首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
We previously found that capsaicin induces tight-junction (TJ) opening accompanied with cofilin dephosphorylation/activation in intestinal Caco-2 cells. Here, we examined the role of cofilin in TJ regulation, and analyzed the structural events that lead to TJ opening. We transfected Caco-2 cells with wild-type cofilin [cofilin(wt)] or its constitutively active mutant cofilin(S3A). We found that the decreases in transepithelial electrical resistance (TER) was slower in cofilin(wt) transfectants and faster in cofilin(S3A) mutants than in vector controls. Moreover, cofilin dephosphorylation corresponded to the rate of TER decrease. Capsaicin treatment changed the localization of TJ proteins and altered the F-actin structure, but in a manner different from those depend on myosin light chain kinase (MLCK). These results strongly support the importance of cofilin in TJ opening, suggesting cofilin as a target for TJ permeability regulation in epithelial cells.  相似文献   

2.
The sodium flux across individual tight junctions (TJ) of low-resistance MDCK cell monolayers grown on glass coverslips was determined as a measure of paracellular permeability. Increases in perfusate glucose concentration from 5 to 25 mm decreased tight junction Na permeability. This permeability decrease was not specific as nonmetabolizable analogues of glucose caused similar diminutions in TJ Na permeability. Stimulation of protein kinase A increased TJ Na permeability, and inhibition of protein kinase A decreased TJ Na permeability. Transepithelial electrical resistance of monolayers grown on permeable supports did not change as predicted from the observed alterations in TJ Na permeability of monolayers grown on glass coverslips. Fluorescent labeling of cell F-actin showed that increased F-actin in the perijunctional ring correlated with higher TJ Na permeability. Although a low dose of cytochalasin D did not change TJ Na permeability, it disrupted the cytoskeleton and blocked the decrease in TJ Na permeability caused by glucose. Cytochalasin D failed to block the effects of protein kinase A stimulation or inhibition on TJ Na permeability. We conclude that tight junction sodium permeability is regulated both by protein kinase A activity and by other processes involving the actin cytoskeleton. Received: 17 June 1997/Revised: 28 August 1997  相似文献   

3.
Previously, we demonstrated that capsaicin induces tight-junction (TJ) opening in human intestinal Caco-2 cells. In order to clarify the mechanism underlying the TJ opening action of capsaicin, we performed a proteomics study on capsaicin-treated Caco-2 cells. Phosphorylated cofilin was decreased significantly by capsaicin treatment. In addition, capsaicin induced Ca2+ influx in Caco-2 cells and there was a clear correlation between Ca2+) influx and cofilin dephosphorylation (activation). The Ca2+-chelating reagent EGTA blocked the cofilin dephosphorylation induced by both capsaicin and ionomycin, suggesting that the dephosphorylation was mediated by Ca2+ influx. Finally, transepithelial electrical resistance measurements showed that TJ opening accompanied cofilin dephosphorylation. Our data suggest that TJ opening is mediated by cofilin dephosphorylation, which is caused by capsaicin stimuli, including Ca2+ influx. This is the first report of capsaicin action via the dephosphorylation of cofilin in human intestinal cells.  相似文献   

4.
Tight junctions (TJs) play a crucial role in the establishment of cell polarity and regulation of paracellular permeability in epithelia. Here, we show that upon calcium-induced junction biogenesis in Madin-Darby canine kidney cells, ABalphaC, a major protein phosphatase (PP)2A holoenzyme, is recruited to the apical membrane where it interacts with the TJ complex. Enhanced PP2A activity induces dephosphorylation of the TJ proteins, ZO-1, occludin, and claudin-1, and is associated with increased paracellular permeability. Expression of PP2A catalytic subunit severely prevents TJ assembly. Conversely, inhibition of PP2A by okadaic acid promotes the phosphorylation and recruitment of ZO-1, occludin, and claudin-1 to the TJ during junctional biogenesis. PP2A negatively regulates TJ assembly without appreciably affecting the organization of F-actin and E-cadherin. Significantly, inhibition of atypical PKC (aPKC) blocks the calcium- and serum-independent membrane redistribution of TJ proteins induced by okadaic acid. Indeed, PP2A associates with and critically regulates the activity and distribution of aPKC during TJ formation. Thus, we provide the first evidence for calcium-dependent targeting of PP2A in epithelial cells, we identify PP2A as the first serine/threonine phosphatase associated with the multiprotein TJ complex, and we unveil a novel role for PP2A in the regulation of epithelial aPKC and TJ assembly and function.  相似文献   

