首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flock House virus (FHV) is a positive-stranded RNA virus with a bipartite genome of RNAs, RNA1 and RNA2, and belongs to the family Nodaviridae. As the most extensively studied nodavirus, FHV has become a well-recognized model for studying various aspects of RNA virology, particularly viral RNA replication and antiviral innate immunity. FHV RNA1 encodes protein A, which is an RNA-dependent RNA polymerase (RdRP) and functions as the sole viral replicase protein responsible for RNA replication. Although the RNA replication of FHV has been studied in considerable detail, the mechanism employed by FHV protein A to initiate RNA synthesis has not been determined. In this study, we characterized the RdRP activity of FHV protein A in detail and revealed that it can initiate RNA synthesis via a de novo (primer-independent) mechanism. Moreover, we found that FHV protein A also possesses a terminal nucleotidyl transferase (TNTase) activity, which was able to restore the nucleotide loss at the 3′-end initiation site of RNA template to rescue RNA synthesis initiation in vitro, and may function as a rescue and protection mechanism to protect the 3′ initiation site, and ensure the efficiency and accuracy of viral RNA synthesis. Altogether, our study establishes the de novo initiation mechanism of RdRP and the terminal rescue mechanism of TNTase for FHV protein A, and represents an important advance toward understanding FHV RNA replication.  相似文献   

2.
3.
4.
5.
The hepatitis C virus (HCV) NS5b protein is an RNA-dependent RNA polymerase essential for replication of the viral RNA genome. In vitro and presumably in vivo, NS5b initiates RNA synthesis by a de novo mechanism. Different structural elements of NS5b have been reported to participate in RNA synthesis, especially a so-called “β-flap” and a C-terminal segment (designated “linker”) that connects the catalytic core of NS5b to a transmembrane anchor. High concentrations of GTP have also been shown to stimulate de novo RNA synthesis by HCV NS5b. Here we describe a combined structural and functional analysis of genotype 1 HCV-NS5b of strains H77 (subtype 1a), for which no structure has been previously reported, and J4 (subtype 1b). Our results highlight the linker as directly involved in lifting the first boundary to processive RNA synthesis, the formation of the first dinucleotide primer. The transition from this first dinucleotide primer state to processive RNA synthesis requires removal of the linker and of the β-flap with which it is shown to strongly interact in crystal structures of HCV NS5b. We find that GTP specifically stimulates this transition irrespective of its incorporation in neosynthesized RNA.  相似文献   

6.
Dengue virus RNA-dependent RNA polymerase specifically binds to the viral genome by interacting with a promoter element known as stem-loop A (SLA). Although a great deal has been learned in recent years about the function of this promoter in dengue virus-infected cells, the molecular details that explain how the SLA interacts with the polymerase to promote viral RNA synthesis remain poorly understood. Using RNA binding and polymerase activity assays, we defined two elements of the SLA that are involved in polymerase interaction and RNA synthesis. Mutations at the top of the SLA resulted in RNAs that retained the ability to bind the polymerase but impaired promoter-dependent RNA synthesis. These results indicate that protein binding to the SLA is not sufficient to induce polymerase activity and that specific nucleotides of the SLA are necessary to render an active polymerase-promoter complex for RNA synthesis. We also report that protein binding to the viral RNA induces conformational changes downstream of the promoter element. Furthermore, we found that structured RNA elements at the 3' end of the template repress dengue virus polymerase activity in the context of a fully active SLA promoter. Using assays to evaluate initiation of RNA synthesis at the viral 3'-UTR, we found that the RNA-RNA interaction mediated by 5'-3'-hybridization was able to release the silencing effect of the 3'-stem-loop structure. We propose that the long range RNA-RNA interactions in the viral genome play multiple roles during RNA synthesis. Together, we provide new molecular details about the promoter-dependent dengue virus RNA polymerase activity.  相似文献   

7.
The dengue virus (DENV) NS3 protein is essential for viral polyprotein processing and RNA replication. It contains an N-terminal serine protease region (residues 1–168) joined to an RNA helicase (residues 180–618) by an 11-amino acid linker (169–179). The structure at 3.15 Å of the soluble NS3 protein from DENV4 covalently attached to 18 residues of the NS2B cofactor region (NS2B18NS3) revealed an elongated molecule with the protease domain abutting subdomains I and II of the helicase (Luo, D., Xu, T., Hunke, C., Grüber, G., Vasudevan, S. G., and Lescar, J. (2008) J. Virol. 82, 173–183). Unexpectedly, using similar crystal growth conditions, we observed an alternative conformation where the protease domain has rotated by ∼161° with respect to the helicase domain. We report this new crystal structure bound to ADP-Mn2+ refined to a resolution of 2.2 Å. The biological significance for interdomain flexibility conferred by the linker region was probed by either inserting a Gly residue between Glu173 and Pro174 or replacing Pro174 with a Gly residue. Both mutations resulted in significantly lower ATPase and helicase activities. We next increased flexibility in the linker by introducing a Pro176 to Gly mutation in a DENV2 replicon system. A 70% reduction in luciferase reporter signal and a similar reduction in the level of viral RNA synthesis were observed. Our results indicate that the linker region has evolved to an optimum length to confer flexibility to the NS3 protein that is required both for polyprotein processing and RNA replication.  相似文献   

