共查询到20条相似文献,搜索用时 15 毫秒
1.
Twan van Gerwe Jeanette K. Miflin Jillian M. Templeton Annemarie Bouma Jaap A. Wagenaar Wilma F. Jacobs-Reitsma Arjan Stegeman Don Klinkenberg 《Applied microbiology》2009,75(3):625-628
Since meat from poultry colonized with Campylobacter spp. is a major cause of bacterial gastroenteritis, human exposure should be reduced by, among other things, prevention of colonization of broiler flocks. To obtain more insight into possible sources of introduction of Campylobacter into broiler flocks, it is essential to estimate the moment that the first bird in a flock is colonized. If the rate of transmission within a flock were known, such an estimate could be determined from the change in the prevalence of colonized birds in a flock over time. The aim of this study was to determine the rate of transmission of Campylobacter using field data gathered for 5 years for Australian broiler flocks. We used unique sampling data for 42 Campylobacter jejuni-colonized flocks and estimated the transmission rate, which is defined as the number of secondary infections caused by one colonized bird per day. The estimate was 2.37 ± 0.295 infections per infectious bird per day, which implies that in our study population colonized flocks consisting of 20,000 broilers would have an increase in within-flock prevalence to 95% within 4.4 to 7.2 days after colonization of the first broiler. Using Bayesian analysis, the moment of colonization of the first bird in a flock was estimated to be from 21 days of age onward in all flocks in the study. This study provides an important quantitative estimate of the rate of transmission of Campylobacter in broiler flocks, which could be helpful in future studies on the epidemiology of Campylobacter in the field. 相似文献
2.
Bacteriophage Therapy To Reduce Campylobacter jejuni Colonization of Broiler Chickens 总被引:1,自引:0,他引:1 下载免费PDF全文
C. Loc Carrillo R. J. Atterbury A. El-Shibiny P. L. Connerton E. Dillon A. Scott I. F. Connerton 《Applied microbiology》2005,71(11):6554-6563
Colonization of broiler chickens by the enteric pathogen Campylobacter jejuni is widespread and difficult to prevent. Bacteriophage therapy is one possible means by which this colonization could be controlled, thus limiting the entry of campylobacters into the human food chain. Prior to evaluating the efficacy of phage therapy, experimental models of Campylobacter colonization of broiler chickens were established by using low-passage C. jejuni isolates HPC5 and GIIC8 from United Kingdom broiler flocks. The screening of 53 lytic bacteriophage isolates against a panel of 50 Campylobacter isolates from broiler chickens and 80 strains isolated after human infection identified two phage candidates with broad host lysis. These phages, CP8 and CP34, were orally administered in antacid suspension, at different dosages, to 25-day-old broiler chickens experimentally colonized with the C. jejuni broiler isolates. Phage treatment of C. jejuni-colonized birds resulted in Campylobacter counts falling between 0.5 and 5 log10 CFU/g of cecal contents compared to untreated controls over a 5-day period postadministration. These reductions were dependent on the phage-Campylobacter combination, the dose of phage applied, and the time elapsed after administration. Campylobacters resistant to bacteriophage infection were recovered from phage-treated chickens at a frequency of <4%. These resistant types were compromised in their ability to colonize experimental chickens and rapidly reverted to a phage-sensitive phenotype in vivo. The selection of appropriate phage and their dose optimization are key elements for the success of phage therapy to reduce campylobacters in broiler chickens. 相似文献
3.
The pathogens Campylobacter jejuni and Campylobacter coli are commensals in the poultry intestine and campylobacteriosis is one of the most frequent foodborne diseases in developed and developing countries. Phages were identified to be effective in reducing intestinal Campylobacter load and this was evaluated, in the first field trials which were recently carried out. The aim of this study was to further investigate Campylobacter population dynamics during phage application on a commercial broiler farm. This study determines the superiority in colonisation of a Campylobacter type found in a field trial that was susceptible to phages in in vitro tests. The colonisation factors, i.e. motility and gamma glutamyl transferase activity, were increased in this type. The clustering in phylogenetic comparisons of MALDI-TOF spectra did not match the ST, biochemical phenotype and phage susceptibility. Occurrence of Campylobacter jejuni strains and phage susceptibility types with different colonisation potential seem to play a very important role in the success of phage therapy in commercial broiler houses. Thus, mechanisms of both, phage susceptibility and Campylobacter colonisation should be further investigated and considered when composing phage cocktails. 相似文献
4.