5.
Natural and synthetic polycationic proteins, such as protamine, have been used to reproduce the tissue injury and changes in epithelial permeability caused by positively charged substances released by polymorphonuclear cells during inflammation. Protamine has diverse and often conflicting effects on epithelial permeability. The effects of this polycation on the distribution and expression of tight junction (TJ)-associated proteins have not yet been investigated. In this work, we examined the influence of protamine on paracellular barrier function and TJ structure using two strains of the epithelial Madin-Darby canine kidney (MDCK) cell line that differed in their TJ properties ("tight" TJ-strain I and "leaky" TJ-strain II). Protamine induced concentration-, time- and strain-dependent alterations in transepithelial electrical resistance (Rt) only when applied to apical or apical+basolateral monolayer surfaces, indicating a polarity of action. In MDCK II cells, protamine (50 microg/ml) caused a significant increase in Rt that returned to control values after 2 h. However, the treatment of this MDCK strain with a higher concentration of protamine (250 microg/ml) significantly decreased the Rt after 30 min. In contrast, treated MDCK I monolayers showed a significant decrease in Rt after apical treatment with protamine at both concentrations. The protamine-induced decrease in Rt was paralleled by an increase in the phenol red basal-to-apical flux in both MDCK strains, suggesting disruption of the paracellular barrier. Marked changes in cytoskeletal F-actin distribution/polymerization and a significant reduction in the junctional expression of the tight junctional proteins occludin and claudin-1 but subtle alterations in ZO-1 were observed following protamine-elicited paracellular barrier disruption. In conclusion, protamine induces alterations in the epithelial barrier function of MDCK monolayers that may involve the cytoskeleton and TJ-associated proteins. The various actions of protamine on epithelial function may reflect different degrees of interaction of protamine with the plasma membrane and different intracellular processes triggered by this polycation.  相似文献   

6.
We provide here new insights into rotavirus (RRV) pathogenicity by showing that RRV infection promotes structural and functional injuries localized at the tight junctions (TJ) in the cell-cell junctional complex of cultured polarized human intestinal Caco-2 cells forming monolayers. RRV infection resulted in a progressive increase in the paracellular permeability to [(3)H]mannitol as a function of the time postinfection. We observed a disorganization of the TJ-associated protein occludin as a function of the time postinfection, whereas distribution of the zonula adherens associated E-cadherin was not affected. These structural and functional RRV-induced TJ injuries were not accompanied by alteration in cell and monolayer integrity, as assessed by the lack of change in transepithelial membrane resistance and lactate dehydrogenase release. Finally, using the stabilizer of actin filaments Jasplakinolide, we demonstrated that the RRV-induced structural and functional alterations in TJ are independent of the RRV-induced apical F-actin rearrangements.  相似文献   

7.
Cerebral microvessel endothelial cells that form the blood-brain barrier (BBB) have tight junctions (TJ) that are critical for maintaining brain homeostasis and low permeability. Both integral (claudin-1 and occludin) and membrane-associated zonula occluden-1 and -2 (ZO-1 and ZO-2) proteins combine to form these TJ complexes that are anchored to the cytoskeletal architecture (actin). Disruptions of the BBB have been attributed to hypoxic conditions that occur with ischemic stroke, pathologies of decreased perfusion, and high-altitude exposure. The effects of hypoxia and posthypoxic reoxygenation in cerebral microvasculature and corresponding cellular mechanisms involved in disrupting the BBB remain unclear. This study examined hypoxia and posthypoxic reoxygenation effects on paracellular permeability and changes in actin and TJ proteins using primary bovine brain microvessel endothelial cells (BBMEC). Hypoxia induced a 2.6-fold increase in [(14)C]sucrose, a marker of paracellular permeability. This effect was significantly reduced (~58%) with posthypoxic reoxygenation. After hypoxia and posthypoxic reoxygenation, actin expression was increased (1.4- and 2.3-fold, respectively). Whereas little change was observed in TJ protein expression immediately after hypoxia, a twofold increase in expression was seen with posthypoxic reoxygenation. Furthermore, immunofluorescence studies showed alterations in occludin, ZO-1, and ZO-2 protein localization during hypoxia and posthypoxic reoxygenation that correlate with the observed changes in BBMEC permeability. The results of this study show hypoxia-induced changes in paracellular permeability may be due to perturbation of TJ complexes and that posthypoxic reoxygenation reverses these effects.  相似文献   