8.
Rotaviruses perform the remarkable tasks of transcribing and replicating 11 distinct double-stranded RNA genome segments within the confines of a subviral particle. Multiple viral polymerases are tethered to the interior of a particle, each dedicated to a solitary genome segment but acting in synchrony to synthesize RNA. Although the rotavirus polymerase specifically recognizes RNA templates in the absence of other proteins, its enzymatic activity is contingent upon interaction with the viral capsid. This intraparticle strategy of RNA synthesis helps orchestrate the concerted packaging and replication of the viral genome. Here, we review our current understanding of rotavirus RNA synthetic mechanisms.  相似文献   

9.
10.
棉铃虫5型质型多角体病毒属于呼肠孤病毒科质型多角体病毒属,以重要农业害虫棉铃虫为其天然宿主,对棉铃虫的生物控制具有重要意义.本文对棉铃虫5型质型多角体病毒第3片段编码的蛋白的功能进行了初步研究.首先通过同源性对比,推测其所编码的蛋白可能行使RNA依赖的RNA聚合酶(RdRP)的功能.通过体外活性研究确定了该蛋白的RdRP活性,并确定了其保守活性位点GDD.随后以病毒基因组RNA和3′-OH封闭的病毒基因组RNA为模板,利用Northern blot方法研究该蛋白起始病毒基因组RNA合成的分子机制.结果表明,该病毒的RdRP主要通过引物非依赖的方式起始病毒基因组RNA的合成,并且该RdRP蛋白并不具有末端转移酶活性.最后,对RdRP行使功能的生化条件进行探索,发现RdRP功能的发挥需要二价金属离子Mg2+的存在.  相似文献   

11.
Arenavirus and bunyavirus RNA genomes are unusual in that they are found in circular nucleocapsids, presumably due to the annealing of their complementary terminal sequences. Moreover, arenavirus genome synthesis initiates with GTP at position +2 of the template rather than at the precise 3′ end (position +1). After formation of a dinucleotide, 5′ pppGpCOH is then realigned on the template before this primer is extended. The net result of this “prime and realign” mechanism of genome initiation is that 5′ pppG is found as an unpaired 5′ nucleotide when the complementary genome ends anneal to form a double-stranded (dsRNA) panhandle. Using 5′ pppRNA made in vitro and purified so that all dsRNA side products are absent, we have determined that both this 5′ nucleotide overhang, as well as mismatches within the dsRNA (as found in some arenavirus genomes), clearly reduce the ability of these model dsRNAs to induce interferon upon transfection into cells. The presence of this unpaired 5′ ppp-nucleotide is thus another way that some viruses appear to use to avoid detection by cytoplasmic pattern recognition receptors.  相似文献   

12.
The replication of the genomic RNA of the hepatitis C virus (HCV) of positive polarity involves the synthesis of a replication intermediate of negative polarity by the viral RNA-dependent RNA polymerase (NS5B). In vitro and likely in vivo, the NS5B initiates RNA synthesis without primers. This de novo mechanism needs specific interactions between the polymerase and viral RNA elements. Cis-acting elements involved in the initiation of (–) RNA synthesis have been identified in the 3′ non-coding region and in the NS5B coding region of the HCV RNA. However, the detailed contribution of sequences and/or structures of (–) RNA involved in the initiation of (+) RNA synthesis has been less studied. In this report, we identified an RNA element localized between nucleotides 177 and 222 from the 3′-end of the (–) RNA that is necessary for efficient initiation of RNA synthesis by the recombinant NS5B. By site-directed mutagenesis experiments, we demonstrate that the structure rather than the primary sequence of this domain is important for RNA synthesis. We also demonstrate that the intact structure of this RNA element is also needed for efficient RNA synthesis when the viral NS5B functions in association with other viral and cellular proteins in cultured hepatic cells.  相似文献   

