首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Background

Despite the consistent information available on the physiological changes induced by head down bed rest, a condition which simulates space microgravity, our knowledge on the possible perceptual-cortical alterations is still poor. The present study investigated the effects of 2-h head-down bed rest on subjective and cortical responses elicited by electrical, pain-related somatosensory stimulation.

Methodology/Principal Findings

Twenty male subjects were randomly assigned to two groups, head-down bed rest (BR) or sitting control condition. Starting from individual electrical thresholds, Somatosensory Evoked Potentials were elicited by electrical stimuli administered randomly to the left wrist and divided into four conditions: control painless condition, electrical pain threshold, 30% above pain threshold, 30% below pain threshold. Subjective pain ratings collected during the EEG session showed significantly reduced pain perception in BR compared to Control group. Statistical analysis on four electrode clusters and sLORETA source analysis revealed, in sitting controls, a P1 component (40–50 ms) in the right somatosensory cortex, whereas it was bilateral and differently located in BR group. Controls'' N1 (80–90 ms) had widespread right hemisphere activation, involving also anterior cingulate, whereas BR group showed primary somatosensory cortex activation. The P2 (190–220 ms) was larger in left-central locations of Controls compared with BR group.

Conclusions/Significance

Head-down bed rest was associated to an overall decrease of pain sensitivity and an altered pain network also outside the primary somatosensory cortex. Results have implications not only for astronauts'' health and spaceflight risks, but also for the clinical aspects of pain detection in bedridden patients at risk of fatal undetected complications.  相似文献   

2.
The ability to discriminate moving sounds sources with different dynamic properties was studied in humans. Mismatch negativity was studied in an experiment on dichotic stimulation, with deviant stimuli simulating the instantaneous movement of the auditory image to the right or left of the head midline in the horizontal plane. Standard stimuli simulated continuous movement of the sound source to the right or to the left to the same angular distances. It was also established that both deviant stimuli caused mismatch negativity, its parameters being independent on the direction of sound movement. Psychophysical testing of the same group of subjects showed that discrimination between the stimuli was below the psychophysical threshold. The results obtained are discussed from the point of view of current theories of moving sound localization. The correlation between the objective and subjective levels of discrimination of moving auditory images are discussed.  相似文献   

3.
Behavioral reactions and brain mechanisms involved in processing two matching or mismatching (conflicting) visual stimuli were studied in healthy subjects (mean age 22.57 ± 0.46 years). Line orientations (vertical, horizontal, or 45°) were used as stimuli and were presented with an interval of 1500–1800 ms. The reaction time was shown to increase in the case of a conflict of two orientations as compared with matching orientations. The reaction time depended on the orientation of the reference stimulus and was minimal when a vertical line was used as a reference. An increase in N2 negativity (time window 200–280 ms) in the frontal and parietal cortical areas was identified as an informative indicator of a conflict between the current orientation and the orientation stored in working memory. The dipole sources of N2 were localized to the prefrontal cortex (middle frontal gyrus, frontal pole, and pars orbitalis). The N2 amplitude was found to depend on the orientation of the first stimulus in a pair, being higher in the case of a 45° orientation. The visual areas were shown to play a role in detecting a conflict of two consecutive signals because the early sensory components increased in amplitude. The results implicate cortical structures, including the sensory-specific visual, parietal, and prefrontal areas, in comparing consecutive visual signals and detecting their conflict.  相似文献   

4.
Specialization in the left prefrontal cortex for sentence comprehension   总被引:5,自引:0,他引:5  
Hashimoto R  Sakai KL 《Neuron》2002,35(3):589-597
Using functional magnetic resonance imaging (fMRI), we examined cortical activation under syntactic decision tasks and a short-term memory task for sentences, focusing on essential properties of syntactic processing. By comparing activation in these tasks with a short-term memory task for word lists, we found that two regions in the left prefrontal cortex showed selective activation for syntactic processing: the dorsal prefrontal cortex (DPFC) and the inferior frontal gyrus (IFG). Moreover, the left DPFC showed more prominent activation under the short-term memory task for sentences than that for word lists, which cannot be explained by general cognitive factors such as task difficulty and verbal short-term memory. These results support the proposal of specialized systems for sentence comprehension in the left prefrontal cortex.  相似文献   