Genotypic Diversity among Campylobacter jejuni Isolates in a Commercial Broiler Flock 总被引:1,自引:0,他引:1 下载免费PDF全文
L. M. Thomas K. A. Long R. T. Good M. Panaccio P. R. Widders 《Applied microbiology》1997,63(5):1874-1877
Analysis of nucleic acid polymorphism in the flagellin genes of Campylobacter jejuni was used to investigate genetic diversity among Campylobacter spp. in a commercial broiler flock. Three hundred single colonies of C. jejuni were isolated from fecal samples collected weekly for 3 weeks immediately before slaughter. Both the flaA and flaB genes were amplified by PCR, and the PCR product was digested with the restriction enzyme AluI. The fragments generated were then analyzed by agarose gel electrophoresis. Among the 300 recovered isolates, five different restriction fragment length polymorphism profiles were observed. Three of these profiles were dominant during the course of the study, and the other two profiles were detected at low frequency. Analysis of genetic variation in C. jejuni over the course of an experimental infection lasting 7 weeks indicated that there was no obvious drift in the flagellin gene type. These findings demonstrate that a range of bacterial genotypes can constitute the bacterial population within a commercial poultry flock, with the most likely sources of these types being multiple environmental exposure and/or genetic drift within the population. This degree of diversity must be considered in epidemiological analyses which utilize genetic typing methods that investigate Campylobacter contamination of any food source, including poultry, to ensure that the total gene pool for C. jejuni is evaluated. 相似文献
5.
Scott AE Timms AR Connerton PL El-Shibiny A Connerton IF 《Environmental microbiology》2007,9(9):2341-2353
The characteristics that allow one Campylobacter jejuni genotype to succeed over another under the influence of bacteriophage predation have been examined in experimental broiler chickens following the observation that this succession appeared to occur in naturally colonized broiler chicken flocks. Examination of three C. jejuni strains from a single flock indicated that horizontal transfer of at least 112 kb of genomic DNA from strain F2C10 (bacteriophage sensitive) to strain F2E1 (bacteriophage insensitive) had created strain F2E3. Transfer of this DNA was associated with acquisition of sensitivity to 6 of 25 lytic bacteriophage isolated from the same flock. All strains tested were capable of colonizing broiler chickens but cocolonization revealed that the bacteriophage sensitive strains F2E3 and F2C10 had a competitive advantage over the bacteriophage insensitive strain F2E1. With the addition of lytic bacteriophage the situation was completely reversed, with F2E1 dominating. The inability to replicate bacteriophage is associated with a significant fitness cost that renders the insensitive strain competitive only in the presence of bacteriophage. We demonstrate that interstrain recombination in vivo can generate genome diversity in C. jejuni and that bacteriophage predation is a strong selective pressure that influences the relative success of emergent strains in broiler chickens. 相似文献
6.
Michael E. Konkel Jeffrey E. Christensen A. Singh Dhillon Alison B. Lane Rebekah Hare-Sanford Dennis M. Schaberg Charles L. Larson 《Applied microbiology》2007,73(7):2297-2305
Campylobacter jejuni isolates possess multiple adhesive proteins termed adhesins, which promote the organism's attachment to epithelial cells. Based on the proposal that one or more adhesins are shared among C. jejuni isolates, we hypothesized that C. jejuni strains would compete for intestinal and cecal colonization in broiler chicks. To test this hypothesis, we selected two C. jejuni strains with unique SmaI pulsed-field gel electrophoresis macrorestriction profiles and generated one nalidixic acid-resistant strain (the F38011 Nalr strain) and one streptomycin-resistant strain (the 02-833L Strr strain). In vitro binding assays revealed that the C. jejuni F38011 Nalr and 02-833L Strr strains adhered to LMH chicken hepatocellular carcinoma epithelial cells and that neither strain influenced the binding potential of the other strain at low inoculation doses. However, an increase in the dose of the C. jejuni 02-833L Strr strain relative to that of the C. jejuni F38011 Nalr strain competitively inhibited the binding of the C. jejuni F38011 Nalr strain to LMH cells in a dose-dependent fashion. Similarly, the C. jejuni 02-833L Strr strain was found to significantly reduce the efficiency of intestinal and cecal colonization by the C. jejuni F38011 Nalr strain in broiler chickens. Based on the number of bacteria recovered from the ceca, the maximum number of bacteria that can colonize the digestive tracts of chickens may be limited by host constraints. Collectively, these data support the hypothesis that C. jejuni strains compete for colonization in chicks and suggest that it may be possible to design novel intervention strategies for reducing the level at which C. jejuni colonizes the cecum. 相似文献
7.