13.
14.
15.
The RNA synthesis machinery of non-segmented negative-sense RNA viruses comprises a ribonucleoprotein complex of the genomic RNA coated by a nucleocapsid protein (N) and associated with polymerase. Work with vesicular stomatitis virus (VSV), a prototype, supports a model of RNA synthesis whereby N is displaced from the template to allow the catalytic subunit of the polymerase, the large protein (L) to gain access to the RNA. Consistent with that model, purified L can copy synthetic RNA that contains requisite promoter sequences. Full processivity of L requires its phosphoprotein cofactor and the template-associated N. Here we demonstrate the importance of the 2′ position of the RNA template and the substrate nucleotide triphosphates during initiation and elongation by L. The VSV polymerase can initiate on both DNA and RNA and can incorporate dNTPs. During elongation, the polymerase is sensitive to 2′ modifications, although dNTPs can be incorporated, and mixed DNA-RNA templates can function. Modifications to the 2′ position of the NTP, including 2′,3′-ddCTP, arabinose-CTP, and 2′-O-methyl-CTP, inhibit polymerase, whereas 2′-amino-CTP is incorporated. The inhibitory effects of the NTPs were more pronounced on authentic N-RNA with the exception of dGTP, which is incorporated. This work underscores the sensitivity of the VSV polymerase to nucleotide modifications during initiation and elongation and highlights the importance of the 2′-hydroxyl of both template and substrate NTP. Moreover, this study demonstrates a critical role of the template-associated N protein in the architecture of the RNA-dependent RNA polymerase domain of L.  相似文献   

16.
17.
Dengue virus multifunctional proteins NS3 protease/helicase and NS5 methyltransferase/RNA-dependent RNA polymerase form part of the viral replication complex and are involved in viral RNA genome synthesis, methylation of the 5′-cap of viral genome, and polyprotein processing among other activities. Previous studies have shown that NS5 residue Lys-330 is required for interaction between NS3 and NS5. Here, we show by competitive NS3-NS5 interaction ELISA that the NS3 peptide spanning residues 566–585 disrupts NS3-NS5 interaction but not the null-peptide bearing the N570A mutation. Small angle x-ray scattering study on NS3(172–618) helicase and covalently linked NS3(172–618)-NS5(320–341) reveals a rigid and compact formation of the latter, indicating that peptide NS5(320–341) engages in specific and discrete interaction with NS3. Significantly, NS3:Asn-570 to alanine mutation introduced into an infectious DENV2 cDNA clone did not yield detectable virus by plaque assay even though intracellular double-stranded RNA was detected by immunofluorescence. Detection of increased negative-strand RNA synthesis by real time RT-PCR for the NS3:N570A mutant suggests that NS3-NS5 interaction plays an important role in the balanced synthesis of positive- and negative-strand RNA for robust viral replication. Dengue virus infection has become a global concern, and the lack of safe vaccines or antiviral treatments urgently needs to be addressed. NS3 and NS5 are highly conserved among the four serotypes, and the protein sequence around the pinpointed amino acids from the NS3 and NS5 regions are also conserved. The identification of the functionally essential interaction between the two proteins by biochemical and reverse genetics methods paves the way for rational drug design efforts to inhibit viral RNA synthesis.  相似文献   

18.
The RNA-synthesizing machinery of the severe acute respiratory syndrome Coronavirus (SARS-CoV) is composed of 16 non-structural proteins (nsp1–16) encoded by ORF1a/1b. The 148-amino acid nsp10 subunit contains two zinc fingers and is known to interact with both nsp14 and nsp16, stimulating their respective 3′-5′ exoribonuclease and 2′-O-methyltransferase activities. Using alanine-scanning mutagenesis, in cellulo bioluminescence resonance energy transfer experiments, and in vitro pulldown assays, we have now identified the key residues on the nsp10 surface that interact with nsp14. The functional consequences of mutations introduced at these positions were first evaluated biochemically by monitoring nsp14 exoribonuclease activity. Disruption of the nsp10-nsp14 interaction abrogated the nsp10-driven activation of the nsp14 exoribonuclease. We further showed that the nsp10 surface interacting with nsp14 overlaps with the surface involved in the nsp10-mediated activation of nsp16 2′-O-methyltransferase activity, suggesting that nsp10 is a major regulator of SARS-CoV replicase function. In line with this notion, reverse genetics experiments supported an essential role of the nsp10 surface that interacts with nsp14 in SARS-CoV replication, as several mutations that abolished the interaction in vitro yielded a replication-negative viral phenotype. In contrast, mutants in which the nsp10-nsp16 interaction was disturbed proved to be crippled but viable. These experiments imply that the nsp10 surface that interacts with nsp14 and nsp16 and possibly other subunits of the viral replication complex may be a target for the development of antiviral compounds against pathogenic coronaviruses.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号