首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fluid shear stresses are potent regulators of vascular homeostasis and powerful determinants of vascular disease progression. The glycocalyx is a layer of glycoaminoglycans, proteoglycans, and glycoproteins that lines the luminal surface of arteries. The glycocalyx interacts directly with hemodynamic forces from blood flow and, consequently, is a prime candidate for the mechanosensing of fluidic shear stresses. Here, we investigated the role of the glycocalyx component syndecan-1 (sdc-1) in controlling the shear stress-induced signaling and flow-mediated phenotypic modulation in endothelial cells. We found that knock-out of sdc-1 abolished several key early signaling events of endothelial cells in response to shear stress including the phosphorylation of Akt, the formation of a spatial gradient in paxillin phosphorylation, and the activation of RhoA. After exposure to atheroprotective flow, we found that sdc-1 knock-out endothelial cells had a phenotypic shift to an inflammatory/pro-atherosclerotic phenotype in contrast to the atheroprotective phenotype of wild type cells. Consistent with these findings, we found increased leukocyte adhesion to sdc-1 knock-out endothelial cells in vitro that was reduced by re-expression of sdc-1. In vivo, we found increased leukocyte recruitment and vascular permeability/inflammation in sdc-1 knock-out mice. Taken together, our studies support a key role for sdc-1 in endothelial mechanosensing and regulation of endothelial phenotype.  相似文献   

2.
The glycocalyx covers the human mammalian cells and plays important roles in stroke, inflammation and atherosclerosis. It has also been shown to be involved in endothelial mechanotransduction of shear stress. Shear stress induces the remodelling of the major component of the glycocalyx including glypican‐1, a cell membrane heparan sulphate proteoglycan. Other factors, such as sphingosine‐1‐phosphate (S1P), protect the glycocalyx against syndecan‐1 ectodomain shedding and induce the synthesis of heparan sulphate. In this study, we reviewed the role of shear stress and S1P in glycocalyx remodelling and revealed that the glycocalyx is a critical signalling platform, integrating the extracellular haemodynamic forces and chemical signalling, such as S1P, for determining the fate of endothelial cells and vascular diseases. This review integrated our current understanding of the structure and function of the glycocalyx and provided new insight into the role of the glycocalyx that might be helpful for investigating the underlying biological mechanisms in certain human diseases, such as atherosclerosis.  相似文献   

3.
The endothelial glycocalyx mediates interactions between the blood flow and the endothelium. This study aims to evaluate, quantitatively, effects of structural change of the glycocalyx on stress distribution and shear rate on endothelial cells. In the study, the endothelial glycocalyx is modeled as a surface layer of fiber matrix and when exposed to laminar shear flow, the matrix deforms. Fluid velocity and stress distribution inside the matrix and on cell membranes are studied based on a binary mixture theory. Parameters, such as the height and porosity of the matrix and the drag coefficient between fluid and matrix fibrils, are based on available data and estimation from experiments. Simple theoretical solutions are achieved for fluid velocity and stress distribution in the surface matrix. Degradation of the matrix, e.g., by enzyme digestion, is represented by reductions in the volume fraction of fibrils, height, and drag coefficient. From a force balance, total stress on endothelial surface remains constant regardless of structural alteration of the glycocalyx. However, the stress that is transmitted to endothelial cells by direct "pulling" of fiber branches of the glycocalyx is reduced significantly. Fluid shear rate at the cell membrane, on the other hand, increases. The study gives quantitative insight into the effect of the structural change of the glycocalyx on the shear rate and pulling stress on the endothelium. Results can be used to interpret experiments on effects of the glycocalyx in shear induced endothelial responses.  相似文献   

4.
The glycocalyx layer on the surface of an endothelial cell is an interface barrier for uptake of macromolecules, such as low-density lipoprotein and albumin, in the cell. The shear-dependent uptake of macromolecules thus might govern the function of the glycocalyx layer. We therefore studied the effect of glycocalyx on the shear-dependent uptake of macromolecules into endothelial cells. Bovine aorta endothelial cells were exposed to shear stress stimulus ranging from 0.5 to 3.0 Pa for 48 h. The albumin uptake into the cells was then measured using confocal laser scanning microscopy, and the microstructure of glycocalyx was observed using electron microscopy. Compared with the uptake into endothelial cells under static conditions (no shear stress stimulus), the albumin uptake at a shear stress of 1.0 Pa increased by 16% and at 3.0 Pa decreased by 27%. Compared with static conditions, the thickness of the glycocalyx layer increased by 70% and the glycocalyx charge increased by 80% at a shear stress of 3.0 Pa. The albumin uptake at a shear stress of 3.0 Pa for cells with a neutralized (no charge) glycocalyx layer was almost twice that of cells with charged layer. These findings indicate that glycocalyx influences the albumin uptake at higher shear stress and that glycocalyx properties (thickness and charge level) are involved with the shear-dependent albumin uptake process.  相似文献   

