首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Previously, we identified a novel herbivore elicitor-regulated protein in Nicotiana attenuata (NaHER1) that is required to suppress abscisic acid (ABA) catabolism during herbivore attack and activate a full defense response against herbivores. ABA, in addition to its newly defined role in defense activation, mainly controls seed germination and stomatal function of land plants. Here we show that N. attenuata seeds silenced in the expression of NaHER1 by RNA interference (irHER1) accumulated less ABA during germination, and germinated faster on ABA-containing media compared to WT. Curiously, epidermal cells of irHER1 plants were wrinkled, possibly due to the previously demonstrated increase in transpiration of irHER1 plants that may affect turgor and cause wrinkling of the cells. We conclude that NaHER1 is a highly pleiotropic regulator of ABA responses in N. attenuata plants.  相似文献   

2.
Beside a cardinal role in coordination of many developmental processes in the plant, the phytohormone auxin has been recognized as a regulator of plant defense. The molecular mechanisms involved are still largely unknown. Using a sensitive chemiluminescence assay, which measures the oxidation of luminol in the presence of H2O2 by horseradish peroxidase (HRP), we report here on the ability of exogenously added indole-3-acetic acid (IAA) to enhance the suppressive effect of the root endophyte Piriformospora indica on the chitin-elicited oxidative burst in barley roots. Thus, the potential of P. indica to produce free IAA during the early colonization phase in barley might provide the symbiont with a means to interfere with the microbe-associated molecular patterns (MAMP)-triggered immunity.  相似文献   

3.
Physiology and Molecular Biology of Plants - Chickpea establishes symbiotic association with Mesorhizobium to fulfill its nitrogen (N) requirement. Integrating chickpea rhizosphere with potential...  相似文献   

4.
5.
This study was undertaken to investigate the influence of plant probiotic fungus Piriformospora indica on the medicinal plant C. forskohlii. Interaction of the C. forskohlii with the root endophyte P. indica under field conditions, results in an overall increase in aerial biomass, chlorophyll contents and phosphorus acquisition. The fungus also promoted inflorescence development, consequently the amount of p-cymene in the inflorescence increased. Growth of the root thickness was reduced in P. indica treated plants as they became fibrous, but developed more lateral roots. Because of the smaller root biomass, the content of forskolin was decreased. The symbiotic interaction of C. forskohlii with P. indica under field conditions promoted biomass production of the aerial parts of the plant including flower development. The plant aerial parts are important source of metabolites for medicinal application. Therefore we suggest that the use of the root endophyte fungus P. indica in sustainable agriculture will enhance the medicinally important chemical production.  相似文献   

6.
Piriformospora indica, a basidiomycete of the Sebacinaceae family, promotes the growth, development and seed production of a variety of plant species. Arabidopsis plants colonized with the fungus produce 22% more seeds than uncolonized plants. Deactivating the Arabidopsis single-copy gene DMI-1, which encodes an ion carrier required for mycorrihiza formation in legumes, does not affect the beneficial interaction between the two symbiotic partners. We used cellular and molecular responses initiated during the establishment of the interaction between P. indica and Arabidopsis roots to isolate mutants that fail to respond to the fungus. An ethylmethane sulfonate mutant (Piriformospora indica-insensitive-2; pii-2), and a corresponding insertion line, are impaired in a leucine-rich repeat protein (At1g13230). The protein pii-2, which contains a putative endoplasmic reticulum retention signal, is also found in Triton X-100-insoluble plasma membrane microdomains, suggesting that it is present in the endoplasmic reticulum/plasma membrane continuum in Arabidopsis roots. The microdomains also contain an atypical receptor protein (At5g16590) containing leucine-rich repeats, the message of which is transiently upregulated in Arabidopsis roots in response to P. indica. This response is not detectable in At1g13230 mutants, and the protein is not detectable in the At1g13230 mutant microdomains. Partial deactivation of a gene for a sphingosine kinase, which is required for the biosynthesis of sphingolipid found in plasma membrane microdomains, also affects the Arabidopsis/P. indica interaction. Thus, pii-2, and presumably also At5g16590, two proteins present in plasma membrane microdomains, appear to be involved in P. indica-induced growth promotion and enhanced seed production in Arabidopsis thaliana.  相似文献   