8.
Suzuki T  Hara H 《Life sciences》2006,79(4):401-410
A nondigestible disaccharide, difructose anhydride (DFA) III, is known to activate calcium transport via tight junctions (TJs); however, the characteristics of and mechanisms for the increase in paracellular transport induced by DFAIII have not been clarified. We compared the effect of DFAIII with that of sodium caprate (C10), a well-known enhancer of TJ permeability, on the changes in TJ proteins, transport of paracellular markers, and effects of nine cellular signaling blockers using Caco-2 monolayers. The addition of DFAIII (0-100mmol/L) and C10 (0-10mmol/L) to the apical medium of the Caco-2 monolayers dose-dependently decreased transepithelial electrical resistance (TER), which is an indicator of TJ permeability. The reduction with C10 was much faster than that with DFAIII. Transport of the paracellular markers of various molecular weights (182-43,200) was elevated by the addition of 100mmol/L DFAIII and 10mmol/L C10. The transport rates were much in the presence of C10 than of DFAIII, while the reduction in TER by two treatments was similar (from 1000 to 300Omega cm(2)). Treatment with DFAIII and C10 changed the distribution of actin filament and claudin-1, but not occludin, junctional adhesion molecule-1, or zonula occludens-1; however, alterations in the patterns of the TJ proteins differed according to treatment. An inhibitor of myosin light chain kinase and a chelator of intracellular calcium ion ([Ca(2+)](i)) attenuated the TER reduction by C10, but not by DFAIII. These data demonstrate that the increase in TJ permeability induced by DFAIII results from the alterations to actin and claudin-1 via [Ca(2+)](i)-independent mechanisms.  相似文献   

9.
Tight junctions (TJ) control paracellular permeability and apical-basolateral polarity of epithelial cells. Dysregulated permeability is associated with pathological conditions, such as celiac disease and inflammatory bowel disease. TJ formation is dependent on E-cadherin-mediated cell-cell adhesion and actin rearrangement, and is regulated by the Rho family GTPase and aPKC signaling pathways. Larazotide acetate, an 8-mer peptide and TJ modulator, inhibits TJ disassembly and dysfunction caused by endogenous and exogenous stimuli in intestinal epithelial cells. Here, we examined the effect of larazotide acetate on de novo TJ assembly using 2 different model systems. In MDCK cells, larazotide acetate promoted TJ assembly in a calcium switch assay. Larazotide acetate also promoted actin rearrangement, and junctional distribution of zonula occludens-1 (ZO-1), occludin, claudins, and E-cadherin. Larazotide acetate promoted TJ maturation and decreased paracellular permeability in "leaky" Caco-2 cells. Taken together, our data indicate that larazotide acetate enhances TJ assembly and barrier function by promoting actin rearrangement and redistribution of TJ and AJ proteins.  相似文献   