5.
The subjective short-term habituation to pain-inducing cold stimuli is demonstrated for the first time by measuring the tolerated exposition time. It proves impossible to separate temporally a detection threshold of cold pain from the distress reaction level. The slope of subjective habituation is clearly dependent on the individual vegetative starting position. It is discussed why the blood pressure reaction may be used as a valid parameter for experienced intensity of a cold pain sensation only to a limited extent.  相似文献   

6.
Although serotonin is known to play an important role in pain processing, the relationship between the polymorphism in 5-HTTLPR and pain processing is not well understood. To examine the relationship more comprehensively, various factors of pain processing having putative associations with 5-HT functioning were studied, namely the subjective pain experience (pain threshold, rating of experimental pain), catastrophizing about pain (Pain Catastrophizing Scale = PCS) and motor responsiveness (facial expression of pain). In 60 female and 67 male participants, heat pain stimuli were applied by a contact thermode to assess pain thresholds, supra-threshold ratings and a composite score of pain-relevant facial responses. Participants also completed the PCS and were grouped based on their 5-HTTLPR genotype (bi-allelic evaluation) into a group with s-allele carriers (ss, sl) and a second group without (ll). S-allele carriers proved to have lower pain thresholds and higher PCS scores. These two positive findings were unrelated to each other. No other difference between genotype groups became significant. In all analyses, “age” and “gender” were controlled for. In s-allele carriers the subjective pain experience and the tendency to catastrophize about pain was enhanced, suggesting that the s-allele might be a risk factor for the development and maintenance of pain. This risk factor seems to act via two independent routes, namely via the sensory processes of subjective pain experiences and via the booster effects of pain catastrophizing.  相似文献   

7.
Sex differences in pain sensitivity have been found to vary between considerable and negligible. It has appeared that the pain stimulation method is critical in this context. It was assumed this might be due to the different degrees of spatial summation associated with the different pain stimulus modalities. Hence, sex differences were investigated in spatial summation of heat pain in 20 healthy women and 20 healthy men of similar age. Pain thresholds were assessed by a tracking procedure and responses to supra-threshold pain stimulation by numerical ratings. Heat stimuli were administered by a thermode with contact areas of 1, 3, 6 and 10 cm2. Pain thresholds were significantly higher with smaller areas stimulated than with larger ones. No significant effect of area was found for the ratings of the supra-threshold stimuli, the intensities of which were tailored to the individual pain threshold. Consequently, spatial summation of heat pain appeared to result mainly in a shift of the pain threshold on the ordinate and not a change of slope of the stimulus-response function in the pain range. In neither of the two pain parameters were there any sex differences. Therefore, the present study demonstrated that sex differences in spatial summation of heat pain are unlikely.  相似文献   

8.
The aims of the present study were to investigate the ability of hearing-impaired (HI) individuals with different binaural hearing conditions to discriminate spatial auditory-sources at the midline and lateral positions, and to explore the possible central processing mechanisms by measuring the minimal audible angle (MAA) and mismatch negativity (MMN) response. To measure MAA at the left/right 0°, 45° and 90° positions, 12 normal-hearing (NH) participants and 36 patients with sensorineural hearing loss, which included 12 patients with symmetrical hearing loss (SHL) and 24 patients with asymmetrical hearing loss (AHL) [12 with unilateral hearing loss on the left (UHLL) and 12 with unilateral hearing loss on the right (UHLR)] were recruited. In addition, 128-electrode electroencephalography was used to record the MMN response in a separate group of 60 patients (20 UHLL, 20 UHLR and 20 SHL patients) and 20 NH participants. The results showed MAA thresholds of the NH participants to be significantly lower than the HI participants. Also, a significantly smaller MAA threshold was obtained at the midline position than at the lateral position in both NH and SHL groups. However, in the AHL group, MAA threshold for the 90° position on the affected side was significantly smaller than the MMA thresholds obtained at other positions. Significantly reduced amplitudes and prolonged latencies of the MMN were found in the HI groups compared to the NH group. In addition, contralateral activation was found in the UHL group for sounds emanating from the 90° position on the affected side and in the NH group. These findings suggest that the abilities of spatial discrimination at the midline and lateral positions vary significantly in different hearing conditions. A reduced MMN amplitude and prolonged latency together with bilaterally symmetrical cortical activations over the auditory hemispheres indicate possible cortical compensatory changes associated with poor behavioral spatial discrimination in individuals with HI.  相似文献   