7.
8.
The endophytic fungus Piriformospora indica colonizes the roots of many plant species including Arabidopsis and promotes their performance, biomass, and seed production as well as resistance against biotic and abiotic stress. Imbalances in the symbiotic interaction such as uncontrolled fungal growth result in the loss of benefits for the plants and activation of defense responses against the microbe. We exposed Arabidopsis seedlings to a dense hyphal lawn of P. indica. The seedlings continue to grow, accumulate normal amounts of chlorophyll, and the photosynthetic parameters demonstrate that they perform well. In spite of high fungal doses around the roots, the fungal material inside the roots was not significantly higher when compared with roots that live in a beneficial symbiosis with P. indica. Fifteen defense- and stress-related genes including PR2, PR3, PAL2, and ERF1 are only moderately upregulated in the roots on the fungal lawn, and the seedlings did not accumulate H2O2/radical oxygen species. However, accumulation of anthocyanin in P. indica-exposed seedlings indicates stress symptoms. Furthermore, the jasmonic acid (JA) and jasmonic acid-isoleucine (JA-Ile) levels were increased in the roots, and consequently PDF1.2 and a newly characterized gene for a 2-oxoglurate and Fe2+-dependent oxygenase were upregulated more than 7-fold on the dense fungal lawn, in a JAR1- and EIN3-dependent manner. We conclude that growth of A. thaliana seedlings on high fungal doses of P. indica has little effect on the overall performance of the plants although elevated JA and JA-Ile levels in the roots induce a mild stress or defense response.  相似文献   

9.
Tsip1, a Zn finger protein that was isolated as a direct interactor with tobacco stress-induced 1 (Tsi1), plays an important role in both biotic and abiotic stress signaling. To further understand Tsip1 function, we searched for more Tsip1-interacting proteins by yeast two-hybrid screening using a tobacco cDNA library. Screening identified a new Tsip1-interacting protein, Nicotiana tabacum Tsip1-interacting ferredoxin 1 (NtTfd1), and binding specificity was confirmed both in vitro and in vivo. The four repeats of a cysteine-rich motif (CXXCXGXG) of Tsip1 proved important for binding to NtTfd1. Virus-induced gene silencing of NtTfd1, Tsip1, and NtTfd1/Tsip1 rendered plants more susceptible to salinity stress compared with TRV2 control plants. NtTfd1- and Tsip1-silenced tobacco plants were more susceptible to infection by Cucumber mosaic virus compared with control plants. These results suggest that NtTfd1 might be involved in the regulation of biotic and abiotic stresses in chloroplasts by interaction with Tsip1.  相似文献   

10.
Abstract: Piriformospora indica (Hymenomycetes, Basidiomycota) is a newly described endophyte which interacts with the roots of a great variety of plants, showing a positive effect on biomass production. In order to obtain a tool for molecular studies on P. indica, Pitef 1 encoding the translation elongation factor EF-1α in P. indica has been cloned and analysed. Comparison of the genomic and cDNA sequence revealed the presence of seven introns in the coding part of the gene and at least one in the 5'untranslated region. Pitef 1 is only present as one copy in the genome, as determined by Southern blot analysis. Interaction with roots of Zea mays in a time course experiment was analysed in relation to hyphal development and RNA accumulation, showing high expression of this gene. The Pitef 1 promoter should therefore be a good tool to construct vectors for the development of a transformation system for P. indica. The gene Pitef 1 might, in addition, be useful for estimating the amount of active mycelium during in planta development and for the calibration of RNA accumulation analyses of differentially expressed fungal genes.  相似文献   

