首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of dead biomass of the fungus Hypocrea lixii as a biological system is a new, effective and environmentally friendly bioprocess for the production and uptake of nickel oxide nanoparticles (NPs), which has become a promising field in nanobiotechnology. Dead biomass of the fungus was successfully used to convert nickel ions into nickel oxide NPs in aqueous solution. These NPs accumulated intracellularly and extracellularly on the cell wall surface through biosorption. The average size, morphology and location of the NPs were characterized by transmission electron microscopy, high-resolution transmission electron microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The NPs were mainly spherical and extra and intracellular NPs had an average size of 3.8 nm and 1.25 nm, respectively. X-ray photoelectron spectroscopy analysis confirmed the formation of nickel oxide NPs. Infrared spectroscopy detected the presence of functional amide groups, which are probable involved in particle binding to the biomass. The production of the NPs by dead biomass was analyzed by determining physicochemical parameters and equilibrium concentrations. The present study opens new perspectives for the biosynthesis of nanomaterials, which could become a potential biosorbent for the removal of toxic metals from polluted sites.  相似文献   

2.
In this study was developed a natural process using a biological system for the biosynthesis of nanoparticles (NPs) and possible removal of copper from wastewater by dead biomass of the yeast Rhodotorula mucilaginosa. Dead and live biomass of Rhodotorula mucilaginosa was used to analyze the equilibrium and kinetics of copper biosorption by the yeast in function of the initial metal concentration, contact time, pH, temperature, agitation and inoculum volume. Dead biomass exhibited the highest biosorption capacity of copper, 26.2 mg g−1, which was achieved within 60 min of contact, at pH 5.0, temperature of 30°C, and agitation speed of 150 rpm. The equilibrium data were best described by the Langmuir isotherm and Kinetic analysis indicated a pseudo-second-order model. The average size, morphology and location of NPs biosynthesized by the yeast were determined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). The shape of the intracellularly synthesized NPs was mainly spherical, with an average size of 10.5 nm. The X-ray photoelectron spectroscopy (XPS) analysis of the copper NPs confirmed the formation of metallic copper. The dead biomass of Rhodotorula mucilaginosa may be considered an efficiently bioprocess, being fast and low-cost to production of copper nanoparticles and also a probably nano-adsorbent of this metal ion in wastewater in bioremediation process.  相似文献   

3.
Biosorption is an innovative and alternative technology to remove heavy metal pollutants from aqueous solution using live, inactive and dead biomasses such as algae, bacteria and fungi. In this study, live and dried biomass of Phanerochaete chrysosporium and Funalia trogii was applied as heavy metal adsorbent material. Biosorption of copper(II) cations in aqueous solution by live and dried biomass of Phanerochaete chrysosporium and Funalia trogii was investigated to study the effects of initial heavy metal concentration, pH, temperature, contact time, agitation rate and amount of fungus. Copper(II) was taken up quickly by fungal biomass (live or dried) during the first 15 min and the most important factor which affected the copper adsorption by live and dried biomass was the pH value. An initial pH of around 5.0 allowed for an optimum adsorption performance. Live biomass of two white rot fungi showed a high copper adsorption capacity compared with dried biomass. Copper(II) uptake was found to be independent of temperature in the range of 20–45 °C. The initial metal ion concentration (10–300 mg/L) significantly influenced the biosorption capacity of these fungi. The results indicate that a biosorption as high as 40–60 % by live and dried biomass can be obtained under optimum conditions.  相似文献   

4.
The removal of lead(II) from artificial aqueous solution using live and dead biomass of Saccharomyces cerevisiae AUMC 3875 was investigated. The minimum inhibitory concentration (MIC) value of S. cerevisiae AUMC 3875 for lead(II) was 600 mg/l. For live and dead biomass, maximum lead(II) uptake capacities were achieved at pH?5.0, initial metal ion concentration 300 mg/l, and biomass dosage 3 g/l. Maximum biosorption capacities were reached after 3 h and 20 min for live and dead cells, respectively. Fourier Transform Infrared spectroscopy (FTIR) results revealed the important role of C?=?O,? OH,? NH, protein amide II band, $ \mathrm{PO}_2^{-} $ , mannans, sulphur and sulphur-oxygen compounds in lead(II) uptake. Scanning electron microscopy analysis (SEM) showed that the cell surface morphology and surface area/volume ratio changed greatly after lead(II) uptake. Transmission electron microscopy analysis (TEM) confirmed the involvement of both extracellular adsorption and intracellular penetration through the cell wall. X-ray powder diffraction (XRD) analysis revealed the presence of Pb(SO4),Pb2OSO4 by dead biomass and Pb3O2(SO4),Pb2OSO4 by live biomass. Energy dispersive X-ray microanalysis (EDAX) confirmed the occurrence of sulphur, oxygen and lead(II) on the cell wall. The removal of lead(II) from storage battery industry wastewater was performed by dead biomass efficiently.  相似文献   

