首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A phylogenetic hypothesis of the fungus-growing ants (subfamily Myrmicinae, tribe Attini) is proposed, based on a cladistic analysis utilizing forty-four morphological characters (109 states) of the prepupal worker larva. The fifty-one attine species analysed include representatives of eleven of the twelve currently recognized attine genera, excluding only the monotypic workerless parasite Pseudoatta ; the non-attines include two outgroups (species of the basal myrmicine genera Myrmica and Pogonomyrmex ), two myrmicine species presumed to be distantly related to the attines, and twelve species representing taxa that have been proposed by prior workers as possible sister groups of the Attini. There is strong character support for the monophyly of the Attini and for a sister-group relationship of the Attini and the Neotropical Blepharidatta brasiliensis. The Attini are divided into two distinct lineages, an 'apterostigmoid' clade (containing Apterostigma and Mycocepurus) and an 'attoid' clade (containing all other attine genera except Myrmicocrypta). The attine genus Myrmicocrypta appears to be paraphyletic with respect to these two groups; the species M.buenzlii in particular retains many attine plesiomorphies.
These results indicate that the fungus-growing behaviour had a single evolutionary origin in the ants. They also indicate that mycelium cultivation is plesiomorphic and that yeast cultivation is derived within the Attini, overturning the long-standing assumption that the yeast-growing Cyphomyrmex species are the most primitive Attini. Behavioural and ecological investigations into the origin and evolution of the fungus-growing behaviour might more profitably focus on species in the attine genus Myrmicocrypta , as well as those in the closely related non-attine genera Blepharidatta and Wasmannia.  相似文献   

2.
3.
The symbiosis between fungus-farming ants (Attini, Formicidae), their cultivated fungi, garden-infecting Escovopsis pathogens, and Pseudonocardia bacteria on the ant integument has been popularized as an example of ant-Escovopsis-Pseudonocardia co-evolution. Recent research could not verify earlier conclusions regarding antibiotic-secreting, integumental Pseudonocardia that co-evolve to specifically suppress Escovopsis disease in an ancient co-evolutionary arms-race. Rather than long-term association with a single, co-evolving Pseudonocardia strain, attine ants accumulate complex, dynamic biofilms on their integument and in their gardens. Emerging views are that the integumental biofilms protect the ants primarily against ant diseases, whereas garden biofilms protect primarily against garden diseases; attine ants selectively recruit ('screen in') microbes into their biofilms; and the biofilms of ants and gardens serve diverse functions beyond disease-suppression.  相似文献   

4.
Among insect taxa, ants exhibit one of the most variable chromosome numbers ranging from n = 1 to n = 60. This high karyotype diversity is suggested to be correlated to ants diversification. The karyotype evolution of ants is usually understood in terms of Robertsonian rearrangements towards an increase in chromosome numbers. The ant genus Mycetophylax is a small monogynous basal Attini ant (Formicidae: Myrmicinae), endemic to sand dunes along the Brazilian coastlines. A recent taxonomic revision validates three species, Mycetophylax morschi, M. conformis and M. simplex. In this paper, we cytogenetically characterized all species that belongs to the genus and analyzed the karyotypic evolution of Mycetophylax in the context of a molecular phylogeny and ancestral character state reconstruction. M. morschi showed a polymorphic number of chromosomes, with colonies showing 2n = 26 and 2n = 30 chromosomes. M. conformis presented a diploid chromosome number of 30 chromosomes, while M. simplex showed 36 chromosomes. The probabilistic models suggest that the ancestral haploid chromosome number of Mycetophylax was 17 (Likelihood framework) or 18 (Bayesian framework). The analysis also suggested that fusions were responsible for the evolutionary reduction in chromosome numbers of M. conformis and M. morschi karyotypes whereas fission may determines the M. simplex karyotype. These results obtained show the importance of fusions in chromosome changes towards a chromosome number reduction in Formicidae and how a phylogenetic background can be used to reconstruct hypotheses about chromosomes evolution.  相似文献   

