首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MethodsWe developed an interactive 3D PDF report document format and implemented a software tool to create these reports automatically. After more than 1000 liver CASP cases that have been reported in clinical routine using our 3D PDF report, an international user survey was carried out online to evaluate the user experience.ResultsOur solution enables the user to interactively explore the anatomical configuration and to have different analyses and various resection proposals displayed within a 3D PDF document covering only a single page that acts more like a software application than like a typical PDF file (“PDF App”). The new 3D PDF report offers many advantages over the previous solutions. According to the results of the online survey, the users have assessed the pragmatic quality (functionality, usability, perspicuity, efficiency) as well as the hedonic quality (attractiveness, novelty) very positively.ConclusionThe usage of 3D PDF for reporting and sharing CASP results is feasible and well accepted by the target audience. Using interactive PDF with embedded 3D models is an enabler for presenting and exchanging complex medical information in an easy and platform-independent way. Medical staff as well as patients can benefit from the possibilities provided by 3D PDF. Our results open the door for a wider use of this new technology, since the basic idea can and should be applied for many medical disciplines and use cases.  相似文献   

2.
Although the need for communicating 3D data using simple and intuitive means extends to disciplines as diverse as biology, engineering sciences and the visual arts, none of the currently available molecular-visualization programs depicting potentially highly complex structures are compatible with the portable document format (PDF), the current gold standard of electronic publishing. Therefore, it is highly desirable for authors to be able to provide their readers with a basic 3D display of structures that can be accessed without the need for specialized visualization software. Here, we describe how an interactive 3D model of a molecular complex can be embedded directly into a PDF, thus providing readers with important and educational visual information that would otherwise be more difficult to disseminate.  相似文献   

3.
Creating accurate 3D models of marine mammals is valuable for assessment of body condition, computational fluids dynamics models of locomotion, and for education. However, the methods for creating 3D models are not well-developed. We used photography and video to create 3D photogrammetry models of harbor porpoises (Phocoena phocoena). We accessed one live adult female (155.5 cm total length), and two dead animals, one juvenile (110 cm total length) and one calf (88 cm total length). We accessed the two dead individuals through a stranding network in Germany, and the live individual through the Fjord and Baelt research center in Denmark. For all porpoises, we used still photographs from hand-held cameras, drone video, and synchronized GoPro videos to create 3D photogrammetric models. We used Blender software, and other 3D reconstruction software, to recreate the 3D body meshes, and confirmed the accuracy of each of the 3D body meshes by comparing digital measures on the 3D models to original measures taken on the specimens. We also provide a colored, animated version of the live harbor porpoise for educational purposes. These open-access 3D models can be used to develop methods to study body morphometrics and condition, and to study bioenergetics and locomotion costs.  相似文献   

4.
Several authors have employed finite element analysis for stress and strain analysis in orthopaedic biomechanics. Unfortunately, the definition of three-dimensional models is time consuming (mainly because of the manual 3D meshing process) and consequently the number of analyses to be performed is limited. The authors have investigated a new patient-specific method allowing automatically 3D mesh generation for structures as complex as bone for example. This method, called the mesh-matching (M-M) algorithm, generated automatically customized 3D meshes of anatomical structures from an already existing model. The M-M algorithm has been used to generate FE models of 10 proximal human femora from an initial one which had been experimentally validated. The automatically generated meshes seemed to demonstrate satisfying results.  相似文献   

5.
Direct comparison of experimental and theoretical results in biomechanical studies requires a careful reconstruction of specimen surfaces to achieve a satisfactory congruence for validation. In this paper a semi-automatic approach is described to reconstruct triangular boundary representations from images originating from, either histological sections or microCT-, CT- or MRI-data, respectively. In a user-guided first step, planar 2D contours were extracted for every material of interest, using image segmentation techniques. In a second step, standard 2D triangulation algorithms were used to derive high quality mesh representations of the underlying surfaces. This was accomplished by converting the 2D meshes into 3D meshes by a novel lifting procedure. The meshes can be imported as is into finite element programme packages such as Marc/Mentat or COSMOS/M. Accuracy and feasibility of the algorithm is demonstrated by reconstructing several specimens as examples and comparing simulated results with available measurements performed on the original objects.  相似文献   