Sources of Campylobacter spp. Colonizing Housed Broiler Flocks during Rearing 总被引:2,自引:0,他引:2 下载免费PDF全文
S. A. Bull V. M. Allen G. Domingue F. Jrgensen J. A. Frost R. Ure R. Whyte D. Tinker J. E. L. Corry J. Gillard-King T. J. Humphrey 《Applied microbiology》2006,72(1):645-652
The study aimed to identify sources of campylobacter in 10 housed broiler flocks from three United Kingdom poultry companies. Samples from (i) the breeder flocks, which supplied the broilers, (ii) cleaned and disinfected houses prior to chick placement, (iii) the chickens, and (iv) the environments inside and outside the broiler houses during rearing were examined. Samples were collected at frequent intervals and examined for Campylobacter spp. Characterization of the isolates using multilocus sequence typing (MLST), serotyping, phage typing, and flaA restriction fragment length polymorphism typing was performed. Seven flocks became colonized during the growing period. Campylobacter spp. were detected in the environment surrounding the broiler house, prior to as well as during flock colonization, for six of these flocks. On two occasions, isolates detected in a puddle just prior to the birds being placed were indistinguishable from those colonizing the birds. Once flocks were colonized, indistinguishable strains of campylobacter were found in the feed and water and in the air of the broiler house. Campylobacter spp. were also detected in the air up to 30 m downstream of the broiler house, which raises the issue of the role of airborne transmission in the spread of campylobacter. At any time during rearing, broiler flocks were colonized by only one or two types determined by MLST but these changed, with some strains superseding others. In conclusion, the study provided strong evidence for the environment as a source of campylobacters colonizing housed broiler flocks. It also demonstrated colonization by successive campylobacter types determined by MLST during the life of a flock. 相似文献
8.
Comparison of Genotypes and Serotypes of Campylobacter jejuni Isolated from Danish Wild Mammals and Birds and from Broiler Flocks and Humans 总被引:4,自引:0,他引:4 下载免费PDF全文
L. Petersen E. M. Nielsen J. Engberg S. L. W. On H. H. Dietz 《Applied microbiology》2001,67(7):3115-3121
The incidence of human infection with Campylobacter jejuni is increasing in most developed countries and the reason for this is largely unknown. Although poultry meat is considered to be a major source, it is evident that other reservoirs exist, possibly common to humans and poultry. Environmental sources are believed to be important reservoirs of Campylobacter infection in broiler chicken flocks. We investigated the potential importance of wildlife as a source of infection in commercial poultry flocks and in humans by comparing the serotype distributions, fla types, and macrorestriction profiles (MRPs) of C. jejuni isolates from different sources. The serotype distribution in wildlife was significantly different from the known distributions in broilers and humans. Considerable sero- and genotype diversity was found within the wildlife collection, although two major groups of isolates within serotype O:12 and the O:4 complex were found. Common clonal lines among wildlife, chicken, and/or human isolates were identified within serotype O:2 and the O:4 complex. However, MRPs of O:12 and O:38 strains isolated from wildlife and other sources indicated that some clonal lines propagated in a wide selection of animal species but were not detected in humans or broilers in this study. The applied typing methods successfully identified different clonal groups within a strain collection showing large genomic diversity. However, the relatively low number of wildlife strains with an inferred clonal relationship to human and chicken strains suggests that the importance of wildlife as a reservoir of infection is limited. 相似文献
9.