10.
Disturbance of the tight junction (TJ) complexes between brain endothelial cells leads to increased paracellular permeability, allowing leukocyte entry into inflamed brain tissue and also contributing to edema formation. The current study dissects the mechanisms by which a chemokine, CCL2, induces TJ disassembly. It investigates the potential role of selective internalization of TJ transmembrane proteins (occludin and claudin-5) in increased permeability of the brain endothelial barrier in vitro. To map the internalization and intracellular fate of occludin and claudin-5, green fluorescent protein fusion proteins of these TJ proteins were generated and imaged by fluorescent microscopy with simultaneous measurement of transendothelial electrical resistance. During CCL2-induced reductions in transendothelial electrical resistance, claudin-5 and occludin became internalized via caveolae and further processed to early (EEA1+) and recycling (Rab4+) endosomes but not to late endosomes. Western blot analysis of fractions collected from a sucrose gradient showed the presence of claudin-5 and occludin in the same fractions that contained caveolin-1. For the first time, these results suggest an underlying molecular mechanism by which the pro-inflammatory chemokine CCL2 mediates brain endothelial barrier disruption during CNS inflammation.The blood-brain barrier is situated at the cerebral endothelial cells and their linking tight junctions. Increased brain endothelial barrier permeability is associated with remodeling of inter-endothelial tight junction (TJ)2 complex and gap formation between brain endothelial cells (paracellular pathway) and/or intensive pinocytotic vesicular transport between the apical and basal side of brain endothelial cells (transcellular pathway) (1, 2). The transcellular pathway can be either passive or active and is characterized by low conductance and high selectivity. In contrast, the paracellular pathway is exclusively passive, being driven by electrochemical and osmotic gradients, and has a higher conductance and lower selectivity (3).Brain endothelial barrier paracellular permeability is maintained by an equilibrium between contractile forces generated at the endothelial cytoskeleton and adhesive forces produced at endothelial cell-cell junctions and cell-matrix contacts (13). A dynamic interaction among these structural elements controls opening and closing of the paracellular pathway and serves as a fundamental mechanism regulating blood-brain exchange. How this process occurs is under intense investigation. Two possible mechanisms may potentially increase paracellular permeability: phosphorylation of TJ proteins and/or endocytosis of transmembrane TJ proteins.Changes in TJ protein phosphorylation seem to be required to initiate increased brain endothelial permeability and a redistribution of most TJ proteins away from the cell border (48). Endocytosis may also be involved in remodeling TJ complexes between endothelial cells. Several types of endocytosis may be involved in TJ protein uptake, including clathrin- and caveolae-mediated endocytosis and macropinocytosis (for reviews, see Refs. 8 and 912). After first forming cell membrane-derived endocytotic vesicles, these vesicles fuse with early endosomes whose contents are further sorted for transport to lysosomes for degradation or recycling back to the plasma membrane for reuse (11).Although there is a lack of definitive knowledge regarding endocytotic internalization of brain endothelial cell TJ proteins, several studies on epithelial cells have indicated that occludin may be internalized via caveolae-mediated endocytosis whereas ZO-1, claudin-1, and junctional adhesion molecules-A may undergo macropinocytosis in response to stimuli such as TNF-α and INF-γ (13, 14). In contrast, there is evidence that Ca2+ may induce internalization of claudin-1 and occludin via clathrin-coated vesicles (8, 1416). All of these studies pinpoint endocytosis as an underlying process in TJ complex remodeling and redistribution, and thus regulation of paracellular permeability in epithelial cells.The present study examines whether internalization of transmembrane TJ proteins could be one process by which adhesion between brain endothelial cells is changed during increased paracellular permeability. Our results show that a pro-inflammatory mediator, the chemokine CCL2, induces disassembly of the TJ complex by triggering caveolae-dependent internalization of transmembrane TJ proteins (occludin and claudin-5). Once internalized, occludin and claudin-5 are further processed to recycling endosomes awaiting return to the plasma membrane.  相似文献   