6.
3D confocal reconstruction of gene expression in mouse   总被引:1,自引:0,他引:1  
Three-dimensional computer reconstructions of gene expression data will become a valuable tool in biomedical research in the near future. However, at present the process of converting in situ expression data into 3D models is a highly specialized and time-consuming procedure. Here we present a method which allows rapid reconstruction of whole-mount in situ data from mouse embryos. Mid-gestation embryos were stained with the alkaline phosphotase substrate Fast Red, which can be detected using confocal laser scanning microscopy (CLSM), and cut into 70 microm sections. Each section was then scanned and digitally reconstructed. Using this method it took two days to section, digitize and reconstruct the full expression pattern of Shh in an E9.5 embryo (a 3D model of this embryo can be seen at genex.hgu.mrc.ac.uk). Additionally we demonstrate that this technique allows gene expression to be studied at the single cell level in intact tissue.  相似文献   

7.
Quantitative 3D imaging is becoming an increasingly popular and powerful approach to investigate plant growth and development. With the increased use of 3D image analysis, standards to ensure the accuracy and reproducibility of these data are required. This commentary highlights how image acquisition and postprocessing can introduce artifacts into 3D image data and proposes steps to increase both the accuracy and reproducibility of these analyses. It is intended to aid researchers entering the field of 3D image processing of plant cells and tissues and to help general readers in understanding and evaluating such data.Advances in digital imaging have led to the generation of an increasing number of 3D data sets (Truernit et al., 2008; Fernandez et al., 2010; Kierzkowski et al., 2012; Roeder et al., 2012). Whole-mount and time-lapse imaging enable all cells in an organ to be analyzed in 3D over time, providing a comprehensive analysis of plant growth and development (Roeder et al., 2011).The generation of these 3D image data sets has led to the development of novel computational approaches to facilitate their analysis (Cunha et al., 2010; Kierzkowski et al., 2012; Bassel et al., 2014; Yoshida et al., 2014). With the development of these new methods comes a need for quality control and standard measures to ensure the accurate analysis of data sets. An overall objective of this approach is the accurate capture and quantification of the 3D geometry of biological objects. The inaccurate abstraction of shape data and introduction of artifacts during image acquisition and postprocessing must be kept to a minimum.Following imaging, typically using confocal microscopy, 3D objects can be identified through the process of segmentation (Roeder et al., 2012). This can be achieved using automatic seeding through a watershed approach or by inflating “balloons” with defined seeds in individual cells (Federici et al., 2012). Vertices and meshes that describe cell surfaces may then be generated using an algorithm such as marching cubes (Lorensen and Cline, 1987). Vertices at defined spacings can be placed on the surface of unique segments, and the surfaces describing these geometric shapes are represented by the triangles connecting adjacent vertices constituting a polygonal mesh.The mesh describing segment surfaces is ultimately what defines the shape of an object in question. Rough and irregular features are often represented by meshes owing to the imperfect nature of data collection from biological samples (Desbrun et al., 1999; Taubin, 2000). In the context of plant cells whose surfaces are naturally smooth, the segmentations and meshes describing them are in practice noisy and contain undesirable geometric irregularities. The lower the quality of the original image being segmented, the greater the irregularities in the mesh that describe the shape.In order to improve the quality of irregularly triangulated polygonal meshes, smoothing operations can be performed. In this way, the roughness of the surface can be reduced, improving the texture and representation of a segmented object.A straightforward and easy to implement operation to remove noise in 3D meshes is Laplacian smoothing (Field, 1988). This process repositions vertices to an average position (barycentre) along a mesh surface to create a smoothed effect. However, Laplacian smoothing has the side effect of slightly shrinking the object in question (Taubin, 2000). While this shrinkage effect is well documented among computer scientists who develop algorithms to modify polygonal meshes, it is perhaps less well understood and discussed by the end user biological community.Smoothing of meshes has the positive effect of making surfaces smoother and removing noise, while enhancing the visual aesthetic of segmented objects providing the appearance that their geometry has been captured accurately (Figures 1A and 1B). In cases where objects have been poorly segmented, the need to remove the jagged appearance of meshes is greater, and additional smoothing steps are often used. This repeated Laplacian smoothing leads to additional smoothing-induced shrinkage and greater abstraction of the object being analyzed. Given that the mesh itself is intended to represent the 3D geometry of an object in question, changing its overall size by smoothing represents a perturbation and manipulation of data that inaccurately reflects the quantitative capture of geometry. The need to remove rough edges in meshes due to noise needs to be balanced with the accuracy that the mesh represents an object in question.Open in a separate windowFigure 1.Effect of Laplacian Smoothing on the Cellular Structure of a 3D Segmented Arabidopsis Radicle.(A) Surface rendering of a mesh following generation using marching cubes with a cube size of 2 μm and no smoothing. Bar = 10 μm.(B) Same as (A) following one Laplacian smoothing pass. (C) Same as (A) following six smoothing passes. (D) Same as (A) following nine smoothing passes. (E) An original confocal stack showing cell walls in green and the multicolored segmented stack before generating the mesh using marching cubes. (F) Smoothing of the mesh in (A) using the Taubin λ/μ algorithm with λ = 0.5, μ = −0.53, and nine smoothing steps. An example of an unsmoothed mesh representing the cells of 3D segmented plant organ can in seen in Figure 1A. The rough edges and irregularities of this primary unsmoothed mesh, coming from a suboptimal noisy confocal image stack, do not accurately represent the surface of these plant cells. The mesh in Figure 1B, which has been smoothed once, appears to be a more accurate representation of cell shape than the unsmoothed mesh in Figure 1A and has not been shrunk dramatically.In the context of plant organ cellular segmentations, additional Laplacian smoothing steps create even smoother cells, but also exaggerated gaps between adjacent cells due to cell shrinkage (Figures 1C and 1D). These spaces do not reflect reality as adjacent cells are physically appressed against their cell walls, which are rarely more than several microns thick. This example demonstrates the abstraction of cell shape that can occur following multiple Laplacian smoothing steps, and the gaps between cells are a hallmark of data that have been postprocessed to the point of inaccuracy.Other factors can affect the response of 3D segmented cells to Laplacian smoothing. These include mesh triangle size, with larger triangles being more susceptible to shrinkage (Desbrun et al., 1999), and cell size, with smaller cells being more susceptible to smoothing-based shrinking than larger cells (Figure 1D).If the purpose of 3D segmentation is strictly qualitative, smoothing-based shrinkage may not present a problem. However, if quantitative analyses are applied to shrunken meshes, this will result in inaccurate data.  相似文献   

