首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Acetoin in vinegar is an attractant to fruit flies when combined with acetic acid. To make vinegar more effective in attracting fruit flies with increased acetoin production, Komagataeibacter europaeus KGMA0119 was modified by specific gene disruption of the acetohydroxyacid isomeroreductase gene (ilvC). A previously constructed mutant lacking the putative ligand-sensing region in the leucine-responsive regulatory protein (KeLrp, encoded by Kelrp) was also used. The ilvC and Kelrp disruptants (KGMA5511 and KGMA7203, respectively) produced greater amounts of acetoin (KGMA5511, 0.11%; KGMA7203, 0.13%) than the wild-type strain KGMA0119 (0.069%). KGMA7203 produced a trace amount of isobutyric acid (0.007%), but the other strains did not. These strains produced approximately equal amounts of acetic acid (0.7%). The efficiency of fruit fly attraction was investigated with cultured Drosophila melanogaster. D. melanogaster flies (approximately 1,500) were released inside a cage (2.5 m by 2.5 m by 1.5 m) and were trapped with a device containing vinegar and a sticky sheet. The flies trapped on the sticky sheet were counted. The cell-free supernatant from KGMA7203 culture captured significantly more flies (19.36 to 36.96% of released flies) than did KGMA0119 (3.25 to 11.40%) and KGMA5511 (6.87 to 21.50%) cultures. Contrastingly, a 0.7% acetic acid solution containing acetoin (0.13%) and isobutyric acid (0.007%), which mimicked the KGMA7203 supernatant, captured significantly fewer flies (0.88 to 4.57%). Furthermore, the KGMA0119 supernatant with additional acetoin (0.13%) and isobutyric acid (0.007%) captured slightly more flies than the original KGMA0119 supernatant but fewer than the KGMA7203 supernatant, suggesting that the synergistic effects of acetic acid, acetoin, isobutyric acid, and unidentified metabolites achieved the efficient fly trapping of the KGMA7203 supernatant.  相似文献   

2.
The gram-negative, purple nonsulfur, facultative photosynthetic bacterium Rhodobacter capsulatus is a widely used model organism and has well-developed molecular genetics. In particular, interposon mutagenesis using selectable gene cartridges is frequently employed for construction of a variety of chromosomal knockout mutants. However, as the gene cartridges are often derived from antibiotic resistance-conferring genes, their numbers are limited, which restricts the construction of multiple knockout mutants. In this report, sacB—5-fluoroorotic acid (5FOA)—pyrE-based bidirectional selection that facilitates construction of unmarked chromosomal knockout mutations is described. The R. capsulatus pyrE gene encoding orotate phosphoribosyl transferase, a key enzyme of the de novo pyrimidine nucleotide biosynthesis pathway, was used as an interposon in a genetic background that is auxotrophic for uracil (Ura) and hence resistant to 5FOA (5FOAr). Although Ura+ selection readily yielded chromosomal allele replacements via homologous recombination, selection for 5FOAr to replace pyrE with unmarked alleles was inefficient. To improve the latter step, 5FOAr selection was combined with sucrose tolerance selection using a suicide plasmid carrying the Bacillus subtilis sacB gene encoding levansucrase that induces lethality upon exposure to 5% (wt/vol) sucrose in the growth medium. Sucrose-tolerant, 5FOAr colonies that were obtained carried chromosomal unmarked mutant alleles of the target gene via double crossovers between the resident pyrE-marked and incoming unmarked alleles. The effectiveness of this double selection was proven by seeking insertion and deletion alleles of helC involved in R. capsulatus cytochrome c biogenesis, which illustrated the usefulness of this system as a genetic means for facile construction of R. capsulatus unmarked chromosomal mutants.  相似文献   

3.
4.
Diacetyl, a highly valuable product that is extensively used as an ingredient of food, tobacco, and daily chemicals such as perfumes, can be produced from the nonenzymatic oxidative decarboxylation of α-acetolactate during bacterial fermentation and converted to acetoin and 2,3-butanediol by 2,3-butanediol dehydrogenase. In the present study, Bacillus sp. DL01, which gives high acetoin production, was metabolically engineered to improve diacetyl production. After the deletion of α-acetolactate decarboxylase (ALDC)-encoding gene (alsD) by homologous recombination, the engineered strain, named Bacillus sp. DL01-ΔalsD, lost ALDC activity and produced 1.53 g/L diacetyl without acetoin and 2,3-butanediol accumulation. The channeling of carbon flux into diacetyl biosynthetic pathway was amplified by an overexpressed α-acetolactate synthase (ALS)-encoding gene (alsS) in Bacillus sp. DL01-ΔalsD-alsS, which produced 4.02 g/L α-acetolactate and 1.94 g/L diacetyl, and the conversion from α-acetolactate to diacetyl was increased by 1-fold after 20 mM Fe3+ was added to the fermentation medium. A titer of 8.69 g/L diacetyl, the highest reported diacetyl production, was achieved by fed-batch fermentation in optimal conditions using the metabolically engineered strain of Bacillus sp. DL01-ΔalsD-alsS. These results are of great importance as a new method for the efficient production of diacetyl by food-safe bacteria.  相似文献   