11.
Infection with the protozoan parasite Cryptosporidium parvum (CP) causes cryptosporidiosis, a widespread diarrhoeal disease. Impaired intestinal epithelial barrier function and increased permeability are most commonly associated with diarrhoeal diseases caused by enteric infections. However, studies on barrier disruption and underlying mechanisms in cryptosporidiosis are extremely limited. Epithelial tight junctions (TJs) and adherens junctions (AJs) are important in maintaining barrier integrity. Therefore, we examined the effects of CP infection on paracellular permeability and on the expression of the major TJ and AJ proteins utilising in vitro, ex vivo, and in vivo models. CP infection (0.5 × 106 oocysts/well in Transwell inserts, 24 hr) increased paracellular permeability (FITC‐dextran flux) in Caco‐2 cell monolayers and substantially decreased the protein levels of occludin, claudin 4, and E‐cadherin. Claudin 3, zonula occludens‐1 (ZO1) and α‐catenin were also significantly decreased, whereas claudins 1 and 2 and β‐catenin were not altered. Substantial downregulation of occludin, claudin 4, and E‐cadherin was also observed in response to CP infection ex vivo in mouse enteroid‐derived monolayers and in vivo in the ileal and jejunal mocosa of C57BL/6 mice. The mRNA levels of these proteins were also significantly decreased in CP‐infected mouse ileum and jejunum but were unaltered in Caco‐2 cells. Further, bafilomycin‐A, an inhibitor of lysosomal proton pump, partially abrogated CP effects on occludin expression in Caco‐2 cells, suggesting a potential role of posttranslational mechanisms, such as induction of protein degradation pathways, in mediating the effects of the parasite. Our studies suggest that disruption of barrier function via downregulation of specific key components of TJ and AJ could be a major mechanism underlying CP infection‐induced diarrhoea.  相似文献   

12.
Tight junctions (TJs) are composed of a claudin-based anastomosing network of TJ strands at which plasma membranes of adjacent epithelial cells are closely attached to regulate the paracellular permeability. Although the TJ proteins occludin and tricellulin have been known to be incorporated in the TJ strand network, their molecular functions remain unknown. Here, we established tricellulin/occludin-double knockout (dKO) MDCK II cells using a genome editing technique and evaluated the structure and barrier function of these cells. In freeze-fracture replica electron microscopy, the TJ strands of tricellulin/occludin-dKO cells had fewer branches and were less anastomosed compared with the controls. The paracellular permeability of ions and small tracers was increased in the dKO cells. A single KO of tricellulin or occludin had limited effects on the morphology and permeability of TJs. Mathematical simulation using a simplified TJ strand network model predicted that reduced cross-links in TJ strands lead to increased permeability of ions and small macromolecules. Furthermore, overexpression of occludin increased the complexity of TJ strand network and strengthened barrier function. Taken together, our data suggest that tricellulin and occludin mediate the formation and/or stabilization of TJ-strand branching points and contribute to the maintenance of epithelial barrier integrity.  相似文献   

13.
Occludin modulates transepithelial migration of neutrophils   总被引:9,自引:0,他引:9  
Neutrophils cross epithelial sheets to reach inflamed mucosal surfaces by migrating along the paracellular route. To avoid breakdown of the epithelial barrier, this process requires coordinated opening and closing of tight junctions, the most apical intercellular junctions in epithelia. To determine the function of epithelial tight junction proteins in this process, we analyzed neutrophil migration across monolayers formed by stably transfected epithelial cells expressing wild-type and mutant occludin, a membrane protein of tight junctions with four transmembrane domains and both termini in the cytosol. We found that expression of mutants with a modified N-terminal cytoplasmic domain up-regulated migration, whereas deletion of the C-terminal cytoplasmic domain did not have an effect. The N-terminal cytosolic domain was also found to be important for the linear arrangement of occludin within tight junctions but not for the permeability barrier. Moreover, expression of mutant occludin bearing a mutation in one of the two extracellular domains inhibited neutrophil migration. The effects of transfected occludin mutants on neutrophil migration did not correlate with their effects on selective paracellular permeability and transepithelial electrical resistance. Hence, specific domains and functional properties of occludin modulate transepithelial migration of neutrophils.  相似文献   

14.
Disruption of epithelial barrier by proinflammatory cytokines such as IFN-gamma represents a major pathophysiological consequence of intestinal inflammation. We have previously shown that IFN-gamma increases paracellular permeability in model T84 epithelial cells by inducing endocytosis of tight junction (TJ) proteins occludin, JAM-A, and claudin-1. The present study was designed to dissect mechanisms of IFN-gamma-induced endocytosis of epithelial TJ proteins. IFN-gamma treatment of T84 cells resulted in internalization of TJ proteins into large actin-coated vacuoles that originated from the apical plasma membrane and resembled the vacuolar apical compartment (VAC) previously observed in epithelial cells that lose cell polarity. The IFN-gamma dependent formation of VACs required ATPase activity of a myosin II motor but was not dependent on rapid turnover of F-actin. In addition, activated myosin II was observed to colocalize with VACs after IFN-gamma exposure. Pharmacological analyses revealed that formation of VACs and endocytosis of TJ proteins was mediated by Rho-associated kinase (ROCK) but not myosin light chain kinase (MLCK). Furthermore, IFN-gamma treatment resulted in activation of Rho GTPase and induced expressional up-regulation of ROCK. These results, for the first time, suggest that IFN-gamma induces endocytosis of epithelial TJ proteins via RhoA/ROCK-mediated, myosin II-dependent formation of VACs.  相似文献   

