首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Glutamine is a major nutrient utilized by the intestinal epithelium and is primarily assimilated via Na-glutamine co-transport (NGcT) on the brush border membrane (BBM) of enterocytes. Recently we reported that B0AT1 (SLC6A19) mediates glutamine absorption in villus while SN2 (SLC38A5) does the same in crypt cells. However, how B0AT1 and SN2 are affected during intestinal inflammation is unknown. In the present study it was shown that during chronic enteritis NGcT was inhibited in villus cells, however, it was stimulated in crypt cells. Our studies also demonstrated that the mechanism of inhibition of NGcT during chronic enteritis was secondary to a reduction in the number of B0AT1 co-transporters in the villus cell BBM without a change in the affinity of the co-transporter. In contrast, stimulation of NGcT in crypt cells was secondary to an increase in the affinity of SN2 for glutamine without an alteration in the number of co-transporters. Thus, glutamine assimilation which occurs via distinct transporters in crypt and villus cells is altered in the chronically inflamed intestine.  相似文献   

8.
In situ hybridization and immunocytochemical techniques have been used to examine the distribution of vitamin-D-induced calbindin mRNA and calbindin protein in enterocytes lining the crypts and villi of chicken small intestine. Basal villus enterocytes contained approximately twice as much calbindin but over three times as much calbindin mRNA compared to values found in basal crypt and upper villus enterocytes, all values being measured 2 days after vitamin D injection into D-deficient chickens. Virtually no calbindin mRNA was detected in tissues taken from control D-deficient birds. Direct proportionality found between calbindin mRNA and calbindin content in enterocytes of basal crypt, mid and upper villus suggests pre-translational control over calbindin synthesis. The implications of possible inefficient translation of calbindin mRNA in basal villus enterocytes are discussed. Present methods of analysis provide a novel way to study mechanisms controlling gene expression throughout the whole process of enterocyte differentiation.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号