5.
Workers of the genus Cheliomyrmex are unique among the New world army ants (subfamily Ecitoninae) in that their mandibles are armed with elongate, spine‐like teeth. We present the first prey records for this genus. Cheliomyrmex andicola prey on large‐bodied ground dwelling invertebrates and, possibly, on vertebrates. Unlike other army ants, C. andicola workers use their sting during prey capture. The workers' unusual mandibles and potent stings may be adapted for piercing and gripping the integument of nonarthropod prey animals, and for rapidly subduing large‐bodied prey, respectively. The genus Cheliomyrmex may be the sister taxon to other Neotropical army ants (Ecitoninae), and Cheliomyrmex shares features of mandibular morphology and prey selection with Old World driver ants in the genus Dorylus. Mass cooperative foraging, an important element of army ant behavior, may have arisen in part as an adaptation for exploiting large‐bodied prey.  相似文献   

6.
《Comptes Rendus Palevol》2019,18(6):589-597
Examination of fossil ant specimens from various private and institutional German collections of Baltic amber has revealed a new genus and species of Myrmicinae, described here as Thanacomyrmex hoffeinsorum gen. et sp. nov. The new worker morphotype shares some similarities with the coeval extinct genus Parameranoplus Wheeler, also from Baltic amber, and the extant genera Pristomyrmex Mayr and Acanthomyrmex Emery, suggesting placement of the new fossil in the Myrmecina genus-group within the tribe Crematogastrini. The new genus highlights the tremendous diversity of ants that evolved in the Palaeogene European forests and composed the first major radiation of crown-group ants.  相似文献   

7.
Abstract. The dorylomorph group of ants comprises the three subfamilies of army ants (Aenictinae, Dorylinae, Ecitoninae) together with the subfamilies Aenictogitoninae, Cerapachyinae, and Leptanilloidinae. We describe new morphological characters and synthesize data from the literature in order to present the first hypothesis of phylogenetic relationships among all dorylomorph genera. These data include the first available character information from the newly discovered male caste of Leptanilloidinae. We used ant taxa from Leptanillinae, Myrmeciinae, and the poneromorph (Ponerinae sensu lato) subfamilies Amblyoponinae, Ectatomminae, and Paraponerinae as outgroups. We scored a total of 126 characters from twenty-two terminal taxa and used these data to conduct maximum parsimony and bootstrap analyses. The single most-parsimonious tree and bootstrap results support a single origin of army ants. The Old World army ant genus Dorylus forms a monophyletic group with the enigmatic genus Aenictogiton, which is currently known only from males; the second Old World army ant genus Aenictus is sister to this clade. This result generates the prediction that females of Aenictogiton, when discovered, will be observed to possess the army ant syndrome of behavioural and reproductive traits. The monophyly of the New World army ants (Ecitoninae) is supported very strongly, and within this group the genera Eciton, Nomamyrmex, and Labidus form a robust clade. The monophyly of Leptanilloidinae is also upheld. The subfamily Cerapachyinae appears paraphyletic, although this conclusion is not supported by strong bootstrap results. Relationships among genera of Cerapachyinae similarly are not resolved robustly, although parsimony results suggest clades consisting of (Acanthostichus + Cylindromyrmex) and (Cerapachys + Sphinctomyrmex). We tested for the effect of incompletely known taxa by conducting a secondary analysis in which the two genera containing ∼50% missing character data (Aenictogiton and Asphinctanilloides) were removed. The strict consensus of the seventeen most-parsimonious trees from this secondary analysis is poorly resolved outside the army ants and contains no clades conflicting with the primary analysis. The position of Leptanilla shifts from forming the sister group to Leptanilloidinae (without high bootstrap support) in the primary analysis, to falling within a polytomy at the base of the root of the dorylomorphs when incompletely known taxa are removed. This instability suggests that the placement of Leptanilla within the dorylomorphs in our primary analysis may be spurious.  相似文献   

