首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Monocarboxylate transporters (MCTs) transport monocarboxylates such as lactate, pyruvate and ketone bodies. These transporters are very attractive therapeutic targets in cancer. Elucidations of the functions and structures of MCTs is necessary for the development of effective medicine which targeting these proteins. However, in comparison with MCT1, there is little information on location of the function moiety of MCT4 and which constituent amino acids govern the transport function of MCT4. The aim of the present work was to determine the molecular mechanism of L-lactate transport via hMCT4.

Experimental approach

Transport of L-lactate via hMCT4 was determined by using hMCT4 cRNA-injected Xenopus laevis oocytes. hMCT4 mediated L-lactate uptake in oocytes was measured in the absence and presence of chemical modification agents and 4,4′-diisothiocyanostilbene-2,2′-disulphonate (DIDS). In addition, L-lactate uptake was measured by hMCT4 arginine mutants. Immunohistochemistry studies revealed the localization of hMCT4.

Results

In hMCT4-expressing oocytes, treatment with phenylglyoxal (PGO), a compound specific for arginine residues, completely abolished the transport activity of hMCT4, although this abolishment was prevented by the presence of L-lactate. On the other hand, chemical modifications except for PGO treatment had no effect on the transport activity of hMCT4. The transporter has six conserved arginine residues, two in the transmembrane-spanning domains (TMDs) and four in the intracellular loops. In hMCT4-R278 mutants, the uptake of L-lactate is void of any transport activity without the alteration of hMCT4 localization.

Conclusions

Our results suggest that Arg-278 in TMD8 is a critical residue involved in substrate, L-lactate recognition by hMCT4.  相似文献   

2.
3.

Introduction

Monocarboxylate transporters (MCTs) 1–4 are lactate transporters crucial for cancers cells adaption to upregulated glycolysis. Herein, we aimed to explore their prognostic impact on disease-specific survival (DSS) in both cancer and tumor stromal cells in NSCLC.

Methods

Tissue micro arrays (TMAs) were constructed, representing both cancer and stromal tumor tissue from 335 unselected patients diagnosed with stage I–IIIA NSCLC. Immunohistochemistry was used to evaluate the expression of MCT1-4.

Results

In univariate analyses; ↓MCT1 (P = 0.021) and ↑MCT4 (P = 0.027) expression in cancer cells, and ↑MCT1 (P = 0.003), ↓MCT2 (P = 0.006), ↓MCT3 (P = 0.020) expression in stromal cells correlated significantly with a poor DSS. In multivariate analyses; ↓MCT1 expression in cancer cells (HR: 1.9, CI 95%: 1.3–2.8, P = 0.001), ↓MCT2 (HR: 2.4, CI 95%: 1.5–3.9, P<0.001), ↓MCT3 (HR: 1.9, CI 95%: 1.1–3.5, P = 0.031) and ↑MCT1 expression in stromal cells (HR: 1.7, CI 95%: 1.1–2.7, P = 0.016) were significant independent poor prognostic markers for DSS.

Conclusions

We provide novel information of MCT1 as a candidate marker for prognostic stratification in NSCLC. Interestingly, MCT1 shows diverging, independent prognostic impact in the cancer cell and stromal cell compartments.  相似文献   

4.
Monocarboxylate transporters (MCTs) are proton-linked membrane carriers involved in the transport of monocarboxylates such as lactate, pyruvate, as well as ketone bodies. They belong to a larger family of transporters composed of 14 members in mammals based on sequence homologies. MCTs are found in various tissues including the brain where three isoforms, MCT1, MCT2 and MCT4, have been described. Each of these isoforms exhibits a distinct regional and cellular distribution in rodent brain. At the cellular level, MCT1 is expressed by endothelial cells of microvessels, by ependymocytes as well as by astrocytes. MCT4 expression appears to be specific for astrocytes. By contrast, the predominant neuronal monocarboxylate transporter is MCT2. Interestingly, part of MCT2 immunoreactivity is located at postsynaptic sites, suggesting a particular role of monocarboxylates and their transporters in synaptic transmission. In addition to variation in expression during development and upon nutritional modifications, new data indicate that MCT expression is regulated at the translational level by neurotransmitters. Understanding how transport of monocarboxylates is regulated could be of particular importance not only for neuroenergetics but also for areas such as functional brain imaging, regulation of food intake and glucose homeostasis, or for central nervous system disorders such as ischaemia and neurodegenerative diseases.  相似文献   