Loc Carrillo C Atterbury RJ el-Shibiny A Connerton PL Dillon E Scott A Connerton IF 《Applied and environmental microbiology》2005,71(11):6554-6563
Colonization of broiler chickens by the enteric pathogen Campylobacter jejuni is widespread and difficult to prevent. Bacteriophage therapy is one possible means by which this colonization could be controlled, thus limiting the entry of campylobacters into the human food chain. Prior to evaluating the efficacy of phage therapy, experimental models of Campylobacter colonization of broiler chickens were established by using low-passage C. jejuni isolates HPC5 and GIIC8 from United Kingdom broiler flocks. The screening of 53 lytic bacteriophage isolates against a panel of 50 Campylobacter isolates from broiler chickens and 80 strains isolated after human infection identified two phage candidates with broad host lysis. These phages, CP8 and CP34, were orally administered in antacid suspension, at different dosages, to 25-day-old broiler chickens experimentally colonized with the C. jejuni broiler isolates. Phage treatment of C. jejuni-colonized birds resulted in Campylobacter counts falling between 0.5 and 5 log10 CFU/g of cecal contents compared to untreated controls over a 5-day period postadministration. These reductions were dependent on the phage-Campylobacter combination, the dose of phage applied, and the time elapsed after administration. Campylobacters resistant to bacteriophage infection were recovered from phage-treated chickens at a frequency of <4%. These resistant types were compromised in their ability to colonize experimental chickens and rapidly reverted to a phage-sensitive phenotype in vivo. The selection of appropriate phage and their dose optimization are key elements for the success of phage therapy to reduce campylobacters in broiler chickens. 相似文献
10.
Roy D. Berghaus Stephan G. Thayer Bibiana F. Law Rita M. Mild Charles L. Hofacre Randall S. Singer 《Applied and environmental microbiology》2013,79(13):4106-4114
A prospective cohort study was performed to evaluate the prevalences and loads of Salmonella and Campylobacter spp. in farm and processing plant samples collected from 55 commercial broiler chicken flocks. Environmental samples were collected from broiler houses within 48 h before slaughter, and carcass rinses were performed on birds from the same flocks at 4 different stages of processing. Salmonella was detected in farm samples of 50 (90.9%) flocks and in processing samples of 52 (94.5%) flocks. Campylobacter was detected in farm samples of 35 (63.6%) flocks and in processing samples of 48 (87.3%) flocks. There was a significant positive relationship between environmental farm samples and processing plant carcass rinses with respect to both Salmonella and Campylobacter prevalences and loads. Campylobacter loads were significantly higher than Salmonella loads, and the correlations between samples collected from the same flocks were higher for Campylobacter than they were for Salmonella. Boot socks were the most sensitive sample type for detection of Salmonella on the farm, whereas litter samples had the strongest association with Salmonella loads in pre- and postchill carcass rinses. Boot socks, drag swabs, and fecal samples all had similar sensitivities for detecting Campylobacter on the farm, and all were more strongly associated with Campylobacter loads in carcass rinses than were litter samples. Farm samples explained a greater proportion of the variability in carcass rinse prevalences and loads for Campylobacter than they did for Salmonella. Salmonella and Campylobacter prevalences and loads both decreased significantly as birds progressed through the processing plant. 相似文献
11.
Molecular Epidemiology of Campylobacter jejuni in Broiler Flocks Using Randomly Amplified Polymorphic DNA-PCR and 23S rRNA-PCR and Role of Litter in Its Transmission 下载免费PDF全文
Randy E. Payne Margie D. Lee David W. Dreesen Harold M. Barnhart 《Applied microbiology》1999,65(1):260-263
Poultry has long been cited as a reservoir for Campylobacter spp., and litter has been implicated as a vehicle in their transmission. Chicks were raised on litter removed from a broiler house positive for Campylobacter jejuni. Litter was removed from the house on days 0, 3, and 9 after birds were removed for slaughter. Chicks were raised on these three litters under controlled conditions in flocks of 25. None of these birds yielded C. jejuni in their cecal droppings through 7 weeks. Two successive flocks from the same Campylobacter-positive broiler house were monitored for Campylobacter colonization. Campylobacter jejuni prevalence rates were determined for each flock. Randomly amplified polymorphic DNA (RAPD)-PCR and 23S rRNA-PCR typing methods were used to group isolates. A high prevalence (60%) of C. jejuni in flock 1 coincided with the presence of an RAPD profile not appearing in flock 2, which had a lower rate of prevalence (28%). A 23S rRNA-PCR typing method was used to determine if strains with different RAPD profiles and different prevalence rates contained different 23S sequences. RAPD profiles detected with higher prevalence rates contained a spacer in the 23S rRNA region 100% of the time, while RAPD profiles found with lower prevalence rates contained an intervening sequence less than 2% of the time. Data suggest varying colonizing potentials of different RAPD profiles and a source other than previously used litter as a means of transmission of C. jejuni. These molecular typing methods demonstrate their usefulness, when used together, in this epidemiologic investigation. 相似文献
12.