5.
Penicillium piscarium can be indicated as promising in the treatment of sites contaminated with uranium. Thus, this research aimed to analyze the P. piscarium dead biomass in uranium biosorption. This fungus was previously isolated from a highly contaminated uranium mine located in Brazil. Biosorption tests were carried out at pH 3.5 and 5.5 in solutions contaminated with concentrations of 1 to 100 mg/L of uranium nitrate. Our results showed that the dead biomass of P. piscarium was able to remove between 93.2 and 97.5% uranium from solutions at pH 3.5, at the end of the experiment, the pH of the solution increased to values above 5.6. Regarding the experiments carried out in solutions with pH 5.5, the dead biomass of the fungus was also able to remove between 38 and 92% uranium from the solution, at the end of the experiment, the pH of the solution increased to levels above 6.5. The analysis of electron microscopy, Energy-dispersive spectroscopy, and X-ray fluorescence demonstrated the high concentration of uranium precipitated on the surface of the fungal biomass. These results were impressive and demonstrate that the dead biomass of P. piscarium can be an important alternative to conventional processes for treating water contaminated with heavy metals, and we hope that these ecofriendly, inexpensive, and effective technologies be encouraged for the safe discharge of water from industrial activities.  相似文献   

6.
A new efficient, low cost chitosan based biosorbent was successfully prepared and employed for the biosorption of copper ions from an aqueous solution using a fixed bed column. Pyromellitic dianhydride crosslinked chitosan as the new adsorbent was characterized by SEM, FTIR spectroscopy, X-ray diffraction, thermogravimetric analysis and solid state (13)C NMR analysis. Scanning electron microscopy coupled with an X-ray energy dispersed analysis for the copper-equilibrated biomass confirmed the presence of Cu(II) ions on the surface of the hydrogel. Thermogravimetric analysis showed a significant improvement in the thermal stability of the new hydrogel compared to pure chitosan. Kinetic models were applied to predict the breakthrough curves. This study shows that the prepared hydrogel based on modified chitosan could be utilized as an efficient bioadsorbent for the removal of copper ions from wastewater.  相似文献   

7.
In this study, a newly isolated ascomycete fungus Trichoderma lixii F21 was explored to bioremediate the polar [Alizarin Red S (ARS)] and non-polar [Quinizarine Green SS (QGSS)] anthraquinone dyes. The bioremediation of ARS and QGSS by T. lixii F21 was found to be 77.78 and 98.31 %, respectively, via biosorption and enzymatic processes within 7 days of incubation. The maximum biosorption (ARS = 33.7 % and QGSS = 74.7 %) and enzymatic biodegradation (ARS = 44.1 % and QGSS = 23.6 %) were observed at pH 4 and 27 °C in the presence of glucose and yeast extract. The laccase and catechol 1,2-dioxygenase produced by T. lixii F21 were involved in the molecular conversions of ARS and QGSS to phenolic and carboxylic acid compounds, without the formation of toxic aromatic amines. This study suggests that T. lixii F21 may be a good candidate for the bioremediation of industrial effluents contaminated with anthraquinone dyes.  相似文献   