9.
To localize the neural generators of the musically elicited mismatch negativity with high temporal resolution we conducted a beamformer analysis (Synthetic Aperture Magnetometry, SAM) on magnetoencephalography (MEG) data from a previous musical mismatch study. The stimuli consisted of a six-tone melodic sequence comprising broken chords in C- and G-major. The musical sequence was presented within an oddball paradigm in which the last tone was lowered occasionally (20%) by a minor third. The beamforming analysis revealed significant right hemispheric neural activation in the superior temporal (STC), inferior frontal (IFC), superior frontal (SFC) and orbitofrontal (OFC) cortices within a time window of 100–200 ms after the occurrence of a deviant tone. IFC and SFC activation was also observed in the left hemisphere. The pronounced early right inferior frontal activation of the auditory mismatch negativity has not been shown in MEG studies so far. The activation in STC and IFC is consistent with earlier electroencephalography (EEG), optical imaging and functional magnetic resonance imaging (fMRI) studies that reveal the auditory and inferior frontal cortices as main generators of the auditory MMN. The observed right hemispheric IFC is also in line with some previous music studies showing similar activation patterns after harmonic syntactic violations. The results demonstrate that a deviant tone within a musical sequence recruits immediately a distributed neural network in frontal and prefrontal areas suggesting that top-down processes are involved when expectation violation occurs within well-known stimuli.  相似文献   

10.
Experimentally induced pain often reveals sex differences, with higher pain sensitivity in females. The degree of differences has been shown to depend on the stimulation and assessment methods. Since sex differences in pain develop anywhere along the physiological and psychological components of the nociceptive system, we intended to compare the nociceptive flexion reflex (NFR) as a more physiological (spinal) aspect of pain procession to the verbal pain report of intensity and unpleasantness as the more psychological (cortical) aspect. Twenty female and twenty male healthy university students were investigated by use of nociceptive flexion reflex threshold (staircase method) after electrical stimulation of the N. suralis. Furthermore, we assessed supra-threshold reflex responses (latency, amplitude and area) by applying 10 stimuli 5 mA above reflex threshold. Following each stimulation, the subjects provided pain ratings of intensity and unpleasantness on a visual analogue scale. Females exhibited marked lower nociceptive flexion reflex thresholds than males, while the supra-threshold reflex response tailored to the individual reflex threshold did not show any significant differences. The verbal pain ratings, corrected for NFR threshold, were not found to differ significantly. The large sex differences in nociception that were present in NFR threshold but not in the pain ratings corroborate the hypothesis that spinal processes contribute substantially to sex differences in pain procession.  相似文献   

11.
The dose-response effects of the intensity of exercise upon the potential regulation (through top-down processes) of affective (pleasure-displeasure) responses in the prefrontal cortex during an incremental exercise protocol have not been explored. This study examined the functional capacity of the prefrontal cortex (reflected by haemodynamics using near infrared spectroscopy) and affective responses during exercise at different intensities. Participants completed an incremental cycling exercise test to exhaustion. Changes (Δ) in oxygenation (O2Hb), deoxygenation (HHb), blood volume (tHb) and haemoglobin difference (HbDiff) were measured from bilateral dorsal and ventral prefrontal areas. Affective responses were measured every minute during exercise. Data were extracted at intensities standardised to: below ventilatory threshold, at ventilatory threshold, respiratory compensation point and the end of exercise. During exercise at intensities from ventilatory threshold to respiratory compensation point, ΔO2Hb, ΔHbDiff and ΔtHb were greater in mostly ventral than dorsal regions. From the respiratory compensation point to the end of exercise, ΔO2Hb remained stable and ΔHbDiff declined in dorsal regions. As the intensity increased above the ventilatory threshold, inverse associations between affective responses and oxygenation in (a) all regions of the left hemisphere and (b) lateral (dorsal and ventral) regions followed by the midline (ventral) region in the right hemisphere were observed. Differential activation patterns occur within the prefrontal cortex and are associated with affective responses during cycling exercise.  相似文献   