5.
 Conversion of pyruvate to α-acetolactate, which is broken down to diacetyl and acetoin, can be catalysed by two α-acetolactate synthases in Lactococcus lactis. The enzyme encoded by the als gene (Als) has previously been shown to have a low affinity for pyruvate, which limits the formation of diacetyl. In this study we have expressed from a plasmid the ilvBN genes, which encode the other α-acetolactate synthase (IlvBN). This plasmid-directed enzyme expression provided up to 3.6-fold increased product formation in the L. lactis MG1363 and IL1403 backgrounds. Plasmid-based expression of the ilvBN genes, in an IL1403 derivative from which the leu.ilv.ald and flanking genes had been deleted, yielded up to 0.1 mM diacetyl whereas the host strain produced none. In addition, IlvBN, with a K m value of 8.3 mM, was shown to have a greater affinity for pyruvate than does Als. Received: 28 June 1995 / Received revision: 26 September 1995 / Accepted: 29 September 1995  相似文献   

6.
Sake yeast, a diploid Saccharomyces cerevisiae strain, is useful for industry but difficult to genetically engineer because it hardly sporulates. Until now, only a few recessive mutants of sake yeast have been obtained. To solve this problem, we developed the high-efficiency loss of heterozygosity (HELOH) method, which applies a two-step gene disruption. First, a heterozygous disruptant was constructed by gene replacement with URA3, followed by marker recycling on medium containing 5-fluoroorotic acid (5-FOA). Subsequently, spontaneous loss of heterozygosity (LOH) yielding a homozygous disruptant was selected for in a second round of gene integration. During this step, the wild-type allele of the heterozygous disruptant was marked by URA3 integration, and the resulting transformants were cultivated in non-selective medium to induce recombination and then grown on medium with 5-FOA to enrich for mutants that had undergone LOH. Although the frequency with which LOH occurs is extremely low, many homozygous disruptants were obtained with the HELOH method. Thus, we were able to efficiently construct homozygous disruptants of diploid sake yeast without sporulation, and sake yeast strains with multiple auxotrophies and a protease deficiency could be constructed. The HELOH method, therefore, facilitated the utilization of diploid sake yeast for genetic engineering purposes.  相似文献   

7.
The hyperthermophilic archaeon, Pyrococcus furiosus, grows optimally near 100 °C by fermenting sugars to acetate, carbon dioxide and molecular hydrogen as the major end products. The organism has recently been exploited to produce biofuels using a temperature-dependent metabolic switch using genes from microorganisms that grow near 70 °C. However, little is known about its metabolism at the lower temperatures. We show here that P. furiosus produces acetoin (3-hydroxybutanone) as a major product at temperatures below 80 °C. A novel type of acetolactate synthase (ALS), which is involved in branched-chain amino acid biosynthesis, is responsible and deletion of the als gene abolishes acetoin production. Accordingly, deletion of als in a strain of P. furiosus containing a novel pathway for ethanol production significantly improved the yield of ethanol. These results also demonstrate that P. furiosus is a potential platform for the biological production of acetoin at temperatures in the 70–80 °C range.  相似文献   

8.
Acetoin is widely used in food and cosmetics industries as a taste and fragrance enhancer. To produce (R)-acetoin in Saccharomyces cerevisiae, acetoin biosynthetic genes encoding α-acetolactate synthase (AlsS) and α-acetolactate decarboxylase (AlsD) from Bacillus subtilis and water-forming NADH oxidase (NoxE) from Lactococcus lactis were integrated into delta-sequences in JHY605 strain, where the production of ethanol, glycerol, and (R,R)-2,3-butanediol (BDO) was largely eliminated. We further improved acetoin production by increasing acetoin tolerance by adaptive laboratory evolution, and eliminating other byproducts including meso-2,3-BDO and 2,3-dimethylglycerate, a newly identified byproduct. Ara1, Ypr1, and Ymr226c (named Ora1) were identified as (S)-alcohol-forming reductases, which can reduce (R)-acetoin to meso-2,3-BDO in vitro. However, only Ara1 and Ypr1 contributed to meso-2,3-BDO production in vivo. We elucidate that Ora1, having a substrate preference for (S)-acetoin, reduces (S)-α-acetolactate to 2,3-dimethylglycerate, thus competing with AlsD-mediated (R)-acetoin production. By deleting ARA1, YPR1, and ORA1, 101.3 g/L of (R)-acetoin was produced with a high yield (96% of the maximum theoretical yield) and high stereospecificity (98.2%).  相似文献   