11.
12.
A Sebacinales species was recovered from a clone library made from a pooled rhizosphere sample of Nicotiana attenuata plants from 14 native populations. Axenic cultures of the related species, Piriformospora indica and Sebacina vermifera, were used to examine their effects on plant performance. Inoculation of N. attenuata seeds with either fungus species stimulated seed germination and increased growth and stalk elongation. S. vermifera inoculated plants flowered earlier, produced more flowers and matured more seed capsules than did non-inoculated plants. Jasmonate treatment during rosette-stage growth, which slows growth and elicits herbivore resistance traits, erased differences in vegetative, but not reproductive performance resulting from S. vermifera inoculation. Total nitrogen and phosphorous contents did not differ between inoculated and control plants, suggesting that the performance benefits of fungal inoculation did not result from improvements in nutritional status. Since the expression of trypsin proteinase inhibitors (TPI), defensive proteins which confer resistance to attack from Manduca sexta larvae, incur significant growth and fitness costs for the plant, we examined the effect of S. vermifera inoculation on herbivore resistance and TPI activity. After 10 days of feeding on S. vermifera-inoculated plants, larval mass was 46% higher and TPI activity was 48% lower than that on non-inoculated plants. These results suggest that Sebacina spp. may interfere with defense signaling and allow plants to increase growth rates at the expense of herbivore resistance mediated by TPIs.  相似文献   

13.
14.
The yeast Snf1 protein kinase and its animal homologue, the AMP-activated protein kinase, play important roles in metabolic regulation, by serving as energy gauges that turn off energy-consuming processes and mobilize energy reserves during low-energy conditions. The closest homologue of these kinases in plants is Snf1-related protein kinase 1 (SnRK1). We have cloned two SnRK1-encoding genes, PpSNF1a and PpSNF1b, in the moss Physcomitrella patens, where gene function can be studied directly by gene targeting in the haploid gametophyte. A snf1a snf1b double knockout mutant is viable, but lacks all Snf1-like protein kinase activity. The mutant has a complex phenotype that includes developmental abnormalities, premature senescence and altered sensitivities to plant hormones. Remarkably, the double knockout mutant also requires continuous light, and is unable to grow in a normal day-night light cycle. This suggests that SnRK1 is needed for metabolic changes that help the plant cope with the dark hours of the night.  相似文献   

15.

Background and Aims

The TERMINAL FLOWER 1 (TFL1) gene is pivotal in the control of inflorescence architecture in arabidopsis. Thus, tfl1 mutants flower early and have a very short inflorescence phase, while TFL1-overexpressing plants have extended vegetative and inflorescence phases, producing many coflorescences. TFL1 is expressed in the shoot meristems, never in the flowers. In the inflorescence apex, TFL1 keeps the floral genes LEAFY (LFY) and APETALA1 (AP1) restricted to the flower, while LFY and AP1 restrict TFL1 to the inflorescence meristem. In spite of the central role of TFL1 in inflorescence architecture, regulation of its expression is poorly understood. This study aims to expand the understanding of inflorescence development by identifying and studying novel TFL1 regulators.

Methods

Mutagenesis of an Arabidopsis thaliana line carrying a TFL1::GUS (β-glucuronidase) reporter construct was used to isolate a mutant with altered TFL1 expression. The mutated gene was identified by positional cloning. Expression of TFL1 and TFL1::GUS was analysed by real-time PCR and histochemical GUS detection. Double-mutant analysis was used to assess the contribution of TFL1 to the inflorescence mutant phenotype.

Key Results

A mutant with both an increased number of coflorescences and high and ectopic TFL1 expression was isolated. Cloning of the mutated gene showed that both phenotypes were caused by a mutation in the ARGONAUTE1 (AGO1) gene, which encodes a key component of the RNA silencing machinery. Analysis of another ago1 allele indicated that the proliferation of coflorescences and ectopic TFL1 expression phenotypes are not allele specific. The increased number of coflorescences is suppressed in ago1 tfl1 double mutants.