5.
Vascular endothelial cells are shielded from direct exposure to flowing blood by the endothelial glycocalyx, a highly hydrated mesh of glycoproteins, sulfated proteoglycans, and associated glycosaminoglycans (GAGs). Recent data indicate that the incorporation of the unsulfated GAG hyaluronan into the endothelial glycocalyx is essential to maintain its permeability barrier properties, and we hypothesized that fluid shear stress is an important stimulus for endothelial hyaluronan synthesis. To evaluate the effect of shear stress on glycocalyx synthesis and the shedding of its GAGs into the supernatant, cultured human umbilical vein endothelial cells (i.e., the stable cell line EC-RF24) were exposed to 10 dyn/cm2 nonpulsatile shear stress for 24 h, and the incorporation of [3H]glucosamine and Na2[35S]O4 into GAGs was determined. Furthermore, the amount of hyaluronan in the glycocalyx and in the supernatant was determined by ELISA. Shear stress did not affect the incorporation of 35S but significantly increased the amount of glucosamine-containing GAGs incorporated in the endothelial glycocalyx [168 (SD 17)% of static levels, P < 0.01] and shedded into the supernatant [231 (SD 41)% of static levels, P < 0.01]. Correspondingly with this finding, shear stress increased the amount of hyaluronan in the glycocalyx [from 26 (SD 24) x 10(-4) to 46 (SD 29) x 10(-4) ng/cell, static vs. shear stress, P < 0.05] and in the supernatant [from 28 (SD 11) x 10(-4) to 55 (SD 16) x 10(-4) ng x cell(-1) x h(-1), static vs. shear stress, P < 0.05]. The increase in the amount of hyaluronan incorporated in the glycocalyx was confirmed by a threefold higher level of hyaluronan binding protein within the glycocalyx of shear stress-stimulated endothelial cells. In conclusion, fluid shear stress stimulates incorporation of hyaluronan in the glycocalyx, which may contribute to its vasculoprotective effects against proinflammatory and pro-atherosclerotic stimuli.  相似文献   

6.
The glycocalyx is the inner most layer of the endothelium that is in direct contact with the circulating blood. Shear stress affects its synthesis and reorganization. This study focuses on changes in the spatial distribution of the glycocalyx caused by shear stimulation and its recovery following the removal of the shear stress. Sialic acid components of the glycocalyx on human umbilical vain endothelial cells are observed using confocal microscopy. The percentage area of the cell membrane covered by the glycocalyx, as well as the average fluorescence intensity ratio between the apical and edge areas of the cell is used to assess the spatial distribution of the glycocalyx on the cell membrane. Our results show that following 24 h shear stimulation, the glycocalyx relocates near the edge of endothelial cells (i.e., cell–cell junction regions). Following the removal of the shear stress, the glycocalyx redistributes and gradually appears in the apical region of the cell membrane. This redistribution is faster in the early hours ( $<$ 4 h) after shear stimulation than that in the later stage (e.g., between 8 and 24 h). We further investigate the recovery of the glycocalyx after its enzyme degradation under either static or shear flow conditions. Our results show that following 24 h recovery under shear flow, the glycocalyx reappears predominantly near the edge of endothelial cells. Static and shear flow conditions result in notable changes in the spatial recovery of the glycocalyx, but the difference is not statistically significant. We hypothesize that newly synthesized glycocalyx is not structurally well developed. Its weak interaction with flow results in less than significant redistribution, contrary to what has been observed for a well-developed glycocalyx layer.  相似文献   