15.
Postflight orthostatic intolerance (POI) was reported to be higher in female than male astronauts and may result from sex-dependent differences in endothelial cell (EC) barrier permeability. Here the effect of 17-estradiol (E2) and dihydrotestosterone (DHT) on the expression of the tight junction protein occludin, EC barrier function, and MAPK activation over time was tested after subjecting human umbilical vein EC (HUVEC) to brief hypergravity identical to that experienced by astronauts during liftoff (LO) into space. After LO hypergravity, HUVEC showed a time-dependent decrease in occludin correlating with an increase in paracellular permeability and a decrease in transendothelial electrical resistance, indicating a decrease in EC barrier function. LO hypergravity inhibited MAPK activation, which remained suppressed 4 h after LO. Inhibition of MAPK activation correlated with decreased phosphotyrosine occludin, decreased cytochrome-c oxidase activity, and increased paracellular permeability, suggesting a mechanism by which LO hypergravity decreased EC barrier function. Time-dependent differences in MAPK activation, decreased occludin, and EC barrier function between HUVEC treated with E2 vs. DHT were observed. HUVEC showed delayed activation of MAPK with DHT, i.e., 4 h rather than 2 h for E2, which correlated with decreased paracellular permeability and the observed sex differences in POI in astronauts. These data temporally separate E2 and DHT effects in HUVEC and provide evidence for the possible protective roles of sex steroids on EC function after brief exposure to low hypergravity. paracellular permeability; estrogen; androgen  相似文献   

16.
Dynamics of tight and adherens junctions under EGTA treatment   总被引:4,自引:0,他引:4  
The dynamics of tight junctions (TJs) and adherens junctions (AJs) under EGTA treatment were investigated in Madin Darby canine kidney (MDCK) cells. Detailed information about the behavior of TJ and AJ proteins during the opening and resealing of TJs and AJs is still scarce. By means of the "calcium chelation" method, the distribution and colocalization of junctional proteins were studied with confocal laser scanning microscopy using a deconvolution algorithm for high-resolution images. Colocalization was analyzed for pairs of the following proteins: ZO-1, occludin, claudin-1, E-cadherin and F-actin. Significant differences were found for the analyzed pairs in control cells compared to EGTA-treated cells with respect to the position of the colocalization maxima within the cell monolayers as well as with respect to the amount of colocalized voxels. Under EGTA treatment, colocalization for ZO-1/occludin, ZO-1/claudin-1, claudin-1/occludin, E-cadherin/occludin and E-cadherin/claudin-1 dropped below 35% of the control value. Only for the ZO-1/E-cadherin pair, the amount of colocalized voxels increased and a shift to a more basal position was observed. During the opening of TJs and AJs, ZO-1 colocalized with E-cadherin in the lateral membrane region, whereas in controls, ZO-1 colocalized with occludin and claudin-1 in the junctional complex. The combination of deconvolution with colocalization analysis of confocal data sets offers a powerful tool to investigate the spatial relationship of TJ and AJ proteins during assembly and disassembly of cell-cell contacts.  相似文献   