5.
Transport of lactate, pyruvate, and other monocarboxylates across the sarcolemma of skeletal and cardiac myocytes occurs via passive diffusion and by monocarboxylate transporter (MCT) mediated transport. The flux of lactate and protons through the MCT plays an important role in muscle energy metabolism during rest and exercise and in pH regulation during exercise. The MCT isoforms 1 and 4 are the major isoforms of this transporter in skeletal and cardiac muscle. The current consensus on the mechanism of these transporters, based on experimental measurements of labeled lactate fluxes, is that monocarboxylate-proton symport occurs via a rapid-equilibrium ordered mechanism with proton binding followed by monocarboxylate binding. This study tests ordered and random mechanisms by fitting experimental measurements of tracer exchange fluxes from MCT1 and MCT4 isoforms to theoretical predictions derived using relationships between one-way fluxes and thermodynamic forces. Analysis shows that: 1), the available kinetic data are insufficient to distinguish between a rapid-equilibrium ordered and a rapid-equilibrium random-binding model for MCT4; 2), MCT1 has a higher affinity to lactate than does MCT4; 3), the theoretical conditions for the so-called trans-acceleration phenomenon (e.g., increased tracer efflux from a vesicle caused by increased substrate concentration outside the vesicle) do not necessarily require the rate constant for the lactate and proton bound transporter to reorient across the membrane to be higher than that for the unbound transporter; and finally, 4), based on model analysis, additional experiments are proposed to be able to distinguish between ordered and random-binding mechanisms.  相似文献   

6.
We have developed a new heterologous expression system for monocarboxylate transporters. The system is based on a Saccharomyces cerevisiae pyk1 mae1 jen1 triple-deletion strain that is auxotrophic for pyruvate and deficient in monocarboxylate uptake. Growth of the yeast cells on ethanol medium supplemented with pyruvate or lactate was dependent on the expression of a suitable monocarboxylate transporter. We have used the system to characterize the functional significance of interactions between the rat MCT1 transporter and its ancillary protein CD147. CD147 was shown to improve trafficking of MCT1 to the plasma membrane and its uptake activity. Our results demonstrate a new strategy for the production of properly folded and correctly targeted membrane proteins in a microbial expression system by co-expression of appropriate accessory proteins.  相似文献   

7.
Whether subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria contain monocarboxylate transporters (MCTs) is controversial. We have examined the presence of MCT1, 2, and 4 in highly purified SS and IMF mitochondria. These mitochondria were not contaminated with plasma membrane, sarcoplasmic reticulum or endosomal compartments, as the marker proteins for these sub-cellular compartments (Na+-K+-ATPase, Ca2+-ATPase, and the transferrin receptor) were not present in SS or IMF mitochondria. MCT1, MCT2, and MCT4 were all present at the plasma membrane. However, MCT1 and MCT4 were associated with SS mitochondria. In contrast, the IMF mitochondria were completely devoid of MCT1 and MCT4. However, MCT2 was associated with both SS and IMF mitochondria. These observations suggest that SS and IMF mitochondria have different capacities for metabolizing monocarboxylates. Thus, the controversy as to whether mitochondria can take up and oxidize lactate will need to take account of the different distribution of MCTs between SS and IMF mitochondria.  相似文献   

8.
9.
10.
11.

Background

Pulmonary arterial hypertension (PAH) is a proliferative arteriopathy associated with a glycolytic shift during heart metabolism. An increase in glycolytic metabolism can be detected in the right ventricle during PAH. Expression levels of glycolysis genes in the right ventricle during glycolysis that occur in monocrotaline (MCT)-induced pulmonary hypertension (PH) remain unknown.

Methods

PH was induced by a single subcutaneous injection of MCT (50 mg/kg) into rats, eventually causing right heart failure. Concurrently, a control group was injected with normal saline. The MCT-PH rats were randomly divided into three groups according to MCT treatment: MCT-2 week, 3 week, and 4 week groups (MCT-2w, 3w, 4w). At the end of the study, hemodynamics and right ventricular hypertrophy were compared among experimental groups. Expression of key glycolytic candidate genes was screened in the right ventricle.