Effects of Climate on Incidence of Campylobacter spp. in Humans and Prevalence in Broiler Flocks in Denmark 总被引:1,自引:0,他引:1 下载免费PDF全文
Mary Evans Patrick Lasse Engbo Christiansen Michael Wain Steen Ethelberg Henrik Madsen Henrik Caspar Wegener 《Applied microbiology》2004,70(12):7474-7480
Campylobacter infections are increasing and pose a serious public health problem in Denmark. Infections in humans and broiler flocks show similar seasonality, suggesting that climate may play a role in infection. We examined the effects of temperature, precipitation, relative humidity, and hours of sunlight on Campylobacter incidence in humans and broiler flocks by using lag dependence functions, locally fitted linear models, and cross validation methods. For humans, the best model included average temperature and sunlight 4 weeks prior to infection; the maximum temperature lagged at 4 weeks was the best single predictor. For broilers, the average and maximum temperatures 3 weeks prior to slaughter gave the best estimate; the average temperature lagged at 3 weeks was the best single predictor. The combined effects of temperature and sunlight or the combined effects of temperature and relative humidity predicted the incidence in humans equally well. For broiler flock incidence these factors explained considerably less. Future research should focus on elements within the broiler environment that may be affected by climate, as well as the interaction of microclimatic factors on and around broiler farms. There is a need to quantify the contribution of broilers as a source of campylobacteriosis in humans and to further examine the effect of temperature on human incidence after this contribution is accounted for. Investigations should be conducted into food consumption and preparation practices and poultry sales that may vary by season. 相似文献
13.
Correlation of Campylobacter Bacteriophage with Reduced Presence of Hosts in Broiler Chicken Ceca 下载免费PDF全文
R. J. Atterbury E. Dillon C. Swift P. L. Connerton J. A. Frost C. E. R. Dodd C. E. D. Rees I. F. Connerton 《Applied microbiology》2005,71(8):4885-4887
Campylobacter jejuni and Campylobacter-specific bacteriophage were enumerated from broiler chicken ceca selected from 90 United Kingdom flocks (n = 205). C. jejuni counts in the presence of bacteriophage (mean log10 5.1 CFU/g) were associated with a significant (P < 0.001) reduction compared to samples with Campylobacter alone (mean log10 6.9 CFU/g). 相似文献
14.
Jens A. Hammerl Claudia J?ckel Thomas Alter Pawel Janzcyk Kerstin Stingl Marie Theres Knüver Stefan Hertwig 《PloS one》2014,9(12)
Background
Bacteriophage treatment is a promising tool to reduce Campylobacter in chickens. Several studies have been published where group II or group III phages were successfully applied. However, these two groups of phages are different regarding their host ranges and host cell receptors. Therefore, a concerted activity of group II and group III phages might enhance the efficacy of a treatment and decrease the number of resistant bacteria.Results
In this study we have compared the lytic properties of some group II and group III phages and analysed the suitability of various phages for a reduction of C. jejuni in broiler chickens. We show that group II and group III phages exhibit different kinetics of infection. Two group III and one group II phage were selected for animal experiments and administered in different combinations to three groups of chickens, each containing ten birds. While group III phage CP14 alone reduced Campylobacter counts by more than 1 log10 unit, the concomitant administration of a second group III phage (CP81) did not yield any reduction, probably due to the development of resistance induced by this phage. One group of chickens received phage CP14 and, 24 hours later, group II phage CP68. In this group of animals, Campylobacter counts were reduced by more than 3 log10 units.Conclusion
The experiments illustrated that Campylobacter phage cocktails have to be carefully composed to achieve the best results. 相似文献15.