8.
This study focuses on the possible use of Aspergillus fumigatus to remove acid violet 49 dye (AV49) from aqueous solution. In batch biosorption experiments, the highest biosorption efficiency was achieved at pH 3.0, with biosorbent dosage of 3.0 gL?1 within about 30 min at 40 °C. The Langmuir and Freundlich models were able to describe the biosorption equilibrium of AV49 onto fungal biomass with maximum dye uptake capacity 136.98 mg g?1. Biosorption followed a pseudo-second-order kinetic model with high correlation coefficients (R 2?>?0.99), and the biosorption rate constants increased with increasing temperature. Thermodynamic parameters indicated that the biosorption process was favorable, spontaneous, and endothermic in nature, with insignificant entropy changes. Fourier transform infrared spectroscopy strongly supported the presence of several functional groups responsible for dye–biosorbent interaction. Fungal biomass was regenerated with 0.1 M sodium hydroxide and could be reused a number of times without significant loss of biosorption activity. The effective decolorization of AV49 in simulated conditions indicated the potential use of biomass for the removal of color contaminants from wastewater.  相似文献   

9.
A strain of Aspergillus niger isolated from a metal-contaminated soil was able to grow in the presence of cadmium, chromium, cobalt, copper, and unusually high levels of nickel on solid (8.0 mM) and in liquid (6.5 mM) media. This fungus removed >98% of the nickel from liquid medium after 100 h of growth but did not remove the other metals, as determined by inductively coupled plasma spectroscopy. Experiments with non-growing, live fungal biomass showed that nickel removal was not due to biosorption alone, as little nickel was bound to the biomass at the pH values tested. Furthermore, when the protonophore carbonyl cyanide p-(trifluoremetoxy) phenyl hydrazone (FCCP) was added to the actively growing fungus nickel removal was inhibited, supporting the hypothesis that energy metabolism is essential for metal removal. Analytical electron microscopy of thin-sectioned fungal biomass revealed that metal removed from the broth was localized in the form of small rectangular crystals associated with the cell walls and also inside the cell. X-ray and electron diffraction analysis showed that these crystals were nickel oxalate dihydrate.  相似文献   

10.
In this study, a low-cost biosorbent, dead mushroom biomass (DMB) granules, was used for investigating the optimum conditions of Pb(II), Cu(II), and Ni(II) biosorption from aqueous solutions. Various physicochemical parameters, such as initial metal ion concentration, equilibrium time, pH value, agitation speed, particles diameter, and adsorbent dosage, were studied. Five mathematical models describing the biosorption equilibrium and isotherm constants were tested to find the maximum uptake capacities: Langmuir, Freundlich, Redlich-Peterson, Sips, and Khan models. The best fit to the Pb(II) and Ni(II) biosorption results was obtained by Langmuir model with maximum uptake capacities of 44.67 and 29.17 mg/g for these two ions, respectively, whereas for Cu(II), the corresponding value was 31.65 mg/g obtained with Khan model. The kinetic study demonstrated that the optimum agitation speed was 400 rpm, at which the best removal efficiency and/or minimum surface mass transfer resistance (MSMTR) was achieved. A pseudo-second-order rate kinetic model gave the best fit to the experimental data (R2 = 0.99), resulting in MSMTR values of 4.69× 10?5, 4.45× 10?6, and 1.12× 10?6 m/s for Pb(II), Cu(II), and Ni(II), respectively. The thermodynamic study showed that the biosorption process was spontaneous and exothermic in nature.  相似文献   

11.
The aim of this study was to investigate the biosorption characteristics of Cd(2+), Cu(2+), and Pb(2+) by the fruiting body of jelly fungus Auricularia polytricha. Batch experiments were conducted to characterize the kinetics, equilibrium, and mechanisms of the biosorption process. Optimum values of pH?5, biomass dosage 4?g?L(-1), and contact time 60?min provided maximum biosorption capacities of A. polytricha for Cd(2+), Cu(2+), and Pb(2+) of 63.3, 73.7, and 221?mg?g(-1), respectively. The maximum desorption was achieved using 0.05?mol?L(-1) HNO(3) as an elute. The fruiting body was reusable at least for six cycles of operations. The pseudo-second-order model was the best to describe the biosorption processes among the three kinetic models tested. Freundlich and Dubinin-Radushkevich models fitted the equilibrium data well, indicating a heterogeneous biosorbent surface and the favorable chemisorption nature of the biosorption process. A Fourier transform infrared spectroscopy analysis indicated that carboxyl, amine/hydroxyl, amino, phosphoryl, and C-N-C were the main functional groups to affect the biosorption process. Synergistic ion exchange and surface complexation were the dominant mechanisms in the biosorption process. The present work revealed the potential of jelly fungus (fruiting body of A. polytricha) to remove toxic heavy metals from contaminated water.  相似文献   