12.
Lateral prefrontal cortex: architectonic and functional organization   总被引:9,自引:0,他引:9  
A comparison of the architecture of the human prefrontal cortex with that of the macaque monkey showed a very similar architectonic organization in these two primate species. There is no doubt that the prefrontal cortical areas of the human brain have undergone considerable development, but it is equally clear that the basic architectonic organization is the same in the two species. Thus, a comparative approach to the study of the functional organization of the primate prefrontal cortex is more likely to reveal the essential aspects of the various complex control processes that are the domain of frontal function. The lateral frontal cortex appears to be functionally organized along both a rostral-caudal axis and a dorsal-ventral axis. The most caudal frontal region, the motor region on the precentral gyrus, is involved in fine motor control and direct sensorimotor mappings, whereas the caudal lateral prefrontal region is involved in higher order control processes that regulate the selection among multiple competing responses and stimuli based on conditional operations. Further rostrally, the mid-lateral prefrontal region plays an even more abstract role in cognitive control. The mid-lateral prefrontal region is itself organized along a dorsal-ventral axis of organization, with the mid-dorsolateral prefrontal cortex being involved in the monitoring of information in working memory and the mid-ventrolateral prefrontal region being involved in active judgments on information held in posterior cortical association regions that are necessary for active retrieval and encoding of information.  相似文献   

13.
目的:探讨大脑额叶对冲突信息的加工处理机制及其年老化改变,探索敏感的事件相关电位(ERPs)指标。方法:研究对象为15例正常老年人(老年组)和15例青年成人(青年组),ERPs检查采用改良的Eriksenflanker视觉刺激范式,记录32导脑电、正确率及反应时。结果:与青年组相比,老年组反应时明显延长,反应阶段干扰效应尤其明显。老年组N380出现时间窗延迟,平均波幅两组无差异,源定位分析(IDRETA)显示青年组可见双颞叶、双前额背外侧区域激活,以右侧明显;老年组主要见左颞叶、左前额背外侧、左前额内侧面区域激活。结论:在反应阶段出现冲突信息时,老年人额叶干扰控制功能减退,差异负波N380与老年人左前额背外侧、左侧颞叶等区域在反应选择、执行控制中的活动有关,且增龄改变明显。  相似文献   

14.
Successful behavior requires selection and preferred processing of relevant sensory information. The cortical representation of relevant sensory information has been related to neuronal oscillations in the gamma frequency band. Pain is of invariably high behavioral relevance and, thus, nociceptive stimuli receive preferred processing. Here, by using magnetoencephalography, we show that selective nociceptive stimuli induce gamma oscillations between 60 and 95 Hz in primary somatosensory cortex. Amplitudes of pain-induced gamma oscillations vary with objective stimulus intensity and subjective pain intensity. However, around pain threshold, perceived stimuli yielded stronger gamma oscillations than unperceived stimuli of equal stimulus intensity. These results show that pain induces gamma oscillations in primary somatosensory cortex that are particularly related to the subjective perception of pain. Our findings support the hypothesis that gamma oscillations are related to the internal representation of behaviorally relevant stimuli that should receive preferred processing.  相似文献   