Results

We observed an increase in mean pulmonary arterial pressure, right ventricular systolic pressure and right ventricular hypertrophy index three weeks following MCT injection. Alterations in the morphology and structure of right ventricular myocardial cells, as well as the pulmonary vasculature were observed. Expression of hexokinase 1 (HK1) mRNA began to increase in the right ventricle of the MCT-3w group and MCT-4w group, while the expression of lactate dehydrogenase A (LDHA) was elevated in the right ventricle of the MCT-4w group. Hexokinase 2(HK2), pyruvate dehydrogenase complex α1 (PDHα1), and LDHA mRNA expression showed no changes in the right ventricle. HK1 mRNA expression was further confirmed by HK1 protein expression and immunohistochemical analyses. All findings underlie the glycolytic phenotype in the right ventricle.

Conclusions

There was an increase in the protein and mRNA expression of hexokinase-1 (HK1) three and four weeks after the injection of monocrotaline in the right ventricle, intervention of HK1 may be amenable to therapeutic intervention.  相似文献   

12.
Cell‐adhesion glycoprotein neuroplastin (Np) is involved in the regulation of synaptic plasticity and balancing hippocampal excitatory/inhibitory inputs which aids in the process of associative memory formation and learning. Our recent findings show that neuroplastin expression in the adult human hippocampus is specifically associated with major hippocampal excitatory pathways and is related to neuronal calcium regulation. Here, we investigated the hippocampal expression of brain‐specific neuroplastin isoform (Np65), its relationship with amyloid and tau pathology in Alzheimer's disease (AD), and potential involvement of neuroplastin in tissue response during the disease progression. Np65 expression and localization was analysed in six human hippocampi with confirmed AD neuropathology, and six age‐/gender‐matched control hippocampi by imunohistochemistry. In AD cases with shorter disease duration, the Np65 immunoreactivity was significantly increased in the dentate gyrus (DG), Cornu Ammonis 2/3 (CA2/3), and subiculum, with the highest level of Np expression being located on the dendrites of granule cells and subicular pyramidal neurons. Changes in the expression of neuroplastin in AD hippocampal areas seem to be related to the progression of disease. Our study suggests that cell‐adhesion protein neuroplastin is involved in tissue reorganization and is a potential molecular marker of plasticity response in the early neurodegeneration process of AD.  相似文献   

13.

Background

The leading cause of mortality due to pulmonary arterial hypertension (PAH) is failure of the cardiac right ventricle. It has long been hypothesized that during the development of chronic cardiac failure the heart becomes energy deprived, possibly due to shortage of oxygen at the level of cardiomyocyte mitochondria. However, direct evaluation of oxygen tension levels within the in vivo right ventricle during PAH is currently lacking. Here we directly evaluated this hypothesis by using a recently reported technique of oxygen-dependent quenching of delayed fluorescence of mitochondrial protoprophyrin IX, to determine the distribution of mitochondrial oxygen tension (mitoPO2) within the right ventricle (RV) subjected to progressive PAH.

Methods

PAH was induced through a single injection of monocrotaline (MCT). Control (saline-injected), compensated RV hypertrophy (30 mg/kg MCT; MCT30), and RV failure (60 mg/kg MCT; MCT60) rats were compared 4 wk after treatment. The distribution of mitoPO2 within the RV was determined in mechanically-ventilated, anaesthetized animals, applying different inspired oxygen (FiO2) levels and two increment dosages of dobutamine.

Results

MCT60 resulted in RV failure (increased mortality, weight loss, increased lung weight), MCT30 resulted in compensated RV hypertrophy. At 30% or 40% FiO2, necessary to obtain physiological arterial PO2 in the diseased animals, RV failure rats had significantly less mitochondria (15% of total mitochondria) in the 0-20 mmHg mitoPO2 range than hypertrophied RV rats (48%) or control rats (54%). Only when oxygen supply was reduced to 21% FiO2, resulting in low arterial PO2 for the MCT60 animals, or when oxygen demand increased with high dose dobutamine, the number of failing RV mitochondria with low oxygen became similar to control RV. In addition, metabolic enzyme analysis revealed similar mitochondrial mass, increased glycolytic hexokinase activity following MCT, with increased lactate dehydrogenase activity only in compensated hypertrophied RV.