9.
The production of aroma compounds (acetoin and diacetyl) in fresh unripened cheese by Lactococcus lactis subsp. lactis biovar diacetylactis CNRZ 483 was studied at 30°C at different initial oxygen concentrations (0, 21, 50, and 100% of the medium saturation by oxygen). Regardless of the initial O2 concentration, maximal production of these compounds was reached only after all the citrate was consumed. Diacetyl and acetoin production was 0.01 and 2.4 mM, respectively, at 0% oxygen. Maximum acetoin concentration reached 5.4 mM at 100% oxygen. Diacetyl production was increased by factors of 2, 6, and 18 at initial oxygen concentrations of 21, 50, and 100%, respectively. The diacetyl/acetoin concentration ratio increased linearly with initial oxygen concentration: it was eight times higher at 100% (3.3%) than at 0% oxygen (0.4%). The effect of oxygen on diacetyl and acetoin production was also shown with other lactococci. At 0% oxygen, specific activity of α-acetolactate synthetase (0.15 U/mg) and NADH oxidase (0.04 U/mg) was 3.6 and 5.4 times lower, respectively, than at 100% oxygen. The increasing α-acetolactate synthetase activity in the presence of oxygen would explain the higher production of diacetyl and acetoin. The NADH oxidase activity would replace the role of the lactate dehydrogenase, diacetyl reductase, and acetoin reductase in the reoxidation of NADH, allowing accumulation of these two aroma compounds.  相似文献   

10.
The relationship between acetoin production and citrate utilization in Leuconostoc lactis NCW1 was studied. In a complex medium the organism utilized citrate at neutral pH (initial pH, 6.3) and at acid pH (initial pH, 4.5) but produced nine times more acetoin at the latter pH. In resting cells the utilization of citrate was optimum at pH 5.3. Production of acetoin as a function of citrate utilization increased as the pH decreased, and at pH 4.3 all of the citrate utilized was recovered as acetoin. Glucose (10 mM) and lactose (10 mM) markedly stimulated citrate utilization but totally inhibited acetoin production in glucose- and lactose-grown cells. Addition of glucose to cells actively metabolizing citrate caused an immediate increase in citrate uptake and a reduction in the level of acetoin. The apparent Km values of lactic dehydrogenase for pyruvate were 1.05, 0.25, and 0.15 mM at pH 7.5, 6.5, and 5.0, respectively. Several heterofermentation intermediates inhibited α-acetolactate synthetase and decarboxylase activities. The implications of these results in regulating acetoin formatin are discussed.  相似文献   

11.
12.
The pyruvate metabolism of a Lactococcus lactis subsp. lactis biovar diacetylactis mutant deficient in α-acetolactate decarboxylase and its wild-type strain was studied during batch cultivations. A chemically defined medium was used containing glucose as carbon- and energy-source. The α-acetolactate decarboxylase deficiency had no effect on the specific growth rate. Addition of citrate was found to increase the specific growth rate of both strains under aerobic and anaerobic conditions. The product formation was monitored throughout the cultivations. The carbon- and redox-balances were within the accuracy of the experimental data. When citrate was added, α-acetolactate, diacetyl, and acetoin were formed, and aeration was shown to have a positive effect on the formation of these metabolites. By omitting lipoic acid (required for a functional pyruvate dehydrogenase complex) from the growth medium, a similar stimulatory effect on α-acetolactate, diacetyl, and acetoin formation was observed under aerobic conditions. The strain with impaired α-acetolactate decarboxylase activity accumulated α-acetolactate which resulted in an increased diacetyl formation compared to the wild-type strain, under aerobic and anaerobic conditions.  相似文献   

13.
14.
Summary Several strains of Lactococcus lactis subsp. lactis var. diacetylactis and Leuconostoc spp. were compared for product formation from citrate in milk cultures. Most strains produced acetoin and butanediol. Some strains derived from buffer starter cultures produced, in addition, -acetolactate. Lactococcus lactis strain C17, which produced acetoin and butanediol but no -acetolactate in culture, was compared physiologically with L. lactis strain Ru4, which produced only -acetolactate. Activities of enzymes involved in citrate metabolism were almost identical in both strains, with the exception of -acetolactate decarboxylase, which was missing in strain Ru4. The formation of -acetolactate, acetoin and diacetyl was further analysed in cell-free extracts. -Acetolactate synthase activity saturated at a high pyruvate concentration (100 mm). This is in agreement with the observed accumulation of pyruvate externally, and probably internally, during -acetolactate, acetoin and butanediol production by L. lactis cells.Correspondence to: J. Hugenholtz  相似文献   