8.
Computational models of cellular structures generally rely on simplifying approximations and assumptions that limit biological accuracy. This study presents a comprehensive image processing pipeline for creating unified three-dimensional (3D) reconstructions of the cell cytoskeletal networks and nuclei. Confocal image stacks of these cellular structures were reconstructed to 3D isosurfaces (Imaris), then tessellations were simplified to reduce the number of elements in initial meshes by applying quadric edge collapse decimation with preserved topology boundaries (MeshLab). Geometries were remeshed to ensure uniformity (Instant Meshes) and the resulting 3D meshes exported (ABAQUS) for downstream application. The protocol has been applied successfully to fibroblast cytoskeletal reorganisation in the scleral connective tissue of the eye, under mechanical load that mimics internal eye pressure. While the method herein is specifically employed to reconstruct immunofluorescent confocal imaging data, it is also more widely applicable to other biological imaging modalities where accurate 3D cell structures are required.  相似文献   

9.
This work aims at describing episcopic 3D imaging methods and at discussing how these methods can contribute to researching the genetic mechanisms driving embryogenesis and tissue remodelling, and the genesis of pathologies. Several episcopic 3D imaging methods exist. The most advanced are capable of generating high-resolution volume data (voxel sizes from 0.5x0.5x1 µm upwards) of small to large embryos of model organisms and tissue samples. Beside anatomy and tissue architecture, gene expression and gene product patterns can be three dimensionally analyzed in their precise anatomical and histological context with the aid of whole mount in situ hybridization or whole mount immunohistochemical staining techniques. Episcopic 3D imaging techniques were and are employed for analyzing the precise morphological phenotype of experimentally malformed, randomly produced, or genetically engineered embryos of biomedical model organisms. It has been shown that episcopic 3D imaging also fits for describing the spatial distribution of genes and gene products during embryogenesis, and that it can be used for analyzing tissue samples of adult model animals and humans. The latter offers the possibility to use episcopic 3D imaging techniques for researching the causality and treatment of pathologies or for staging cancer. Such applications, however, are not yet routine and currently only preliminary results are available. We conclude that, although episcopic 3D imaging is in its very beginnings, it represents an upcoming methodology, which in short terms will become an indispensable tool for researching the genetic regulation of embryo development as well as the genesis of malformations and diseases.Key Words: 3D modelling, episcopic microscopy, imaging, embryo, development, gene expression.  相似文献   