Conclusions

Our novel observation of increased mitochondrial oxygenation suggests down-regulation of in vivo mitochondrial oxygen consumption, in the absence of hypoxia, with transition towards right ventricular failure induced by pulmonary arterial hypertension.  相似文献   

14.
Extracellular lactic acid is a major fuel for the mammalian medullary thick ascending limb (MTAL), whereas under anoxic conditions, this nephron segment generates a large amount of lactic acid, which needs to be excreted. We therefore evaluated, at both the functional and molecular levels, the possible presence of monocarboxylate transporters in basolateral (BLMVs) and luminal (LMVs) membrane vesicles isolated from rat MTALs. Imposing an inward H(+) gradient induced the transient uphill accumulation of L-[(14)C]lactate in both types of vesicles. However, whereas the pH gradient-stimulated uptake of L-[(14)C]lactate in BLMVs was inhibited by anion transport blockers such as alpha-cyano-4-hydroxycinnamate, 4,4'-diisothiocyanatostilbene-2, 2'-disulfonic acid (DIDS), and furosemide, it was unaffected by these agents in LMVs, indicating the presence of a L-lactate/H(+) cotransporter in BLMVs, but not in LMVs. Under non-pH gradient conditions, however, the uptake of L-[(14)C]lactate in LMVs was transstimulated 100% by L-lactate, but by only 30% by D-lactate. Furthermore, this L-lactate self-exchange was markedly inhibited by alpha-cyano-4-hydroxycinnamate and DIDS and almost completely by 1 mM furosemide, findings consistent with the existence of a stereospecific carrier-mediated lactate transport system in LMVs. Using immunofluorescence confocal microscopy and immunoblotting, the monocarboxylate transporter (MCT)-2 isoform was shown to be specifically expressed on the basolateral domain of the rat MTAL, whereas the MCT1 isoform could not be detected in this nephron segment. This study thus demonstrates the presence of different monocarboxylate transporters in rat MTALs; the basolateral H(+)/L-lactate cotransporter (MCT2) and the luminal H(+)-independent organic anion exchanger are adapted to play distinct roles in the transport of monocarboxylates in MTALs.  相似文献   

15.

Background

To develop the use of cultured tissue of the prelaminar optic nerve of the pig to explore possible alterations of the astrocyte-axon metabolic pathways in glaucoma, we map the distribution of the glucose transporters GLUT1 and GLUT3 in fresh and cultured tissue.

Methods

We monitor cell survival in cultures of the prelaminar optic-nerve tissue, measuring necrosis and apoptosis markers biochemically as well as morphologically, and establish the presence of the glucose transporters GLUT1 and GLUT3. We map the distribution of these transporters with immunolabeling in histological sections of the optic nerve using confocal and electronic transmission microscopy.

Results

We find that the main death type in prelaminar culture is apoptosis. Caspase 7 staining reveals an increment in apoptosis from day 1 to day 4 and a reduction from day 4 to day 8. Western blotting for GLUT1 shows stability with increased culture time. CLSM micrographs locate GLUT1 in the columnar astrocytes and in the area of axonal bundles. Anti-GLUT3 predominantly labels axonal bundles. TEM immunolabeling with colloidal gold displays a very specific distribution of GLUT-1 in the membranes of vascular endothelial cells and in periaxonal astrocyte expansions. The GLUT-3 isoform is observed with TEM only in axons in the axonal bundles.

Conclusions

Tissue culture is suitable for apoptosis-induction experiments. The results suggest that glucose is transported to the axonal cleft intracytoplasmically and delivered to the cleft by GLUT1 transporters. As monocarboxylate transporters have been reported in the prelaminar region of the optic-nerve head, this area is likely to use both lactate and glucose as energy sources.  相似文献   

16.

Background

Iodothyronines are charged amino acid derivatives that cannot passively cross a phospholipid bilayer. Transport of thyroid hormones across plasma membranes is mediated by integral membrane proteins belonging to several gene families. These transporters therefore allow or limit access of thyroid hormones into brain. Since thyroid hormones are essential for brain development and cell differentiation, it is expected that genetic deficiency of such transporters would result in neurodevelopmental derangements.