15.
In our previous study on individuals with autism spectrum disorder (ASD) (Sokhadze et al., Appl Psychophysiol Biofeedback 34:37–51, 2009a) we reported abnormalities in the attention-orienting frontal event-related potentials (ERP) and the sustained-attention centro-parietal ERPs in a visual oddball experiment. These results suggest that individuals with autism over-process information needed for the successful differentiation of target and novel stimuli. In the present study we examine the effects of low-frequency, repetitive Transcranial Magnetic Stimulation (rTMS) on novelty processing as well as behavior and social functioning in 13 individuals with ASD. Our hypothesis was that low-frequency rTMS application to dorsolateral prefrontal cortex (DLFPC) would result in an alteration of the cortical excitatory/inhibitory balance through the activation of inhibitory GABAergic double bouquet interneurons. We expected to find post-TMS differences in amplitude and latency of early and late ERP components. The results of our current study validate the use of low-frequency rTMS as a modulatory tool that altered the disrupted ratio of cortical excitation to inhibition in autism. After rTMS the parieto-occipital P50 amplitude decreased to novel distracters but not to targets; also the amplitude and latency to targets increased for the frontal P50 while decreasing to non-target stimuli. Low-frequency rTMS minimized early cortical responses to irrelevant stimuli and increased responses to relevant stimuli. Improved selectivity in early cortical responses lead to better stimulus differentiation at later-stage responses as was made evident by our P3b and P3a component findings. These results indicate a significant change in early, middle-latency and late ERP components at the frontal, centro-parietal, and parieto-occipital regions of interest in response to target and distracter stimuli as a result of rTMS treatment. Overall, our preliminary results show that rTMS may prove to be an important research tool or treatment modality in addressing the stimulus hypersensitivity characteristic of autism spectrum disorders.  相似文献   

16.
Repetitive transcranial magnetic stimulation of the motor cortex (rTMS) can be used to modify motor cortical excitability in human subjects. At stimulus intensities near to or above resting motor threshold, low-frequency rTMS (approximately 1 Hz) decreases motor cortical excitability, whereas high-frequency rTMS (5-20 Hz) can increase excitability. We investigated the effect of 10 min of intermittent rTMS on motor cortical excitability in normal subjects at two frequencies (2 or 6 Hz). Three low intensities of stimulation (70, 80, and 90% of active motor threshold) and sham stimulation were used. The number of stimuli were matched between conditions. Motor cortical excitability was investigated by measurement of the motor-evoked potential (MEP) evoked by single magnetic stimuli in the relaxed first dorsal interosseus muscle. The intensity of the single stimuli was set to evoke baseline MEPs of approximately 1 mV in amplitude. Both 2- and 6-Hz stimulation, at 80% of active motor threshold, reduced the magnitude of MEPs for approximately 30 min (P < 0.05). MEPs returned to baseline values after a weak voluntary contraction. Stimulation at 70 and 90% of active motor threshold and sham stimulation did not induce a significant group effect on MEP magnitude. However, the intersubject response to rTMS at 90% of active motor threshold was highly variable, with some subjects showing significant MEP facilitation and others inhibition. These results suggest that, at low stimulus intensities, the intensity of stimulation may be as important as frequency in determining the effect of rTMS on motor cortical excitability.  相似文献   

17.
Abstract

Background: Many researchers have tried to investigate pain by studying brain responses. One method used to investigate pain-related brain responses is continuous electroencephalography (EEG). The objective of the current study is to add on to our understanding of EEG responses during pain, by differentiation between EEG patterns indicative of (i) the noxious stimulus intensity and (ii) the subjective pain sensation.

Methods: EEG was recorded during the administration of tonic experimental pain, consisting of six minutes of contact heat applied to the leg via a thermode. Two stimuli above pain threshold, one at pain threshold and two non-painful stimuli were administered. Thirty-six healthy participants provided a subjective pain rating during thermal stimulation. Relative EEG power was calculated for the frequency bands alpha1, alpha2, beta1, beta2, delta, and theta.

Results: Whereas EEG activity could not be predicted by stimulus intensity (except in one frequency band), subjective pain sensation could significantly predict differences in EEG activity in several frequency bands. An increase in the subjective pain sensation was associated with a decrease in alpha2, beta1, beta2 as well as in theta activity across the midline electrodes.