10.
In this study, we present pituitary adenoma volumetry using the free and open source medical image computing platform for biomedical research: (3D) Slicer. Volumetric changes in cerebral pathologies like pituitary adenomas are a critical factor in treatment decisions by physicians and in general the volume is acquired manually. Therefore, manual slice-by-slice segmentations in magnetic resonance imaging (MRI) data, which have been obtained at regular intervals, are performed. In contrast to this manual time consuming slice-by-slice segmentation process Slicer is an alternative which can be significantly faster and less user intensive. In this contribution, we compare pure manual segmentations of ten pituitary adenomas with semi-automatic segmentations under Slicer. Thus, physicians drew the boundaries completely manually on a slice-by-slice basis and performed a Slicer-enhanced segmentation using the competitive region-growing based module of Slicer named GrowCut. Results showed that the time and user effort required for GrowCut-based segmentations were on average about thirty percent less than the pure manual segmentations. Furthermore, we calculated the Dice Similarity Coefficient (DSC) between the manual and the Slicer-based segmentations to proof that the two are comparable yielding an average DSC of 81.97±3.39%.  相似文献   

11.
Since the 1970s, the limitations of two dimensional (2D) cell culture and the relevance of appropriate three dimensional (3D) cell systems have become increasingly evident. Extensive effort has thus been made to move cells from a flat world to a 3D environment. While 3D cell culture technologies are meanwhile widely used in academia, 2D culture technologies are still entrenched in the (pharmaceutical) industry for most kind of cell-based efficacy and toxicology tests. However, 3D cell culture technologies will certainly become more applicable if biological relevance, reproducibility and high throughput can be assured at acceptable costs. Most recent innovations and developments clearly indicate that the transition from 2D to 3D cell culture for industrial purposes, for example, drug development is simply a question of time.  相似文献   

12.
3D printing has emerged as a powerful way to produce complex materials on-demand. These printing technologies are now being applied in microbiology, with many recent examples where microbes and matrices are co-printed to create bespoke living materials. Here, we propose a new paradigm for microbial printing. In addition to its importance for materials, we argue that printing can be used to understand and engineer microbiome communities, analogous to its use in human tissue engineering. Many microbes naturally live in diverse, spatially structured communities that are challenging to study and manipulate. 3D printing offers an exciting new solution to these challenges, as it can precisely arrange microbes in 3D space, allowing one to build custom microbial communities for a wide range of purposes in research, medicine, and industry.  相似文献   

13.
Rapid prototyping (RP), also known as additive manufacturing (AM), has been well received and adopted in the biomedical field. The capacity of this family of techniques to fabricate customized 3D structures with complex geometries and excellent reproducibility has revolutionized implantology and regenerative medicine. In particular, nozzle-based systems allow the fabrication of high-resolution polylactic acid (PLA) structures that are of interest in regenerative medicine. These 3D structures find interesting applications in the regenerative medicine field where promising applications including biodegradable templates for tissue regeneration purposes, 3D in vitro platforms for studying cell response to different scaffolds conditions and for drug screening are considered among others. Scaffolds functionality depends not only on the fabrication technique, but also on the material used to build the 3D structure, the geometry and inner architecture of the structure, and the final surface properties. All being crucial parameters affecting scaffolds success. This Commentary emphasizes the importance of these parameters in scaffolds’ fabrication and also draws the attention toward the versatility of these PLA scaffolds as a potential tool in regenerative medicine and other medical fields.  相似文献   

14.
15.
Chick embryos are good models for vertebrate development due to their accessibility and manipulability. Recent large increases in available genomic data from both whole genome sequencing and EST projects provide opportunities for identifying many new developmentally important chicken genes. Traditional methods of documenting when and where specific genes are expressed in embryos using wholemount and section in-situ hybridisation do not readily allow appreciation of 3-dimensional (3D) patterns of expression, but this can be accomplished by the recently developed microscopy technique, Optical Projection Tomography (OPT). Here we show that OPT data on the developing chick wing from different labs can be reliably integrated into a common database, that OPT is efficient in capturing 3D gene expression domains and that such domains can be meaningfully compared. Novel protocols are used to compare 3D expression domains of 7 genes known to be involved in chick wing development. This reveals previously unappreciated relationships and demonstrates the potential, using modern genomic resources, for building a large scale 3D atlas of gene expression. Such an atlas could be extended to include other types of data, such as fate maps, and the approach is also more generally applicable to embryos, organs and tissues.  相似文献   