8.
The leafcutter ants, which consist of Acromyrmex and Atta genera, are restricted to the New World and they are considered the main herbivores in the neotropics. Cytogenetic studies of leafcutter ants are available for five species of Atta and 14 species of Acromyrmex, both including subspecies. These two ant genera have a constant karyotype with a diploid number of 22 and 38 chromosomes, respectively. The most distinct Acromyrmex species from Brazil is A. striatus, which is restricted to the southern states of Santa Catarina and Rio Grande do Sul. Several cytogenetic and phylogenetic studies have been conducted with ants, but the karyotypic characterization and phylogenetic position of this species relative to leafcutter ants remains unknown. In this study, we report a diploid number of 22 chromosomes for A. striatus. The phylogenetic relationship between A. striatus and other leafcutter ants was estimated based on the four nuclear genes. A. striatus shared the same chromosome number as Atta species and the majority of metacentric chromosomes. Nuclear data generated a phylogenetic tree with a well-supported cluster, where A. striatus formed a different clade from other Acromyrmex spp. This combination of cytogenetic and molecular approaches provided interesting insights into the phylogenetic position of A. striatus among the leafcutter ants and the tribe Attini.  相似文献   

9.
Attine ants cultivate fungi as their most important food source and in turn the fungus is nourished, protected against harmful microorganisms, and dispersed by the ants. This symbiosis evolved approximately 50–60 million years ago in the late Paleocene or early Eocene, and since its origin attine ants have acquired a variety of fungal mutualists in the Leucocoprineae and the distantly related Pterulaceae. The most specialized symbiotic interaction is referred to as “higher agriculture” and includes leafcutter ant agriculture in which the ants cultivate the single species Leucoagaricus gongylophorus. Higher agriculture fungal cultivars are characterized by specialized hyphal tip swellings, so-called gongylidia, which are considered a unique, derived morphological adaptation of higher attine fungi thought to be absent in lower attine fungi. Rare reports of gongylidia-like structures in fungus gardens of lower attines exist, but it was never tested whether these represent rare switches of lower attines to L. gonglyphorus cultivars or whether lower attine cultivars occasionally produce gongylidia. Here we describe the occurrence of gongylidia-like structures in fungus gardens of the asexual lower attine ant Mycocepurus smithii. To test whether M. smithii cultivates leafcutter ant fungi or whether lower attine cultivars produce gongylidia, we identified the M. smithii fungus utilizing molecular and morphological methods. Results shows that the gongylidia-like structures of M. smithii gardens are morphologically similar to gongylidia of higher attine fungus gardens and can only be distinguished by their slightly smaller size. A molecular phylogenetic analysis of the fungal ITS sequence indicates that the gongylidia-bearing M. smithii cultivar belongs to the so-called “Clade 1”of lower Attini cultivars. Given that M. smithii is capable of cultivating a morphologically and genetically diverse array of fungal symbionts, we discuss whether asexuality of the ant host maybe correlated with low partner fidelity and active symbiont choice between fungus and ant mutualists.  相似文献   

10.
Myrmica ants have been model species for studies in a variety of disciplines, including insect physiology, chemical communication, ant social dynamics, ant population, community ecology, and ant interactions with other organisms. Species belonging to the genus Myrmica can be found in virtually every habitat within the temperate regions of the northern hemisphere and their biology and systematics have been thoroughly studied. These ants serve as hosts to highly diverse parasitic organisms from socially parasitic butterfly caterpillars to microbes, and many Myrmica species even evolved into parasitizing species of their own genus. These parasites have various impacts both on the individuals and on the social structure of their hosts, ranging from morphological malformations to reduction in colony fitness. A comprehensive review of the parasitic organisms supported by Myrmica and the effects of these organisms on individuals and on whole ant colonies has not yet been compiled. Here, we provide a review of the interactions of these organisms with Myrmica ants by discussing host and parasite functional, behavioral or physiological adaptations. In addition, for all “symbiont groups” of Myrmica ants described in this paper, we examine the present limitations of the knowledge at present of their impact on individuals and host colony fitness. In conclusion, we argue that Myrmica ants serve as remarkable resource for the evolution of a wide variety of associated organisms.  相似文献   