Scope of review

We introduce concepts of thyroid hormone transport into the brain and into brain cells. Important thyroid hormone transmembrane transporters are presented along with their expression patterns in different brain cell types. A focus is placed on monocarboxylate transporter 8 (MCT8) which has been identified as an essential thyroid hormone transporter in humans. Mutations in MCT8 underlie one of the first described X-linked mental retardation syndromes, the Allan–Herndon–Dudley syndrome.

Major conclusions

Thyroid hormone transporter molecules are expressed in a developmental and cell type-specific pattern. Any thyroid hormone molecule has to cross consecutively the luminal and abluminal membranes of the capillary endothelium, enter astrocytic foot processes, and leave the astrocyte through the plasma membrane to finally cross another plasma membrane on its way towards its target nucleus.

General significance

We can expect more transporters being involved in or contributing to in neurodevelopmental or neuropsychiatric disease. Due to their expression in cellular components regulating the hypothalamus–pituitary–thyroid axis, mutations and polymorphisms are expected to impact on negative feedback regulation and hormonal setpoints. This article is part of a Special Issue entitled Thyroid hormone signalling.  相似文献   

17.
18.
19.

Aim

There are few and contradictory data on the role of excessive accumulation of intracellular sphingolipids, particularly ceramides, in the development of hepatic insulin resistance. In our study we assessed accumulated sphingolipid fractions and clarify the mechanisms of hepatic insulin resistance development as well as involvement of fatty acid and ceramide transporters in this process.

Methods

In culture of primary rat hepatocytes, exposed to high concentration of palmitic acid (0.75mM) during short and prolonged incubation, high performance liquid chromatography was used to assess intra- and extracellular sphingolipid fractions content. Degree of palmitate-induced insulin resistance was estimated by measuring changes in phosphorylation of insulin pathway proteins by western blotting as well as changes in expression of different type of transporters.

Results

In our study short and prolonged exposure of primary hepatocytes to palmitic acid resulted in increased intracellular accumulation of ceramide which inhibited insulin signaling pathway. We observed a significant increase in the expression of fatty-acid transport protein (FATP2) and ceramide transfer protein (CERT) what is consistent with enhanced intracellular ceramide content. The content of extracellular ceramide was increased nearly threefold after short and twofold after long incubation period. Expression of microsomal triglyceride transfer protein (MTP) and ATP-binding cassette transporter (ABCA1) was increased significantly mainly after short palmitate incubation.

Conclusion

Our data showed that increase in intarcellular ceramide content contributes to the development of hepatic insulin resistance. We suggest pivotal role of transporters in facilitating fatty acid influx (FATP2), accumulation of ceramides (CERT) and export to the media (MTP and ABCA1).  相似文献   

20.

Objective

There is conflicting evidence about resting carbon dioxide levels in asthmatic individuals. We wanted to determine if transcutaneously measured carbon dioxide levels prior and during bronchial provocation testing differ according to asthma status reflecting dysfunctional breathing.

Methods

We investigated active firefighters and policemen by means of a validated questionnaire on respiratory symptoms, spirometry, bronchial challenge testing with methacholine (MCT) and measurement of transcutaneous blood carbon dioxide partial pressure (PtcCO2) at rest prior performing spirometry, one minute and five minutes after termination of MCT. A respiratory physician blinded to the PtcCO2 results assigned a diagnosis of asthma after reviewing the available study data and the files of the workers medical screening program.

Results

The study sample consisted of 128 male and 10 female individuals. Fifteen individuals (11%) had physician-diagnosed asthma. There was no clinically important difference in median PtcCO2 at rest, one and five minutes after recovery from MCT in asthmatics compared to non-asthmatics (35.6 vs 35.7 mmHg, p = 0.466; 34.7 vs 33.4 mmHg, p = 0.245 and 37.4 vs 36.4 mmHg, p = 0.732). The median drop in PtcCO2 during MCT and the increase after MCT was lower in asthmatics compared to non-asthmatics (0.1 vs 3.2 mmHg, p = 0.014 and 1.9 vs 2.9 mmHg, p = 0.025).

Conclusions

PtcCO2 levels at rest prior and during recovery after MCT do not differ in individuals with or without physician diagnosed asthma. The fall and subsequent increase in PtcCO2 levels are higher in non-asthmatics than in asthmatics and seems to be related with increased number of respiratory maneuvers during MCT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号