Longitudinal Study of Campylobacter jejuni Bacteriophages and Their Hosts from Broiler Chickens 下载免费PDF全文
P. L. Connerton C. M. Loc Carrillo C. Swift E. Dillon A. Scott C. E. D. Rees C. E. R. Dodd J. Frost I. F. Connerton 《Applied microbiology》2004,70(7):3877-3883
A longitudinal study of bacteriophages and their hosts was carried out at a broiler house that had been identified as having a population of Campylobacter-specific bacteriophages. Cloacal and excreta samples were collected from three successive broiler flocks reared in the same barn. Campylobacter jejuni was isolated from each flock, whereas bacteriophages could be isolated from flocks 1 and 2 but were not isolated from flock 3. The bacteriophages isolated from flocks 1 and 2 were closely related to each other in terms of host range, morphology, genome size, and genetic content. All Campylobacter isolates from flock 1 were genotypically indistinguishable by pulsed-field gel electrophoresis (PFGE). PFGE and multilocus sequence typing indicated that this C. jejuni type was maintained from flock 1 to flock 2 but was largely superseded by three genetically distinct C. jejuni types insensitive to the resident bacteriophages. All isolates from the third batch of birds were insensitive to bacteriophages and genotypically distinct. These results are significant because this is the first study of an environmental population of C. jejuni bacteriophages and their influence on the Campylobacter populations of broiler house chickens. The role of developing bacteriophage resistance was investigated as this is a possible obstacle to the use of bacteriophage therapy to reduce the numbers of campylobacters in chickens. In this broiler house succession was largely due to incursion of new genotypes rather than to de novo development of resistance. 相似文献
16.
Simone E. Wirz Gudrun Overesch Peter Kuhnert Bo?ena M. Korczak 《Applied and environmental microbiology》2010,76(19):6377-6386
To obtain genetic information about Campylobacter jejuni and Campylobacter coli from broilers and carcasses at slaughterhouses, we analyzed and compared 340 isolates that were collected in 2008 from the cecum right after slaughter or from the neck skin after processing. We performed rpoB sequence-based identification, multilocus sequence typing (MLST), and flaB sequence-based typing; we additionally analyzed mutations within the 23S rRNA and gyrA genes that confer resistance to macrolide and quinolone antibiotics, respectively. The rpoB-based identification resulted in a distribution of 72.0% C. jejuni and 28.0% C. coli. The MLST analysis revealed that there were 59 known sequence types (STs) and 6 newly defined STs. Most of the STs were grouped into 4 clonal complexes (CC) that are typical for poultry (CC21, CC45, CC257, and CC828), and these represented 61.8% of all of the investigated isolates. The analysis of 95 isolates from the cecum and from the corresponding carcass neck skin covered 44 different STs, and 54.7% of the pairs had matching genotypes. The data indicate that cross-contamination from various sources during slaughter may occur, although the majority of Campylobacter contamination on carcasses appeared to originate from the slaughtered flock itself. Mutations in the 23S rRNA gene were found in 3.1% of C. coli isolates, although no mutations were found in C. jejuni isolates. Mutations in the gyrA gene were observed in 18.9% of C. jejuni and 26.8% of C. coli isolates, which included two C. coli strains that carried mutations conferring resistance to both classes of antibiotics. A relationship between specific genotypes and antibiotic resistance/susceptibility was observed.Campylobacteriosis is the leading food-borne bacterial gastroenteritis worldwide (12, 15). In Switzerland, the number of registered campylobacteriosis cases has rapidly increased to more than 100 per 100,000 inhabitants in the past few years (14), and this trend has also been observed in the European Union (EU) (12). However, the real number of cases is likely higher, because not all cases are reported due to the self-limiting nature of the disease and its potentially mild symptoms.Campylobacter jejuni and Campylobacter coli are commonly associated with human infection, and they can be detected in up to 85% and 15% of cases, respectively (33). Despite the important role that C. jejuni and C. coli play as zoonotic pathogens worldwide, there is little information regarding the route(s) of transmission (17). Numerous case-control and modeling studies on the infection sources of C. jejuni and C. coli have suggested that handling and consumption of contaminated poultry meat are