11.
Fungus-growing ants (Attini, Formicidae) originated about 45–65 million years ago when forging a mutualistic association with basidiomycete fungi (Lepiotaceae). Here we use information on the biology of the non-leafcutting fungus-growing ants and their close relatives in the genus Blepharidatta to evaluate hypotheses for the evolutionary origin of fungus-growing behavior in attine ants. Observations on the natural history, ecology, and behavior of the Amazonian species Blepharidatta brasiliensis are reported here for the first time. Like most attine species, B. brasiliensis and the great majority of species in the tribe Blepharidattini are inhabitants of moist tropical rainforest, suggesting a rainforest habitat also for the ancestral attine ant. The ancestral attine was probably a leaf litter dweller, building small to medium sized nests (e.g., 20–200 workers) either between leaves in the litter or in decaying wood on the rainforest floor. Received 20 December 2005; revised 1 March 2006; accepted 7 March 2006.  相似文献   

12.
This study investigated ant seed removal of Piper sancti-felicis, an early successional Neotropical shrub. Neotropical Piper are a classic example of bat-dispersed plants, but we suggest that ants are underappreciated dispersal agents. We identified eleven ant species from the genera Aphaenogaster, Ectatomma, Paratrechina, Pheidole, Trachymyrmex, and Wasmannia recruiting to and harvesting P. sancti-felicis seeds in forest edge and secondary forest sites at La Selva, Costa Rica. We also tested for differences in ant recruitment to five states in which ants can commonly encounter seeds: unripe fruit, ripe fruit, overripe fruit, bat feces, and cleaned seeds. Overall, ants harvested more seeds from ripe and overripe fruits than other states, but this varied among species. To better understand the mechanisms behind ant preferences for ripe/overripe fruit, we also studied how alkenylphenols, secondary metabolites found in high concentrations in P. sancti-felicis fruits, affected foraging behavior in one genus of potential ant dispersers, Ectatomma. We found no effects of alkenylphenols on recruitment of Ectatomma to fruits, and thus, these compounds are unlikely to explain differences in ant recruitment among fruits of different maturity. Considering that P. sancti-felicis seeds have no apparent adaptations for ant dispersal, and few ants removed seeds that were cleaned of pulp, we hypothesize that most ants are harvesting its seeds for the nutritional rewards in the attached pulp. This study emphasizes the importance of ants as important additional dispersers of P. sancti-felicis and suggests that other non-myrmecochorous, vertebrate-dispersed plants may similarly benefit from the recruitment to fruit by ants.  相似文献   

13.
Moore W  Song XB  Di Giulio A 《ZooKeys》2011,(90):63-82
Larvae of the ground beetle genus Eustra Schmidt-Goebel are described and illustrated for the first time and some biological notes are reported. One specimen of an unknown Eustra species was collected while excavating a nest of the ant Pachycondyla javana Mayr, in Taiwan, which is the first report of a paussine associated with a member of the ant subfamily Ponerinae. Several larvae and adults of a second species, Eustra chinensis Bänninger, were collected in Shanghai under bark with no association with ants. First instar larvae of the latter species were also reared in the lab. The occurrence of larvae of the genus Eustra both inside and outside ant nests, together with a report of adults collected inside a nest in Taiwan, suggests that members of this genus may be facultative predators or facultative symbionts of ants, an attribute that has never been reported for this genus. The larvae of Eustra show several unique features, including a peculiar bidentate mandibular apex, an extremely long galea, one of two tarsal claws greatly reduced, abdominal setae (including those of terminal disk) elongate and clavate at apex, urogomphi wide and flattened, and inflated sensilla S-I. Larvae were studied by both optical and scanning electron microscopy, their morphological features are compared with those of other described Paussinae larvae, and their potential phylogenetic and functional significance are discussed.  相似文献   