16.
Zhu Z  Li G 《Journal of biomechanics》2011,44(13):2362-2368
Construction of 3D geometric surface models of human knee joint is always a challenge in biomedical engineering. This study introduced an improved statistical shape model (SSM) method that only uses 2D images of a joint to predict the 3D joint surface model. The SSM was constructed using 40 distal femur models of human knees. In this paper, a series validation and parametric analysis suggested that more than 25 distal femur models are needed to construct the SSM; each distal femur should be described using at least 3000 nodes in space; and two 2D fluoroscopic images taken in 45° directions should be used for the 3D surface shape prediction. Using this SSM method, ten independent distal femurs from 10 independent living subjects were predicted using their 2D plane fluoroscopic images. The predicted models were compared to their native 3D distal femur models constructed using their 3D MR images. The results demonstrated that using two fluoroscopic images of the knee, the overall difference between the predicted distal femur surface and the MR image-based surface was 0.16±1.16 mm. These data indicated that the SSM method could be a powerful method for construction of 3D surface geometries of the distal femur.  相似文献   

17.
Interpretation of the results of anatomical and embryological studies relies heavily on proper visualization of complex morphogenetic processes and patterns of gene expression in a three-dimensional (3D) context. However, reconstruction of complete 3D datasets is time consuming and often researchers study only a few sections. To help in understanding the resulting 2D data we developed a program (TRACTS) that places such arbitrary histological sections into a high-resolution 3D model of the developing heart. The program places sections correctly, robustly and as precisely as the best of the fits achieved by five morphology experts. Dissemination of 3D data is severely hampered by the 2D medium of print publication. Many insights gained from studying the 3D object are very hard to convey using 2D images and are consequently lost or cannot be verified independently. It is possible to embed 3D objects into a pdf document, which is a format widely used for the distribution of scientific papers. Using the freeware program Adobe Reader to interact with these 3D objects is reasonably straightforward; creating such objects is not. We have developed a protocol that describes, step by step, how 3D objects can be embedded into a pdf document. Both the use of TRACTS and the inclusion of 3D objects in pdf documents can help in the interpretation of 2D and 3D data, and will thus optimize communication on morphological issues in developmental biology.  相似文献   

18.

Background  

Many three-dimensional (3D) images are routinely collected in biomedical research and a number of digital atlases with associated anatomical and other information have been published. A number of tools are available for viewing this data ranging from commercial visualization packages to freely available, typically system architecture dependent, solutions. Here we discuss an atlas viewer implemented to run on any workstation using the architecture neutral Java programming language.  相似文献   

19.
Neuroimaging technologies such as Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) collect three-dimensional data (3D) that is typically viewed on two-dimensional (2D) screens. Actual 3D models, however, allow interaction with real objects such as implantable electrode grids, potentially improving patient specific neurosurgical planning and personalized clinical education. Desktop 3D printers can now produce relatively inexpensive, good quality prints. We describe our process for reliably generating life-sized 3D brain prints from MRIs and 3D skull prints from CTs. We have integrated a standardized, primarily open-source process for 3D printing brains and skulls. We describe how to convert clinical neuroimaging Digital Imaging and Communications in Medicine (DICOM) images to stereolithography (STL) files, a common 3D object file format that can be sent to 3D printing services. We additionally share how to convert these STL files to machine instruction gcode files, for reliable in-house printing on desktop, open-source 3D printers. We have successfully printed over 19 patient brain hemispheres from 7 patients on two different open-source desktop 3D printers. Each brain hemisphere costs approximately $3–4 in consumable plastic filament as described, and the total process takes 14–17 hours, almost all of which is unsupervised (preprocessing = 4–6 hr; printing = 9–11 hr, post-processing = <30 min). Printing a matching portion of a skull costs $1–5 in consumable plastic filament and takes less than 14 hr, in total. We have developed a streamlined, cost-effective process for 3D printing brain and skull models. We surveyed healthcare providers and patients who confirmed that rapid-prototype patient specific 3D models may help interdisciplinary surgical planning and patient education. The methods we describe can be applied for other clinical, research, and educational purposes.  相似文献   

20.
Three-dimensional (3D) tumor has been considered as the best in vitro model for cancer research. In recent years, various methods have been developed to controllable prepare multisize 3D tumors. Nonetheless, reported technologies are still problematic and difficult to produce 3D tumors with highly uniform size and cell content. Here, a novel and simple microsphere-based mold approach is proposed to rapidly fabricate spherical microwell arrays for multisize 3D tumors formation, culture, and recovery. Larger amounts of HepG2 3D tumors with excellent quality and uniformity can be efficiently generated using this method. In addition, the tumor size can also be simply controlled by adjusting the diameter of the microwell arrays. All experimental results indicated that the proposed method offers a promising platform to generate and recover highly controlled multisize 3D tumors for various cell-based biomedical research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号