17.
In a previous experiment (Isoda et al., 2001), we showed that the tight-junctional (TJ) permeability increase in Caco-2 cells during capsaicin exposure was through binding of the capsaicin molecule to a capsaicin receptor-like protein. In the present study, we examined how actin, which modulates TJ permeability, is influenced by capsaicin. We showed that after treatment of the Caco-2 cells with capsaicin, the volume of F-actin decreased. Moreover, we also examined protein kinase C (PKC) and heat shock protein 47 (HSP47), which act as probable second messengers in causing TJ permeability increase. We showed that after capsaicin treatment, HSP47 was activated. However, PKC activity was the same in both control and treatment setups. These results suggest that, while PKC is not involved, it is highly possible that HSP47plays a role in TJ permeability increase in intestinal Caco-2 cells exposed to capsaicin. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Vascular endothelial growth factor (VEGF) alters tight junctions (TJs) and promotes vascular permeability in many retinal and brain diseases. However, the molecular mechanisms of barrier regulation are poorly understood. Here we demonstrate that occludin phosphorylation and ubiquitination regulate VEGF-induced TJ protein trafficking and concomitant vascular permeability. VEGF treatment induced TJ fragmentation and occludin trafficking from the cell border to early and late endosomes, concomitant with increased occludin phosphorylation on Ser-490 and ubiquitination. Furthermore, both co-immunoprecipitation and immunocytochemistry demonstrated that VEGF treatment increased the interaction between occludin and modulators of intracellular trafficking that contain the ubiquitin interacting motif, including Epsin-1, epidermal growth factor receptor pathway substrate 15 (Eps15), and hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs). Inhibiting occludin phosphorylation by mutating Ser-490 to Ala suppressed VEGF-induced ubiquitination, inhibited trafficking of TJ proteins, and prevented the increase in endothelial permeability. In addition, an occludin-ubiquitin chimera disrupted TJs and increased permeability without VEGF. These data demonstrate a novel mechanism of VEGF-induced occludin phosphorylation and ubiquitination that contributes to TJ trafficking and subsequent vascular permeability.Under normal physiological conditions the blood-brain barrier and blood-retinal barrier regulate the transport of water, ions, amino acids, and waste products, between the neural parenchyma and blood (1). A high degree of well developed tight junctions (TJs)2 in the vascular endothelium, in association with adherens junctions, contribute to both the blood-brain and blood-retinal barriers (2). Accumulating evidence suggests that a number of pathological eye diseases such as diabetes, retinopathy of prematurity, age-related macular degeneration, inflammation, and infectious diseases disrupt the TJs altering the blood-retinal barrier. Common mediators of vascular permeability and TJ deregulation are growth factors and cytokines that may induce macular edema and lead to loss of vision (1). Vascular endothelial growth factor (VEGF), in particular, induces vascular permeability and stimulates angiogenesis, contributing to disease pathogenesis in diabetic retinopathy and retinopathy of prematurity (3). VEGF also contributes to blood-brain barrier disruption with subsequent edema and angiogenesis in brain tumors and stroke (4). Recent advances in biomedical research have provided therapeutic approaches to neutralize VEGF; however, these strategies have not yet demonstrated effective resolution of diabetic macular edema (5, 6).TJs control the paracellular flux of solutes and fluids across the blood-brain and blood-retinal barriers. Several transmembrane proteins including occludin, tricellulin, the claudin family, and junction adhesion molecules are thought to confer adhesion to the TJ barrier and to be organized by members of the zonula occludens family (ZO-1, -2, or -3) (79). Experimental evidence has established that the claudins confer barrier properties and claudin-5 specifically contributes to the vascular component of the blood-brain barrier demonstrated by gene deletion studies (10). In contrast, the function of occludin in paracellular flux has remained less clear. Mice with occludin gene deletion continue to form TJs in gut epithelia with normal barrier properties (11). However, studies have also demonstrated that diabetes reduces occludin content in rat retina (12) and alters its distribution from continuous cell border localization to intracellular puncta (13). These observations suggest that the intracellular trafficking of TJ proteins promotes paracellular flux and vascular permeability in diabetic animals (12, 14).VEGF was originally identified as a vascular permeability factor as well as a pro-angiogenic growth factor (15, 16). Both biological effects exacerbate the pathology of retinal vascular diseases (17), and they are mediated via intracellular signal transduction, especially based on the phosphorylation of Src, protein kinase C, and so on (18). Additionally, VEGF treatment and diabetes induce occludin phosphorylation in rat retinal vasculature and endothelial cell culture coincident with increased permeability (19). Recently, using mass spectrometry five occludin phosphorylation sites were identified in retinal endothelial cell culture after VEGF treatment (20). Among these sites, phosphorylation at Ser-490 was shown to increase in response to VEGF treatment. However, no evidence has directly demonstrated the contribution of occludin phosphorylation to VEGF-induced endothelial permeability or defined the mechanism by which phosphorylation of occludin alters paracellular flux.Modification of proteins with monomeric or polymeric ubiquitin chains contributes to control of multiple biological functions including protein degradation, intracellular trafficking, translational regulation, and DNA repair (21). Phosphorylation of receptor tyrosine kinases, such as epidermal growth factor receptor or vascular endothelial growth factor receptor-2, is followed by ubiquitination and regulated trafficking to endosomes. This endocytosis process depends on the interaction between the ubiquitinated receptors and carrier proteins that possess a ubiquitin interacting motif (UIM) such as Epsin, epidermal growth factor receptor pathway substrate 15 (Eps15), and hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) (2124). Recent publications have demonstrated that occludin can be ubiquitinated targeting the protein for degradation through the ubiquitin-proteasome system in epithelial cell types (25, 26). Here we demonstrate that phosphorylation of occludin at Ser-490 is necessary for occludin ubiquitination in response to VEGF in endothelial cells. Furthermore, the ubiquitination promotes interaction of occludin with UIM containing modulators of trafficking and regulates the internalization of TJ proteins altering endothelial permeability. Together, these results suggest that occludin phosphorylation and subsequent ubiquitination are necessary for VEGF-induced TJ trafficking and endothelial permeability.  相似文献   