7.
8.
9.
The endothelial glycocalyx is vital for mechanotransduction and endothelial barrier integrity. We previously demonstrated the early changes in glycocalyx organization during the initial 30 min of shear exposure. In the present study, we tested the hypothesis that long-term shear stress induces further remodeling of the glycocalyx resulting in a robust layer, and explored the responses of membrane rafts and the actin cytoskeleton. After exposure to shear stress for 24 h, the glycocalyx components heparan sulfate, chondroitin sulfate, glypican-1 and syndecan-1, were enhanced on the apical surface, with nearly uniform spatial distributions close to baseline levels that differed greatly from the 30 min distributions. Heparan sulfate and glypican-1 still clustered near the cell boundaries after 24 h of shear, but caveolin-1/caveolae and actin were enhanced and concentrated across the apical aspects of the cell. Our findings also suggest the GM1-labelled membrane rafts were associated with caveolae and glypican-1/heparan sulfate and varied in concert with these components. We conclude that remodeling of the glycocalyx to long-term shear stress is associated with the changes in membrane rafts and the actin cytoskeleton. This study reveals a space- and time- dependent reorganization of the glycocalyx that may underlie alterations in mechanotransduction mechanisms over the time course of shear exposure.  相似文献   

10.
At present, little is known about how endothelial cells respond to spatial variations in fluid shear stress such as those that occur locally during embryonic development, at heart valve leaflets, and at sites of aneurysm formation. We built an impinging flow device that exposes endothelial cells to gradients of shear stress. Using this device, we investigated the response of microvascular endothelial cells to shear-stress gradients that ranged from 0 to a peak shear stress of 9–210 dyn/cm2. We observe that at high confluency, these cells migrate against the direction of fluid flow and concentrate in the region of maximum wall shear stress, whereas low-density microvascular endothelial cells that lack cell-cell contacts migrate in the flow direction. In addition, the cells align parallel to the flow at low wall shear stresses but orient perpendicularly to the flow direction above a critical threshold in local wall shear stress. Our observations suggest that endothelial cells are exquisitely sensitive to both magnitude and spatial gradients in wall shear stress. The impinging flow device provides a, to our knowledge, novel means to study endothelial cell migration and polarization in response to gradients in physical forces such as wall shear stress.  相似文献   

11.
At present, little is known about how endothelial cells respond to spatial variations in fluid shear stress such as those that occur locally during embryonic development, at heart valve leaflets, and at sites of aneurysm formation. We built an impinging flow device that exposes endothelial cells to gradients of shear stress. Using this device, we investigated the response of microvascular endothelial cells to shear-stress gradients that ranged from 0 to a peak shear stress of 9–210 dyn/cm2. We observe that at high confluency, these cells migrate against the direction of fluid flow and concentrate in the region of maximum wall shear stress, whereas low-density microvascular endothelial cells that lack cell-cell contacts migrate in the flow direction. In addition, the cells align parallel to the flow at low wall shear stresses but orient perpendicularly to the flow direction above a critical threshold in local wall shear stress. Our observations suggest that endothelial cells are exquisitely sensitive to both magnitude and spatial gradients in wall shear stress. The impinging flow device provides a, to our knowledge, novel means to study endothelial cell migration and polarization in response to gradients in physical forces such as wall shear stress.  相似文献   

12.
13.
The endothelial glycocalyx (EG) is a complex biopolymer network produced by vascular endothelial cells that forms a layer with multiple functions at the luminal side of blood vessels. The EG acts as an anti-adhesive protection layer, as a molecular sieve, as a chemical sensor site, and as a mechanotransducer of fluid shear stress to the underlying cell layer. A major component involved in these processes is the highly hydrated glycosaminoglycan (GAG) hyaluronan (HA). Here we used laser interferometry to measure the broadband mechanical response of reconstituted HA solutions at close to physiological conditions. HA showed rheological behavior consistent with that of a flexible polymer. The elastic behavior observed for entangled HA networks showed reptational relaxation with a large distribution of time scales, which disappeared quickly (15 min) with the addition of hyaluronidase (HAase). We conclude that the broadband mechanical probing of model systems (HA solutions) provides quantitative data that are crucial to understand the mechanical response of the EG in vivo and its role in mechanosensing.  相似文献   