associated with a risk of human campylobacteriosis (17, 45, 47, 49, 51). Initial meat contamination with C. jejuni or C. coli from the chicken intestine may occur during commonly used automated slaughter processing through several routes, such as the air, water, previously slaughtered flocks, or machinery (19, 36, 37).Precise genotyping and continuous comparison of the strains obtained from, e.g., the production site, flocks, slaughterhouse, retail meat, and infected humans would help to trace the source of infection and might indicate possible intervention strategies for the contaminated site.DNA sequence-based typing methods, such as multilocus sequence typing (MLST), are well suited for this purpose (28), and MLST has become the method of choice for genotyping of Campylobacter (6, 8). Moreover, extension of the classical MLST technique for C. jejuni and C. coli with sequencing of the short variable region (SVR) within the flagellin-encoding gene flaB allows a more precise differentiation among strains that have the same MLST sequence type (ST) (9, 29). An extended MLST work flow was recently developed that reduces the associated time and cost (24). In addition, the new approach allows genetic determination of antibiotic resistance to quinolones and macrolides. Resistance to these antibiotics is a worldwide issue of concern, as an increasing number of Campylobacter isolates are resistant to them. Strikingly, a number of strains are resistant to ciprofloxacin (a quinolone) and, to a lesser extent, erythromycin (a macrolide), which is problematic, because these drugs are typically used to treat campylobacteriosis. Resistance to quinolones is mainly associated with a point mutation in the DNA gyrase gene (gyrA) at position C257T, and a transition in the 23S rRNA gene at position A2075G is commonly responsible for macrolide resistance (1). Simple sequence-based analysis of these common mutational positions can therefore provide information about the antibiotic susceptibility or resistance of a strain. Besides the prudent use of antibiotics, knowledge about the genetic composition of the infectious agent can be helpful to both treat the disease and prevent the spread of resistant strains.In the current study, MLST, flaB typing, and sequence-based determination of quinolone and macrolide resistances were used to investigate the genetic background of C. jejuni and C. coli isolates collected from Swiss broilers in a spatiotemporal study in 2008. We addressed the following three aspects: (i) the diversity of Campylobacter isolates that were recovered from pooled cecum samples and the carcass neck skin, (ii) the possible impact of cross- and self-contamination during slaughter, and (iii) the antibiotic resistance of Campylobacter strains from the broiler flocks and chicken carcasses. All of the data, including the strain information and trace files, were entered into a commercial Web-based Campylobacter MLST database (SmartGene, Zug, Switzerland). This database allows users to retrieve and compare information for any analyzed strain for monitoring purposes (24). 相似文献
17.
Signe Berg Baldvinsson Martine C. Holst S?rensen Christina S. Vegge Martha R. J. Clokie Lone Br?ndsted 《Applied and environmental microbiology》2014,80(22):7096-7106
Previous studies have identified a specific modification of the capsular polysaccharide as receptor for phages that infect Campylobacter jejuni. Using acapsular kpsM mutants of C. jejuni strains NCTC11168 and NCTC12658, we found that bacteriophage F341 infects C. jejuni independently of the capsule. In contrast, phage F341 does not infect C. jejuni NCTC11168 mutants that either lack the flagellar filaments (ΔflaAB) or that have paralyzed, i.e., nonrotating, flagella (ΔmotA and ΔflgP). Complementing flgP confirmed that phage F341 requires rotating flagella for successful infection. Furthermore, adsorption assays demonstrated that phage F341 does not adsorb to these nonmotile C. jejuni NCTC11168 mutants. Taken together, we propose that phage F341 uses the flagellum as a receptor. Phage-host interactions were investigated using fluorescence confocal and transmission electron microscopy. These data demonstrate that F341 binds to the flagellum by perpendicular attachment with visible phage tail fibers interacting directly with the flagellum. Our data are consistent with the movement of the C. jejuni flagellum being required for F341 to travel along the filament to reach the basal body of the bacterium. The initial binding to the flagellum may cause a conformational change of the phage tail that enables DNA injection after binding to a secondary receptor. 相似文献
18.
