endoderm is specified but does not form a gut tube, and the neural plate is broad and forms ectopic folds rather than closing to make the neural tube. In contrast to zebrafish and Drosophila, in which orthologs of Epb4.1l5 control the apical localization and activity of Crumbs proteins, mouse Crumbs proteins are localized normally to the apical surface of the lulu mutant epiblast and neural plate. However, the defects in both the lulu primitive streak and neural plate are associated with disruption of the normal organization of the actin cytoskeleton. We propose that mouse Lulu (Epb4.1l5) helps anchor the actin-myosin contractile machinery to the membrane to allow the dynamic rearrangements of epithelia that mediate embryonic morphogenesis.  相似文献   

11.
In developing vertebrates, the neural tube forms from a sheet of neural ectoderm by complex cell movements and morphogenesis. Convergent extension movements and the apical constriction along with apical-basal elongation of cells in the neural ectoderm are thought to be essential for the neural tube closure (NTC) process. In addition, it is known that non-neural ectoderm also plays a crucial role in this process, as the neural tube fails to close in the absence of this tissue in chick and axolotl. However, the cellular and molecular mechanisms by which it functions in NTC are as yet unclear. We demonstrate here that the non-neural superficial epithelium moves in the direction of tensile forces applied along the dorsal-ventral axis during NTC. We found that this force is partly attributable to the deep layer of non-neural ectoderm cells, which moved collectively towards the dorsal midline along with the superficial layer. Moreover, inhibition of this movement by deleting integrin β1 function resulted in incomplete NTC. Furthermore, we demonstrated that other proposed mechanisms, such as oriented cell division, cell rearrangement and cell-shape changes have no or only minor roles in the non-neural movement. This study is the first to demonstrate dorsally oriented deep-cell migration in non-neural ectoderm, and suggests that a global reorganization of embryo tissues is involved in NTC.  相似文献   

12.
The formation of an epithelial tube is a fundamental process for organogenesis. During Drosophila embryonic salivary gland (SG) invagination, Folded gastrulation (Fog)-dependent Rho-associated kinase (Rok) promotes contractile apical myosin formation to drive apical constriction. Microtubules (MTs) are also crucial for this process and are required for forming and maintaining apicomedial myosin. However, the underlying mechanism that coordinates actomyosin and MT networks still remains elusive. Here, we show that MT-dependent intracellular trafficking regulates apical constriction during SG invagination. Key components involved in protein trafficking, such as Rab11 and Nuclear fallout (Nuf), are apically enriched near the SG invagination pit in a MT-dependent manner. Disruption of the MT networks or knockdown of Rab11 impairs apicomedial myosin formation and apical constriction. We show that MTs and Rab11 are required for apical enrichment of the Fog ligand and the continuous distribution of the apical determinant protein Crumbs (Crb) and the key adherens junction protein E-Cadherin (E-Cad) along junctions. Targeted knockdown of crb or E-Cad in the SG disrupts apical myosin networks and results in apical constriction defects. Our data suggest a role of MT- and Rab11-dependent intracellular trafficking in regulating actomyosin networks and cell junctions to coordinate cell behaviors during tubular organ formation.  相似文献   

13.
Shroom family proteins have been implicated in the control of the actin cytoskeleton, but so far only a single family member has been studied in the context of developing embryos. Here, we show that the Shroom-family protein, Shroom2 (previously known as APXL) is both necessary and sufficient to govern the localization of pigment granules at the apical surface of epithelial cells. In Xenopus embryos that lack Shroom2 function, we observed defects in pigmentation of the eye that stem from failure of melanosomes to mature and to associate with the apical cell surface. Ectopic expression of Shroom2 in na?ve epithelial cells facilitates apical pigment accumulation, and this activity specifically requires the Rab27a GTPase. Most interestingly, we find that Shroom2, like Shroom3 (previously called Shroom), is sufficient to induce a dramatic apical accumulation of the microtubule-nucleating protein gamma-tubulin at the apical surfaces of na?ve epithelial cells. Together, our data identify Shroom2 as a central regulator of RPE pigmentation, and suggest that, despite their diverse biological roles, Shroom family proteins share a common activity. Finally, because the locus encoding human SHROOM2 lies within the critical region for two distinct forms of ocular albinism, it is possible that SHROOM2 mutations may be a contributing factor in these human visual system disorders.  相似文献   

14.
Microfilaments, which are organized into bundles in the apical ends of neuroepithelial cells, are generally thought to play a major role in generating the driving forces for neural tube closure. Because of their proximity to the luminal surface, the contractile activity of these microfilament bundles results in conspicuous changes in the overall shape of neuroepithelial cells, most notably apical constriction and apical surface folding. In the present study, we have used morphometric methods and computer-assisted image analysis to reveal the distribution of microfilament-mediated forces in the developing midbrain during initial contact of apposing neural folds in chick embryos at Hamburger and Hamilton stage 8+ of development (Hamburger and Hamilton (1951) J. Morphol., 88:49-92). The degree of apical constriction, apical surface folding, and bending of the neuroepithelium was used as a barometer of local microfilament activity. Results indicate that cells forming the floor and midlateral walls of the developing midbrain consistently show a higher degree of apical constriction and surface folding than those at other locations. These same regions of the neuroepithelium also exhibit the greatest degree of bending. We conclude that the principal driving forces for closure of the neural tube, at the level of the midbrain, are concentrated in certain regions of the neuroepithelium (i.e., the floor and midlateral walls of the forming neural tube) rather than uniformly distributed.  相似文献   