14.
Systemic bacterial infections elicit inflammatory response that promotes acute or chronic complications such as sepsis, arthritis or atherosclerosis. Of interest, cells in circulation experience hydrodynamic shear forces, which have been shown to be a potent regulator of cellular function in the vasculature and play an important role in maintaining tissue homeostasis. In this study, we have examined the effect of shear forces due to blood flow in modulating the inflammatory response of cells to infection. Using an in vitro model, we analyzed the effects of physiological levels of shear stress on the inflammatory response of monocytes infected with chlamydia, an intracellular pathogen which causes bronchitis and is implicated in the development of atherosclerosis. We found that chlamydial infection alters the morphology of monocytes and trigger the release of pro-inflammatory cytokines TNF-α, IL-8, IL-1β and IL-6. We also found that the exposure of chlamydia-infected monocytes to short durations of arterial shear stress significantly enhances the secretion of cytokines in a time-dependent manner and the expression of surface adhesion molecule ICAM-1. As a functional consequence, infection and shear stress increased monocyte adhesion to endothelial cells under flow and in the activation and aggregation of platelets. Overall, our study demonstrates that shear stress enhances the inflammatory response of monocytes to infection, suggesting that mechanical forces may contribute to disease pathophysiology. These results provide a novel perspective on our understanding of systemic infection and inflammation.  相似文献   

15.
Endothelium-derived nitric oxide (NO) is synthesized in response to chemical and physical stimuli. Here, we investigated a possible role of the endothelial cell glycocalyx as a biomechanical sensor that triggers endothelial NO production by transmitting flow-related shear forces to the endothelial membrane. Isolated canine femoral arteries were perfused with a Krebs-Henseleit solution at a wide range of perfusion rates with and without pretreatment with hyaluronidase to degrade hyaluronic acid glycosaminoglycans within the glycocalyx layer. NO production rate was evaluated as the product of nitrite concentration in the perfusate and steady-state perfusion rate. The slope that correlates the linear relation between perfusion rate and NO production rate was taken as a measure for flow-induced NO production. Hyaluronidase treatment significantly decreased flow-induced NO production to 19 +/- 9% of control (mean +/- SD; P < 0.0001 vs. control; n = 11), whereas it did not affect acetylcholine-induced NO production (88 +/- 17% of pretreatment level, P = not significant; n = 10). We conclude that hyaluronic acid glycosaminoglycans within the glycocalyx play a pivotal role in detecting and amplifying the shear force of flowing blood that triggers endothelium-derived NO production in isolated canine femoral arteries.  相似文献   

16.
《Biophysical journal》2020,118(7):1564-1575
The endothelial glycocalyx layer (EGL), which consists of long proteoglycans protruding from the endothelium, acts as a regulator of inflammation by preventing leukocyte engagement with adhesion molecules on the endothelial surface. The amount of resistance to adhesive events the EGL provides is the result of two properties: EGL thickness and stiffness. To determine these, we used an atomic force microscope to indent the surfaces of cultured endothelial cells with a glass bead and evaluated two different approaches for interpreting the resulting force-indentation curves. In one, we treat the EGL as a molecular brush, and in the other, we treat it as a thin elastic layer on an elastic half-space. The latter approach proved more robust in our hands and yielded a thickness of 110 nm and a modulus of 0.025 kPa. Neither value showed significant dependence on indentation rate. The brush model indicated a larger layer thickness (∼350 nm) but tended to result in larger uncertainties in the fitted parameters. The modulus of the endothelial cell was determined to be 3.0–6.5 kPa (1.5–2.5 kPa for the brush model), with a significant increase in modulus with increasing indentation rates. For forces and leukocyte properties in the physiological range, a model of a leukocyte interacting with the endothelium predicts that the number of molecules within bonding range should decrease by an order of magnitude because of the presence of a 110-nm-thick layer and even further for a glycocalyx with larger thickness. Consistent with these predictions, neutrophil adhesion increased for endothelial cells with reduced EGL thickness because they were grown in the absence of fluid shear stress. These studies establish a framework for understanding how glycocalyx layers with different thickness and stiffness limit adhesive events under homeostatic conditions and how glycocalyx damage or removal will increase leukocyte adhesion potential during inflammation.  相似文献   

17.
Depending on the pattern of blood flow to which they are exposed and their proliferative status, vascular endothelial cells can present a primary cilium into the flow compartment of a blood vessel. The cilium modifies the response of endothelial cells to biomechanical forces. Shear stress, which is the drag force exerted by blood flow, is best studied in this respect. Here we review the structural composition of the endothelial cilia and the current status of knowledge about the relation between the presence of primary cilia on endothelial cells and the shear stress to which they are exposed.  相似文献   