12.
The fungus Beauveria caledonica was highly tolerant to toxic metals and solubilized cadmium, copper, lead, and zinc minerals, converting them into oxalates. This fungus was found to overexcrete organic acids with strong metal-chelating properties (oxalic and citric acids), suggesting that a ligand-promoted mechanism was the main mechanism of mineral dissolution. Our data also suggested that oxalic acid was the main mineral-transforming agent. Cadmium, copper, and zinc oxalates were precipitated by the fungus in the local environment and also in association with the mycelium. The presence of toxic metal minerals often led to the formation of mycelial cords, and in the presence of copper-containing minerals, these cords exhibited enhanced excretion of oxalic acid, which resulted in considerable encrustation of the cords by copper oxalate hydrate (moolooite). It was found that B. caledonica hyphae and cords were covered by a thick hydrated mucilaginous sheath which provided a microenvironment for chemical reactions, crystal deposition, and growth. Cryo-scanning electron microscopy revealed that mycogenic metal oxalates overgrew parental fungal hyphae, leaving a labyrinth of fungal tunnels within the newly formed mineral matter. X-ray absorption spectroscopy revealed that oxygen ligands played a major role in metal coordination within the fungal biomass during the accumulation of mobilized toxic metals by B. caledonica mycelium; these ligands were carboxylic groups in copper phosphate-containing medium and phosphate groups in pyromorphite-containing medium.  相似文献   

13.
In this research, micro and nanoparticles of Spirulina platensis dead biomass were obtained, characterized and employed to removal FD&C red no. 40 and acid blue 9 synthetic dyes from aqueous solutions. The effects of particle size (micro and nano) and biosorbent dosage (from 50 to 750 mg) were studied. Pseudo-first order, pseudo-second order and Elovich models were used to evaluate the biosorption kinetics. The biosorption nature was verified using energy dispersive X-ray spectroscopy (EDS). The best results for both dyes were found using 250 mg of nanoparticles, in these conditions, the biosorption capacities were 295 mg g?1 and 1450 mg g?1, and the percentages of dye removal were 15.0 and 72.5% for the FD&C red no. 40 and acid blue 9, respectively. Pseudo-first order model was the more adequate to represent the biosorption of both dyes onto microparticles, and Elovich model was more appropriate to the biosorption onto nanoparticles. The EDS results suggested that the dyes biosorption onto microparticles occurred mainly by physical interactions, and for the nanoparticles, chemisorption was dominant.  相似文献   

14.
Gold nanoparticles (NPs) were synthesized using Semecarpus anacardium leaf extracts in water and the green biomass. Extract prepared at ambient condition by crushing the leaves in deionized water is identified as ‘green extract’, and that by boiling the leaf pieces as ‘boiled extract’. The mass remaining after separating the ‘green extract’ is identified as ‘green biomass’. These components triggered rapid reduction of Au(III) to Au (0) in HAuCl4 solution indicating the natural ability of the leaves of S. anacardium to synthesize NPs in ambient conditions. Green extract produced more NPs compared to the boiled extract suggesting denaturization of some of the useful factors due to boiling. NPs were quantified using UV and ICP-AES analysis. These were characterized using Transmission electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction. TEM images of the particles formed with green extract, boiled extract and green biomass showed that the particles were of different shapes and sizes.  相似文献   

15.
16.
Two strains of a fungus, Cladosporium cladosporioides 1 and C. cladosporioides 2 showed different metal biosorption properties. Strain 1 showed preferential sorption of gold and silver, while strain 2 could bind metals such as copper and cadmium in addition to gold and silver. Strain 1 had a cell-wall hexosamine content of 0.1%. X-ray photoelectron spectroscopy (XPS) and Fourier transform infra-red spectroscopy (FTIR) analyses indicated that nitrogen was not involved in metal biosorption by the strain. In strain 2 the cell-wall hexosamine content was 150 times that of strain 1. These results indicated that hexosamine was responsible for non-specific metal binding while cell-wall polymers other than hexosamines had a role in conferring selectivity in precious-metal binding.  相似文献   