Effect of iron concentration on toxin production in Campylobacter jejuni and Campylobacter coli 总被引:4,自引:0,他引:4
The effect of iron concentrations in culture media on supernatant yields of campylobacter cytotonic toxin (CCT) was studied. Of the 118 Campylobacter spp. strains surveyed, 78.8% produced toxin in brucella broth or in casamino acids--yeast extract (CYE) broth. When the iron concentration of CYE was increased from 0.44 microgram/mL (7.9 microM) to 0.65 microgram/mL (11.6 microM) by the addition of ferric chloride, 94.9% of the strains were positive for toxin in a ganglioside GM1 based, enzyme-linked immunosorbent assay, using antibody to affinity-purified CCT. The addition of iron as ferrous sulfate was less effective. When four toxin-positive strains were grown in a deferrated medium of conalbumin-treated CYE with 0.04-0.08 microgram iron/mL (0.72-1.43 microM), two of the culture supernatants became negative (absorbance at 410 nm, less than 0.1 and less than 10 ng CCT/mL), and two produced about 90% less CCT but were still classified as positive (absorbance, greater than or equal to 0.1 and greater than or equal to 10 ng CCT/mL). It was therefore concluded that the production of CCT by Campylobacter spp. is influenced by iron concentration. 相似文献
19.
Sørensen MC van Alphen LB Harboe A Li J Christensen BB Szymanski CM Brøndsted L 《Journal of bacteriology》2011,193(23):6742-6749
Bacteriophages infecting the food-borne human pathogen Campylobacter jejuni could potentially be exploited to reduce bacterial counts in poultry prior to slaughter. This bacterium colonizes the intestinal tract of poultry in high numbers, and contaminated poultry meat is regarded as the major source of human campylobacteriosis. In this study, we used phage F336 belonging to the Myoviridae family to select a C. jejuni NCTC11168 phage-resistant strain, called 11168R, with the aim of investigating the mechanisms of phage resistance. We found that phage F336 has reduced adsorption to 11168R, thus indicating that the receptor is altered. While proteinase K-treated C. jejuni cells did not affect adsorption, periodate treatment resulted in reduced adsorption, suggesting that the phage binds to a carbohydrate moiety. Using high-resolution magic angle spinning nuclear magnetic resonance (NMR) spectroscopy, we found that 11168R lacks an O-methyl phosphoramidate (MeOPN) moiety attached to the GalfNAc on the capsular polysaccharide (CPS), which was further confirmed by mass spectroscopy. Sequence analysis of 11168R showed that the potentially hypervariable gene cj1421, which encodes the GalfNAc MeOPN transferase, contains a tract of 10 Gs, resulting in a nonfunctional gene product. However, when 11168R reverted back to phage sensitive, cj1421 contained 9 Gs, and the GalfNAc MeOPN was regained in this strain. In summary, we have identified the phase-variable MeOPN moiety, a common component of the diverse capsular polysaccharides of C. jejuni, as a novel receptor of phages infecting this bacterium. 相似文献
20.
Evidence that Certain Clones of Campylobacter jejuni Persist during Successive Broiler Flock Rotations 总被引:2,自引:0,他引:2 下载免费PDF全文
Through the national surveillance program for Campylobacter spp., nine broiler chicken farms that were infected with Campylobacter jejuni in at least five rotations in 1998 were identified. One additional farm, located at the island of Bornholm where divided slaughter is used extensively, was also selected. Twelve broiler houses located on 10 farms were included in the study. The C. jejuni isolates collected from the selected houses during the surveillance were typed using fla typing and macrorestriction profiling (MRP), and a subset of the isolates, representing each of the identified clones, was serotyped according to the Penner scheme. Pulsed-field gel electrophoresis typing using SmaI and KpnI revealed that the majority of houses (11 of 12) carried identical isolates in two or more broiler flocks. Such persistent clones were found in 63% of all flocks (47 of 75). The majority of persistent clones (7 of 13) had fla type 1/1, but MRPs distinguished between isolates from different houses, and fla type 1/1 clones belonged to different serotypes. Seven houses carried persistent clones that covered an interval of at least four broiler flock rotations, or at least one half year. The dominant fla type (1/1) was represented by 44% of isolates, or by at least one isolate from 31 of 62 broiler flocks. This significantly exceeded the prevalence of fla type 1/1 C. jejuni isolates that we have estimated from other studies and suggests that isolates carrying this fla type are overrepresented in flocks with recurrent Campylobacter problems. The MRPs of clones belonging to fla type 1/1 serotype O:2 isolated from persistently infected flocks shared a high percentage of bands compared to the remaining isolates, indicating that some clones that have the ability to cause persistent infections in broiler farms are highly related to each other. 相似文献