14.
Macaranga is a tree genus that includes many species of myrmecophytes, which are plants that harbor ant colonies within hollow structures known as domatia. The symbiotic ants (plant–ants) protect their host plants against herbivores; this defense mechanism is called ‘ant defense’. A Bornean phasmid species Orthomeria cuprinus feeds on two myrmecophytic Macaranga species, Macaranga beccariana and Macaranga hypoleuca, which are obligately associated with Crematogaster ant species. The phasmids elude the ant defense using specialized behavior. However, the mechanisms used by the phasmid to overcome ant defenses have been insufficiently elucidated. We hypothesized that O. cuprinus only feeds on individual plants with weakened ant defenses. To test the hypothesis, we compared the ant defense intensity in phasmid-infested and non-infested M. beccariana trees. The number of plant–ants on the plant surface, the ratio of plant–ant biomass to tree biomass, and the aggressiveness of plant–ants towards experimentally introduced herbivores were significantly lower on the phasmid-infested trees than on the non-infested trees. The phasmid nymphs experimentally introduced into non-infested trees, compared with those experimentally introduced into phasmid-infested trees, were more active on the plant surface, avoiding the plant–ants. These results support the hypothesis and suggest that ant defenses on non-infested trees effectively prevent the phasmids from remaining on the plants. Thus, we suggest that O. cuprinus feeds only on the individual M. beccariana trees having decreased ant defenses, although the factors that reduce the intensity of the ant defenses remain unclear.  相似文献   

15.
Fungus‐farming ants (Hymenoptera: Formicidae) have become model systems for exploring questions regarding the evolution of symbiosis. However, robust phylogenetic studies of both the ant agriculturalists and their fungal cultivars are necessary for addressing whether or not observed ant–fungus associations are the result of coevolution and, if so, whether that coevolution has been strict or diffuse. Here we focus on the evolutionary relationships of the species within the ant genus Myrmicocrypta and of their fungal cultivars. The fungus‐farming ant genus Myrmicocrypta was created by Fr. Smith in 1860 based on a single alate queen. Since then, 31 species and subspecies have been described. Until now, the genus has not received any taxonomic treatment and the relationships of the species within the genus have not been tested. Our molecular analyses, using ~40 putative species and six protein‐coding (nuclear and mitochondrial) gene fragments, recover Myrmicocrypta as monophyletic and as the sister group of the genus Mycocepurus Forel. The species M. tuberculata Weber is recovered as the sister to the rest of Myrmicocrypta. The time‐calibrated phylogeny recovers the age of stem group Myrmicocrypta plus its sister group as 45 Ma, whereas the inferred age for the crown group Myrmicocrypta is recovered as 27 Ma. Ancestral character‐state analyses suggest that the ancestor of Myrmicocrypta had scale‐like or squamate hairs and that, although such hairs were once considered diagnostic for the genus, the alternative state of erect simple hairs has evolved at least seven independent times. Ancestral‐state analyses of observed fungal cultivar associations suggest that the most recent common ancestor of Myrmicocrypta cultivated clade 2 fungal species and that switches to clade 1 fungi have occurred at least five times. It is our hope that these results will encourage additional species‐level phylogenies of fungus‐farming ants and their fungal cultivars, which are necessary for understanding the evolutionary processes that gave rise to agriculture in ants and that produced the current diversity of mutualistic ant–fungus interactions.  相似文献   