17.
The size and morphology determines the thermodynamic, physical and electronic properties of metal nanoparticles. The extracellular synthesis of gold nanoparticles by fungus, Cylindrocladium floridanum, which acts as a source of reducing and stabilizing agent has been described. The synthesized nanoparticles were characterized using techniques such as UV–Vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy, energy dispersive X-ray analysis (EDAX), and high-resolution transmission electron microscopy (HR-TEM). Based on the evidence of HR-TEM, the synthesized particles were found to be spherical with an average size of 19.05 nm. Powder XRD pattern proved the formation of (111)-oriented face-centered cubic crystals of metallic gold. This microbial approach by fungus for the green synthesis of spherical gold nanoparticles has many advantages such as economic viability, scaling up and environment friendliness.  相似文献   

18.
Lee YC  Chang SP 《Bioresource technology》2011,102(9):5297-5304
The aim of this research was to develop a low cost adsorbent for wastewater treatment. The prime objective of this study was to search for suitable freshwater filamentous algae that have a high heavy metal ion removal capability. This study evaluated the biosorption capacity from aqueous solutions of the green algae species, Spirogyra and Cladophora, for lead (Pb(II)) and copper (Cu(II)). In comparing the analysis of the Langmuir and Freundlich isotherm models, the adsorption of Pb(II) and Cu(II) by these two types of biosorbents showed a better fit with the Langmuir isotherm model. In the adsorption of heavy metal ions by these two types of biosorbents, chemical and physical adsorption of particle surfaces was perhaps more significant than diffusion and adsorption between particles. Continuous adsorption-desorption experiments discovered that both types of biomass were excellent biosorbents with potential for further development.  相似文献   

19.
The indigenous fungal flora of three oil refinery contaminated sites (Bharuch, Valsad and Vadodara) of India has been documented in the present investigation. A total seventy-five fungal morphotypes were isolated from these sites and out of them, only fifteen isolates were capable of utilizing ethanol (0–8 %; v:v) as a sole source of carbon and energy for growth. Ten percent ethanol was completely lethal for the growth of all the isolated fungus. Biochemical characterization of the potent ethanol utilizing fungal isolates was studied based on substrate utilization profiles using BIOLOG phenotype microarray plates. Based on the morphological characters and Internal Transcribed Spacer region of ribosomal DNA, the fungal isolates were identified as Fusarium brachygibbosum, Fusarium equiseti, Fusarium acuminatum, Pencillium citrinum, Alternaria tenuissima, Septogloeum mori, Hypocrea lixii, Aureobasidium sp., Penicillium sp., and Fusarium sp. Intra-species genetic diversity among Fusarium sp. was evaluated by whole genome analysis with repetitive DNA sequences (ERIC, REP and BOX) based DNA fingerprinting. It was found that these fungus use alcohol dehydrogenase and acetaldehyde dehydrogenase enzymes based metabolism pathway to utilize ethanol for their growth and colonization.  相似文献   

20.
Microorganisms based biosynthesis of nanomaterials has triggered significant attention, due to their great potential as vast source of the production of biocompatible nanoparticles (NPs). Such biosynthesized functional nanomaterials can be used for various biomedical applications. The present study investigates the green synthesis of silver nanoparticles (Ag NPs) using the fungus Curvularia pallescens (C. pallescens) which is isolated from cereals. The C. pallescens cell filtrate was used for the reduction of AgNO3 to Ag NPs. To the best of our knowledge C. pallescens is utilized first time for the preparation of Ag NPs. Several alkaloids and proteins present in the phytopathogenic fungus C. pallescens were mainly responsible for the formation of highly crystalline Ag NPs. The as-synthesized Ag NPs were characterized by using UV–Visible spectroscopy, X-ray diffraction and transmission electron microscopy (TEM). The TEM micrographs have revealed that spherical shaped Ag NPs with polydisperse in size were obtained. These results have clearly suggested that the biomolecules secreted by C. pallescens are mainly responsible for the formation and stabilization of nanoparticles. Furthermore, the antifungal activity of the as-prepared Ag NPs was tested against Cladosporium fulvum, which is the major cause of a serious plant disease, known as tomato leaf mold. The synthesized Ag NPs displayed excellent fungicidal activity against the tested fungal pathogen. The extreme zone of reduction occurred at 50 μL, whereas, an increase in the reduction activity is observed with increasing the concentration of Ag NPs. These encouraging results can be further exploited by employing the as synthesized Ag NPs against various pathogenic fungi in order to ascertain their spectrum of fungicidal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号