18.
Molecular and mechanical bases of focal lipid accumulation in arterial wall   总被引:12,自引:0,他引:12  
Mechanical forces such as shear stress can modulate gene and protein expressions and hence cellular functions by activating membrane sensors and intracellular signaling. Using cultured endothelial cells, we have shown that laminar shear stress causes a transient increase in monocyte chemotactic protein-1 (MCP-1) expression, which involves the Ras-MAP kinase signaling pathway. We have demonstrated that integrins and the vascular endothelial growth factor receptor Flk-1 can sense shear stress, with integrins being upstream to Flk-1. Other possible membrane components involved in the sensing of shear stress include G-protein coupled receptors, intercellular junction proteins, membrane glycocalyx, and the lipid bilayer. Mechano-transduction involves the participation of a multitude of sensors, signaling molecules, and genes. Microarray analysis has demonstrated that shear stress can upregulate and downregulate different genes. Sustained shear stress downregulates atherogenic genes (e.g., MCP-1 and the genes that facilitate lipid accumulation) and upregulates growth-arrest genes. In contrast, disturbed flow observed at branch points and simulated in step-flow channels causes sustained activation of MCP-1 and the genes facilitating cell turnover and lipid accumulation. These findings provide a molecular basis for the explanation of the preferential localization of atherosclerotic lesions at regions of disturbed flow, such as the arterial branch points. The combination of mechanics and biology (from molecules-cells to organs-systems) can help to elucidate the physiological processes of mechano-chemical transduction and improving the methods of the management of important clinical conditions such as coronary artery disease.  相似文献   

19.
《The Journal of cell biology》1995,131(6):1893-1902
Under physiological shear stress, neutrophils roll on P-selectin on activated endothelial cells or platelets through interactions with P- selectin glycoprotein ligand-1 (PSGL-1). Both P-selectin and PSGL-1 are extended molecules. Human P-selectin contains an NH2-terminal lectin domain, an EGF domain, nine consensus repeats (CRs), a transmembrane domain, and a cytoplasmic tail. To determine whether the length of P- selectin affected its interactions with PSGL-1, we examined the adhesion of neutrophils to CHO cells expressing membrane-anchored P- selectin constructs in which various numbers of CRs were deleted. Under static conditions, neutrophils attached equivalently to wild-type P- selectin and to constructs containing from 2-6 CRs. Under shear stress, neutrophils attached equivalently to wild-type and 6 CR P-selectin and nearly as well to 5 CR P-selectin. However, fewer neutrophils attached to the 4 CR construct, and those that did attach rolled faster and were more readily detached by increasing shear stress. Flowing neutrophils failed to attach to the 3 CR and 2 CR constructs. Neutrophils attached and rolled more efficiently on 4 CR P-selectin expressed on glycosylation-defective Lec8 CHO cells, which have less glycocalyx. We conclude that P-selectin must project its lectin domain well above the membrane to mediate optimal attachment of neutrophils under shear forces. The length of P-selectin may: (a) facilitate interactions with PSGL-1 on flowing neutrophils, and (b) increase the intermembrane distance where specific bonds form, minimizing contacts between the glycocalyces that result in cell-cell repulsion.  相似文献   

20.
Flow-induced mechanotransduction in vascular endothelial cells has been studied over the years with a major focus on putative connections between disturbed flow and atherosclerosis. Recent studies have brought in a new perspective that the glycocalyx, a structure decorating the luminal surface of vascular endothelium, may play an important role in the mechanotransduction. This study reports that modifying the amount of the glycocalyx affects both short-term and long-term shear responses significantly. It is well established that after 24 h of laminar flow, endothelial cells align in the direction of flow and their proliferation is suppressed. We report here that by removing the glycocalyx by using the specific enzyme heparinase III, endothelial cells no longer align under flow after 24 h and they proliferate as if there were no flow present. In addition, confluent endothelial cells respond rapidly to flow by decreasing their migration speed by 40% and increasing the amount of vascular endothelial cadherin in the cell-cell junctions. These responses are not observed in the cells treated with heparinase III. Heparan sulfate proteoglycans (a major component of the glycocalyx) redistribute after 24 h of flow application from a uniform surface profile to a distinct peripheral pattern with most molecules detected above cell-cell junctions. We conclude that the presence of the glycocalyx is necessary for the endothelial cells to respond to fluid shear, and the glycocalyx itself is modulated by the flow. The redistribution of the glycocalyx also appears to serve as a cell-adaptive mechanism by reducing the shear gradients that the cell surface experiences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号