Conclusions

The results identify AGO1 as a repressor of TFL1 expression. Moreover, they reveal a novel role for AGO1 in inflorescence development, controlling the production of coflorescences. AGO1 seems to play this role through regulating TFL1 expression.  相似文献   

16.
Ralstonia solanacearum is the causal agent of bacterial wilt disease. To better understand the molecular mechanisms involved in interaction between Nicotiana benthamiana and R. solanacearum, we focused on Hsp90, RAR1 and SGT1. Appearances of wilt symptom were significantly suppressed in Hsp90, RAR1 and SGT1-silenced plants compared with control plants. In RAR1-silenced plants, population of R. solanacearum increased in a similar manner to control plants. In contrast, multiplication of R. solanacearum was significantly suppressed in Hsp90 and SGT1-silenced plants. In addition, expression of PR genes were increased in Hsp90 and SGT1-silenced plants challenged with R. solanacearum. Therefore, RAR1 might be required for disease development or suppression of disease tolerance. These results also suggested that Hsp90 and/or SGT1 might play an important role in suppression of plant defenses leading to disease susceptibility and disease development.  相似文献   

17.

Background and Aims

The putative FASCICLIN-LIKE ARABINOGALACTAN PROTEIN 4 (At-FLA4) locus of Arabidopsis thaliana has previously been shown to be required for the normal growth of wild-type roots in response to moderately elevated salinity. However, the genetic and physiological pathway that connects At-FLA4 and normal root growth remains to be elucidated.

Methods

The radial swelling phenotype of At-fla4 was modulated with growth regulators and their inhibitors. The relationship of At-FLA4 to abscisic acid (ABA) signalling was analysed by probing marker gene expression and the observation of the At-fla4 phenotype in combination with ABA signalling mutants.

Key Results

Application of ABA suppresses the non-redundant role of At-FLA4 in the salt response. At-FLA4 positively regulates the response to low ABA concentration in roots and is required for the normal expression of ABA- and abiotic stress-induced genes. The At-fla4 phenotype is enhanced in the At-abi4 background, while two genetic suppressors of ABA-induced gene expression are required for salt oversensitivity of At-fla4. Salt oversensitivity in At-fla4 is suppressed by the CYP707A inhibitor abscinazole E2B, and salt oversensitivity in At-fla4 roots is phenocopied by chemical inhibition of ABA biosynthesis.

Conclusions

The predicted lipid-anchored glycoprotein At-FLA4 positively regulates cell wall biosynthesis and root growth by modulating ABA signalling.  相似文献   

18.
19.
20.
Agrobacterium-mediated transient protein production in plants is a promising approach to produce vaccine antigens and therapeutic proteins within a short period of time. However, this technology is only just beginning to be applied to large-scale production as many technological obstacles to scale up are now being overcome. Here, we demonstrate a simple and reproducible method for industrial-scale transient protein production based on vacuum infiltration of Nicotiana plants with Agrobacteria carrying launch vectors. Optimization of Agrobacterium cultivation in AB medium allows direct dilution of the bacterial culture in Milli-Q water, simplifying the infiltration process. Among three tested species of Nicotiana, N. excelsiana (N. benthamiana × N. excelsior) was selected as the most promising host due to the ease of infiltration, high level of reporter protein production, and about two-fold higher biomass production under controlled environmental conditions. Induction of Agrobacterium harboring pBID4-GFP (Tobacco mosaic virus-based) using chemicals such as acetosyringone and monosaccharide had no effect on the protein production level. Infiltrating plant under 50 to 100 mbar for 30 or 60 sec resulted in about 95% infiltration of plant leaf tissues. Infiltration with Agrobacterium laboratory strain GV3101 showed the highest protein production compared to Agrobacteria laboratory strains LBA4404 and C58C1 and wild-type Agrobacteria strains at6, at10, at77 and A4. Co-expression of a viral RNA silencing suppressor, p23 or p19, in N. benthamiana resulted in earlier accumulation and increased production (15-25%) of target protein (influenza virus hemagglutinin).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号