19.
In the central nervous system (CNS) complex endothelial tight junctions (TJs) form a restrictive paracellular diffusion barrier, the blood-brain barrier (BBB). Pathogenic changes within the CNS are frequently accompanied by the loss of BBB properties, resulting in brain edema. In order to investigate whether BBB leakiness can be monitored by a loss of TJ proteins from cellular borders, we used an in vitro BBB model where brain endothelial cells in co-culture with astrocytes form a tight permeability barrier for 3H-inulin and 14C-sucrose. Removal of astrocytes from the co-culture resulted in an increased permeability to small tracers across the brain endothelial cell monolayer and an opening of the TJs to horseradish peroxidase as detected by electron microscopy. Strikingly, opening of the endothelial TJs was not accompanied by any visible change in the molecular composition of endothelial TJs as junctional localization of the TJ-associated proteins claudin-3, claudin-5, occludin, ZO-1 or ZO-2 or the adherens junction-associated proteins -catenin or p120cas did not change. Thus, opening of BBB TJs is not readily accompanied by the complete loss of the junctional localization of TJ proteins.This work is dedicated to the memory of Werner Risau (died 13.12.1998), who initiated this collaboration  相似文献   

20.
Defective intestinal epithelial tight junction (TJ) barrier has been shown to be an important pathogenic factor contributing to the development of intestinal inflammation. The expression of occludin is markedly decreased in intestinal permeability disorders, including in Crohn's disease, ulcerative colitis, and celiac disease, suggesting that the decrease in occludin expression may play a role in the increase in intestinal permeability. The purpose of this study was to delineate the involvement of occludin in intestinal epithelial TJ barrier by selective knock down of occludin in in vitro (filter-grown Caco-2 monolayers) and in vivo (recycling perfusion of mouse intestine) intestinal epithelial models. Our results indicated that occludin small-interfering RNA (siRNA) transfection causes an increase in transepithelial flux of various-sized probes, including urea, mannitol, inulin, and dextran, across the Caco-2 monolayers, without affecting the transepithelial resistance. The increase in relative flux rate was progressively greater for larger-sized probes, indicating that occludin depletion has the greatest effect on the flux of large macromolecules. siRNA-induced knock down of occludin in mouse intestine in vivo also caused an increase in intestinal permeability to dextran but did not affect intestinal tissue transepithelial resistance. In conclusion, these results show for the first time that occludin depletion in intestinal epithelial cells in vitro and in vivo leads to a selective or preferential increase in macromolecule flux, suggesting that occludin plays a crucial role in the maintenance of TJ barrier through the large-channel TJ pathway, the pathway responsible for the macromolecule flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号