15.
Myosin II-driven mechanical forces control epithelial cell shape and morphogenesis. In particular, the circumferential actomyosin belt, which is located along apical cell-cell junctions, regulates many cellular processes. Despite its importance, the molecular mechanisms regulating the belt are not fully understood. In this paper, we characterize Lulu2, a FERM (4.1 protein, ezrin, radixin, moesin) domain-containing molecule homologous to Drosophila melanogaster Yurt, as an important regulator. In epithelial cells, Lulu2 is localized along apical cell-cell boundaries, and Lulu2 depletion by ribonucleic acid interference results in disorganization of the circumferential actomyosin belt. In its regulation of the belt, Lulu2 interacts with and activates p114RhoGEF, a Rho-specific guanine nucleotide exchanging factor (GEF), at apical cell-cell junctions. This interaction is negatively regulated via phosphorylation events in the FERM-adjacent domain of Lulu2 catalyzed by atypical protein kinase C. We further found that Patj, an apical cell polarity regulator, recruits p114RhoGEF to apical cell-cell boundaries via PDZ (PSD-95/Dlg/ZO-1) domain-mediated interaction. These findings therefore reveal a novel molecular system regulating the circumferential actomyosin belt in epithelial cells.  相似文献   

16.
17.
During neural tube closure, specialized regions called hinge points (HPs) display dynamic and polarized cell behaviors necessary for converting the neural plate into a neural tube. The molecular bases of such cell behaviors (e.g. apical constriction, basal nuclear migration) are poorly understood. We have identified a two-dimensional canonical BMP activity gradient in the chick neural plate that results in low and temporally pulsed BMP activity at the ventral midline/median hinge point (MHP). Using in vivo manipulations, high-resolution imaging and biochemical analyses, we show that BMP attenuation is necessary and sufficient for MHP formation. Conversely, BMP overexpression abolishes MHP formation and prevents neural tube closure. We provide evidence that BMP modulation directs neural tube closure via the regulation of apicobasal polarity. First, BMP blockade produces partially polarized neural cells, which retain contact with the apical and basal surfaces but where basolateral proteins (LGL) become apically localized and apical junctional proteins (PAR3, ZO1) become targeted to endosomes. Second, direct LGL misexpression induces ectopic HPs identical to those produced by noggin or dominant-negative BMPR1A. Third, BMP-dependent biochemical interactions occur between the PAR3-PAR6-aPKC polarity complex and phosphorylated SMAD5 at apical junctions. Finally, partially polarized cells normally occur at the MHP, their frequencies inversely correlated with the BMP activity gradient in the neural plate. We propose that spatiotemporal modulation of the two-dimensional BMP gradient transiently alters cell polarity in targeted neuronal cells. This ensures that the neural plate is flexible enough to be focally bent and shaped into a neural tube, while retaining overall epithelial integrity.  相似文献   

18.
Apical-domain constriction is important for regulating epithelial morphogenesis. Epithelial cells are connected by apical junctional complexes (AJCs) that are lined with circumferential actomyosin cables. The contractility of these cables is regulated by Rho-associated kinases (ROCKs). Here, we report that Willin (a FERM-domain protein) and Par3 (a polarity-regulating protein) cooperatively regulate ROCK-dependent apical constriction. We found that Willin recruits aPKC and Par6 to the AJCs, independently of Par3. Simultaneous depletion of Willin and Par3 completely removed aPKC and Par6 from the AJCs and induced apical constriction. Induced constriction was through upregulation of the level of AJC-associated ROCKs, which was due to loss of aPKC. Our results indicate that aPKC phosphorylates ROCK and suppresses its junctional localization, thereby allowing cells to retain normally shaped apical domains. Thus, we have uncovered a Willin/Par3-aPKC-ROCK pathway that controls epithelial apical morphology.  相似文献   

19.
Epithelial invagination is a common feature of embryogenesis. An example of invagination morphogenesis occurs during development of the early eye when the lens placode forms the lens pit. This morphogenesis is accompanied by a columnar-to-conical cell shape change (apical constriction or AC) and is known to be dependent on the cytoskeletal protein Shroom3. Because Shroom3-induced AC can be Rock1/2 dependent, we hypothesized that during lens invagination, RhoA, Rock and a RhoA guanine nucleotide exchange factor (RhoA-GEF) would also be required. In this study, we show that Rock activity is required for lens pit invagination and that RhoA activity is required for Shroom3-induced AC. We demonstrate that RhoA, when activated and targeted apically, is sufficient to induce AC and that RhoA plays a key role in Shroom3 apical localization. Furthermore, we identify Trio as a RhoA-GEF required for Shroom3-dependent AC in MDCK cells and in the lens pit. Collectively, these data indicate that a Trio-RhoA-Shroom3 pathway is required for AC during lens pit invagination.  相似文献   

20.
Sonic hedgehog and the molecular regulation of mouse neural tube closure   总被引:8,自引:0,他引:8  
Neural tube closure is a fundamental embryonic event whose molecular regulation is poorly understood. As mouse neurulation progresses along the spinal axis, there is a shift from midline neural plate bending to dorsolateral bending. Here, we show that midline bending is not essential for spinal closure since, in its absence, the neural tube can close by a 'default' mechanism involving dorsolateral bending, even at upper spinal levels. Midline and dorsolateral bending are regulated by mutually antagonistic signals from the notochord and surface ectoderm. Notochordal signaling induces midline bending and simultaneously inhibits dorsolateral bending. Sonic hedgehog is both necessary and sufficient to inhibit dorsolateral bending, but is neither necessary nor sufficient to induce midline bending, which seems likely to be regulated by another notochordal factor. Attachment of surface ectoderm cells to the neural plate is required for dorsolateral bending, which ensures neural tube closure in the absence of sonic hedgehog signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号