15.
16.
【目的】基于比较基因组分析,探究镇江香醋醋醅中不同醋酸菌的功能差异。【方法】利用分离培养技术结合16SrRNA基因全长测序获得不同分类地位的醋酸菌;应用比较基因组学结合发酵性能实现不同醋酸菌生长和代谢的差异比较。【结果】巴氏醋杆菌和欧洲驹形杆菌为镇江香醋醋醅中的主要醋酸菌。其中,欧洲驹形杆菌的GC含量更高、基因组更大。功能注释结果表明巴氏醋杆菌和欧洲驹形杆菌的碳水化合物、氨基酸相关基因数量及种类差异较大,欧洲驹形杆菌的碳水化合物活性酶数量更多。相比巴氏醋杆菌,欧洲驹形杆菌中富集的功能差异基因主要参与磷酸戊糖途径、脂肪酸生物合成、果糖和甘露糖代谢等代谢途径。验证结果表明欧洲驹形杆菌可通过产生更多的乙醇脱氢酶、乙醛脱氢酶和大量的ATP,并改变细胞膜脂肪酸组成来提高乙醇的转化率。【结论】明确了巴氏醋杆菌和欧洲驹形杆菌基因之间的差异。欧洲驹形杆菌通过更多的能量积累、更高的乙醇转化相关酶酶活力和细胞膜脂肪酸组成的改变,来改善胞内微环境以适应高酸环境。本研究得到的结果可加深对不同醋酸菌耐酸机制的理解。  相似文献   

17.
A new temperature-sensitive mutant of Saccharomyces cerevisiae was isolated. Arrested cells grown at the nonpermissive temperature were of dumb-bell shape and contained large vacuoles. A DNA fragment was cloned based on its ability to complement this temperature sensitivity. The HTR1 gene encodes a putative protein of 93 kDa without significant homology to any known proteins. The gene was mapped between ade5 and lys5 on the left arm of chromosome VII. The phenotype of the gene disruptant appeared to be strain-specific; disruption of the gene in strain W303 caused the cells to become temperature sensitive. The arrested phenotype here was similar to that of the original is mutant and cells in G2/M phase predominated at high temperature. Another disruptant in a strain YPH background grew slowly at high temperature due to slow progression through G2/M phase, and morphologically abnormal (elongated) cells accumulated. A single-copy suppressor that alleviated the temperature-sensitive defects in both strains was identified as MCS1/SSD1. The wild-type strains W303 and YPH are known to carry defective MCS1/SSD1 alleles; hence HTR1 may function redundantly with MCS1/SSD1 to suppress the temperature-sensitive phenotypes. In addition, based on a halo bioassay, the disruptant strains appeared to be defective in recovery from, or adaptive response to G1 arrest mediated by mating pheromone, even at the permissive temperature. Thus the gene has at least two functions and is designated HTR1 (required for high temperature growth and recovery from G1 arrest induced by mating pheromone).  相似文献   

18.
The 2,3-butanediol (2,3-BD) dehydrogenase gene budC of Serratia marcescens G12 was disrupted to construct the acetoin (AC) producing strain G12M. In shake-flask cultures, AC production was enhanced by increased concentrations of glucose or sodium acetate in G12M. In fed-batch fermentation, G12M produced 47.5 g/L AC along with 9.8 g/L 2,3-BD. The expression of the key enzymes for AC synthesis was further investigated. Alpha-acetolactate synthase gene budB decreased its expression significantly in G12M compared with G12. This probably explained the moderate AC production in G12M cultures. Additionally, overexpression of budB gene and α-acetolactate decarboxylase gene budA was conducted in G12M and no significant increase of AC was observed. The results suggested that intracellular AC accumulation might inhibit the expression of budB and budA gene and induce budC gene expression in G12M. Our analyses offered the bases for further genetic manipulations in improving AC production in microbial fermentations.  相似文献   

19.
Uracil auxotrophic mutants of the hyperthermophilic archaeon Pyrococcus abyssi were isolated by screening for resistance to 5-fluoro-orotic acid (5-FOA). Wild-type strains were unable to grow on medium containing 5-FOA, whereas mutants grew normally. Enzymatic assays of extracts from wild-type P. abyssi and from pyrimidine auxotrophs demonstrated that the mutants are deficient in orotate phosphoribosyltransferase (PyrE) and/or orotidine-5′-monophosphate decarboxylase (PyrF) activity. The pyrE gene of wild-type P. abyssi and one of its mutant derivatives were cloned and sequenced. This pyrE gene could serve as selectable marker for the development of gene manipulation systems in archaeal hyperthermophiles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号