16.
We reconstruct the phylogenetic relationships within the bacterial genus Pseudonocardia to evaluate two models explaining how and why Pseudonocardia bacteria colonize the microbial communities on the integument of fungus-gardening ant species (Attini, Formicidae). The traditional Coevolution-Codivergence model views the integument-colonizing Pseudonocardia as mutualistic microbes that are largely vertically transmitted between ant generations and that supply antibiotics that specifically suppress the garden pathogen Escovopsis. The more recent Acquisition model views Pseudonocardia as part of a larger integumental microbe community that frequently colonizes the ant integument from environmental sources (e.g., soil, plant material). Under this latter model, ant-associated Pseudonocardia may have diverse ecological roles on the ant integument (possibly ranging from pathogenic, to commensal, to mutualistic) and are not necessarily related to Escovopsis suppression. We test distinct predictions of these two models regarding the phylogenetic proximity of ant-associated and environmental Pseudonocardia. We amassed 16S-rRNA gene sequence information for 87 attine-associated and 238 environmental Pseudonocardia, aligned the sequences with the help of RNA secondary structure modeling, and reconstructed phylogenetic relationships using a maximum-likelihood approach. We present 16S-rRNA secondary structure models of representative Pseudonocardia species to improve sequence alignments and identify sequencing errors. Our phylogenetic analyses reveal close affinities and even identical sequence matches between environmental Pseudonocardia and ant-associated Pseudonocardia, as well as nesting of environmental Pseudonocardia in subgroups that were previously thought to be specialized to associate only with attine ants. The great majority of ant-associated Pseudonocardia are closely related to autotrophic Pseudonocardia and are placed in a large subgroup of Pseudonocardia that is known essentially only from cultured isolates (rather than cloned 16S sequences). The preponderance of the known ant-associated Pseudonocardia in this latter clade of culturable lineages may not necessarily reflect abundance of these Pseudonocardia types on the ants, but isolation biases when screening for Pseudonocardia (e.g., preferential isolation of autotrophic Pseudonocardia with minimum-nutrient media). The accumulated phylogenetic patterns and the possibility of isolation biases in previous work further erode support for the traditional Coevolution-Codivergence model and calls for continued revision of our understanding how and why Pseudonocardia colonize the microbial communities on the integument of fungus-gardening ant species.  相似文献   

17.
18.
19.
Many organisms use chemicals to deter enemies. Some spiders can modify the composition of their silk to deter predators from climbing onto their webs. The Malaysian golden orb-weaver Nephila antipodiana (Walckenaer) produces silk containing an alkaloid (2-pyrrolidinone) that functions as a defense against ant invasion—ants avoid silk containing this chemical. In the present study, we test the generality of ants’ silk avoidance behavior in the field. We introduced three ant species to the orb webs of Nephila clavipes (Linnaeus) in the tropical rainforest of La Selva, Costa Rica. We found that predatory army ants (Eciton burchellii Westwood) as well as non-predatory leaf-cutting ants (Atta cephalotes Linnaeus and Acromyrmex volcanus Wheeler) avoided adult N. clavipes silk, suggesting that an additional species within genus Nephila may possess ant-deterring silk. Our field assay also suggests that silk avoidance behavior is found in multiple ant species.  相似文献   

20.
Almost all of the more than 200 species of fungus-growing ants (Formicidae: Attini) cultivate litter-decomposing fungi in the family Lepiotaceae (Basidiomycota: Agaricales). The single exception to this rule is a subgroup of ant species within the lower attine genus Apterostigma, which cultivate pterulaceous fungi distantly related to the Lepiotaceae. Comparison of cultivar and ant phylogenies suggests that a switch from lepiotaceous to pterulaceous fungiculture occurred only once in the history of the fungus-growing ants. This unique switch occurred after the origin of the genus Apterostigma, such that the basal Apterostigma lineages retained the ancestral attine condition of lepiotaceous fungiculture, and none of the Apterostigma lineages in the monophyletic group of pterulaceous fungiculturists are known to have reverted back to lepiotaceous fungiculture. The origin of pterulaceous fungiculture in attine ants may have involved a unique transition from the ancestral cultivation of litter-decomposing lepiotaceous fungi to the cultivation of wood-decomposing pterulaceous fungi. Phylogenetic analyses further indicate that distantly related Apterostigma ant species sometimes cultivate the same cultivar lineage, indicating evolutionarily frequent, and possibly ongoing, exchanges of fungal cultivars between Apterostigma ant species. The pterulaceous cultivars form two sister clades, and different Apterostigma ant lineages are invariably associated with, and thus specialized on, only one of the two cultivar clades. However, within clades Apterostigma ant species are able to switch between fungi. This pattern of broad specialization by attine ants on defined cultivar clades, coupled with flexible switching between fungi within cultivar clades, is also found in other attine lineages and appears to be a general phenomenon of fungicultural evolution in all fungus-growing ants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号