Conclusion: The subjective experience of pain seems to capture unique variance in EEG activity above and beyond what is captured by noxious stimulus intensity.  相似文献   

18.
In adults and seven- to eight-year-old children, event-related potentials (ERPs) were analyzed during quiet observation and detailed paired comparison of visual stimuli. In both age groups, we showed the differences in the initial stages (component N1) of sensory analysis in these situations. In adults, an increase in the negativity during the initial stages of analysis was observed in the caudal and central areas of the cortex during presentation of standard and test stimuli. In the frontal areas of the cortex, an increase in the negative potential was observed only in ERPs induced by the test stimulus. In children, an increase in the negativity at the initial phases of analysis of stimuli in the situation of working memory, as compared to quiet observation, was confined to the caudal areas of the cortex. Differential curves that characterize analysis of standard and test stimuli showed age-related differences in the initial and late phases of information processing under the conditions of working memory. In adults, the differential curves that characterize analysis of the standard stimulus were represented by negative phases, and the curves related to the test stimulus, by positive phases. In children, late phases of analysis of the standard and test stimuli had smaller differences as compared to adults: the late positive wave was predominant in the responses to both standard and test stimulus in the caudal areas of the cortex. In the frontal areas, there was no considerable increase in the amplitude of the late positive wave in response to the test stimulus. This fact, together with the absence of enhancement of initial negativity in the frontal areas, which reflects analysis of the test stimulus, indicates that the prefrontal cortex plays a smaller role in the comparison of the memory trace with the current information in seven- to eight-year-old children. The data obtained suggest that the central executive of working memory is not sufficiently mature in children aged seven to eight years.  相似文献   

19.
In a group of patients suffering from reflex sympathetic dystrophies, the skin potential and EMG responses induced by electrical stimuli applied to the skin were recorded in the four limbs in order to study somato-sympathetic and somato-motor reflexes. In most patients, the amplitude, delay and shape of the cutaneous responses as well as the pattern of the EMG responses were different from those observed in normal subjects. In particular, it was possible to correlate the pattern of the cutaneous and muscular responses with the severity of the disease. The cutaneous sensory thresholds to electrical stimuli (tactile, tingling and pain threshold) showed different values in the dystrophic and in the contralateral limb. In all patients, a block of the sympathetic chain ipsilateral to the dystrophic limb was performed with local anesthetics. 1 h after the block, the cutaneous responses disappeared not only in the blocked limb but also in the contralateral limb. 48 h after the block, muscular and cutaneous responses as well as sensory thresholds showed a pattern similar to that observed in normal subjects. These findings show that the sympathetic block provides a resetting of the sensory thresholds and reflexes.  相似文献   

20.
Cortical responses to complex natural stimuli can be isolated by examining the relationship between neural measures obtained while multiple individuals view the same stimuli. These inter-subject correlation’s (ISC’s) emerge from similarities in individual’s cortical response to the shared audiovisual inputs, which may be related to their emergent cognitive and perceptual experience. Within the present study, our goal is to examine the utility of using ISC’s for predicting which audiovisual clips individuals viewed, and to examine the relationship between neural responses to natural stimuli and subjective reports. The ability to predict which clips individuals viewed depends on the relationship of the EEG response across subjects and the nature in which this information is aggregated. We conceived of three approaches for aggregating responses, i.e. three assignment algorithms, which we evaluated in Experiment 1A. The aggregate correlations algorithm generated the highest assignment accuracy (70.83% chance = 33.33%) and was selected as the assignment algorithm for the larger sample of individuals and clips within Experiment 1B. The overall assignment accuracy was 33.46% within Experiment 1B (chance = 06.25%), with accuracies ranging from 52.9% (Silver Linings Playbook) to 11.75% (Seinfeld) within individual clips. ISC’s were significantly greater than zero for 15 out of 16 clips, and fluctuations within the delta frequency band (i.e. 0-4 Hz) primarily contributed to response similarities across subjects. Interestingly, there was insufficient evidence to indicate that individuals with greater similarities in clip preference demonstrate greater similarities in cortical responses, suggesting a lack of association between ISC and clip preference. Overall these results demonstrate the utility of using ISC’s for prediction, and further characterize the relationship between ISC magnitudes and subjective reports.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号