首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have identified possible mechanisms for the degradation of oat phytochrome A (PHYA) mRNA. The majority of PHYA mRNA molecules appeared to be degraded prior to removal of the poly(A) tail, a pathway that differs from that reported for the degradation of other eukaryotic mRNAs. Polyadenylated PHYA mRNA contained a pattern of putative degradation products that is consistent with a 5'-->3' exoribonuclease, although the participation of a stochastic endoribonuclease cannot be excluded. The poly(A) tail of PHYA mRNA was heterogeneous in size and ranged from approximately 14 to 220 nucleotides. Early PHYA mRNA degradation events did not appear to involve site-specific endoribonucleases. Approximately 25% of the apparently full-length PHYA mRNA was poly(A) deficient. Oat H4 histone, beta-tubulin, and actin mRNA populations had lower amounts of apparently full-length mRNAs that were poly(A) deficient. Degradation of the poly(A)-deficient PHYA mRNA, a second pathway, appeared to be initiated by a 3'-->5' exoribonucleolytic removal of the poly(A) tail followed by both 5'-->3' and 3'-->5' exoribonuclease activities. Polysome-associated RNA contained putative PHYA mRNA degradation products and was a mixture of polyadenylated and deadenylated PHYA messages, suggesting that the two distinct degradation pathways are polysome associated.  相似文献   

2.
Cleavage site determinants in the mammalian polyadenylation signal.   总被引:22,自引:5,他引:17       下载免费PDF全文
Using a series of position and nucleotide variants of the SV40 late polyadenylation signal we have demonstrated that three sequence elements determine the precise site of 3-end cleavage in mammalian pre-mRNAs: an upstream AAUAAA element, a down-stream U-rich element consisting of five nucleotides, at least four of which are uridine, and a nucleotide preference at the site of cleavage in the order A > U > C >> G. Cleavage occurs no closer than 11 bases, but no further than 23 bases from the AAUAAA element. The downstream U-rich element is usually located 10-30 bases from the cleavage site. The relative position of the AAUAAA and the U-rich elements define the approximate region within a 13 base domain in which cleavage will occur. The exact position of cleavage is then determined by the local nucleotide sequence in the order of preference noted above. This model accounts for nearly three quarters of polyadenylation signals surveyed and is consistent with previous experimental observations.  相似文献   

3.
4.
A complete nucleotide sequence of human aldolase B mRNA was determined with a recombinant cDNA (pHABL120-3). The cDNA insert was composed of 1,652 bases excluding poly(A) tail and the sequence was consistent with the previous results reported by others. However, S1 nuclease mapping and subsequent genomic analysis allowed us to know that the clone possesses two more sites corresponding to 5'-termini in the 5'-noncoding region and another site of polyadenylation in the 3'-noncoding region. In fact, the major aldolase B mRNA species occupying 90% of the total mRNAs initiated at the predominant position corresponding to the position around -82 of the 5'-noncoding sequence in pHABL120-3 and terminated at the distal polyadenylation site. Second species accounting for 9% of the mRNAs initiated at the same site and terminated at the proximal polyadenylation site. The remainings have a longer 5'-noncoding sequence which starts from further upstream region of the major one and pHABL120-3 corresponds to one of these largest clones.  相似文献   

5.
Primary, secondary and higher-order structures of downstream elements of mammalian pre-mRNA polyadenylation signals [poly(A) signals] are re viewed. We have carried out a detailed analysis on our database of 244 human pre-mRNA poly(A) signals in order to characterize elements in their downstream regions. We suggest that the downstream region of the mammalian pre-mRNA poly(A) signal consists of various simple elements located at different distances from each other. Thus, the downstream region is not described by any precise consensus. Searching our database, we found that ~80% of pre-mRNAs with the AAUAAA or AUUAAA core upstream elements contain simple downstream elements, consisting of U-rich and/or 2GU/U tracts, the former occurring ~2-fold more often than the latter. Approximately one-third of the pre-mRNAs analyzed here contain sequences that may form G-quadruplexes. A substantial number of these sequences are located immediately downstream of the poly(A) signal. A possible role of G-rich sequences in the polyadenylation process is discussed. A model of the secondary structure of the SV40 late pre-mRNA poly(A) signal downstream region is presented.  相似文献   

6.
7.
Unlike most eukaryotic mRNAs studied to date, Xenopus serum albumin mRNA has a short (17-residue), discrete poly(A) tail. We recently reported that this short poly(A) tail results from regulation of the length of poly(A) on albumin pre-mRNA. The purpose of the present study was to locate the cis-acting element responsible for this, the poly(A)-limiting element or PLE. An albumin minigene consisting of albumin cDNA joined in exon 13 to the 3' end of the albumin gene produced mRNA with <20 nt poly(A) when transfected into mouse fibroblasts. This result indicates both that cis-acting sequences that regulate poly(A) length are within this construct, and that nuclear regulation of poly(A) length is conserved between vertebrates. Poly(A) length regulation was retained after replacing the terminal 53 bp and 3' flanking region of the albumin gene with a synthetic polyadenylation element (SPA). Conversely, fusing albumin gene sequence spanning the terminal 53 bp of the albumin gene and 3' flanking sequence onto the human beta-globin gene yielded globin mRNA with a 200-residue poly(A)tail. These data indicate that the PLE resides upstream of the sequence elements involved in albumin pre-mRNA 3' processing. Poly(A) length regulation was restored upon fusing a segment bearing albumin intron 14, exon 15, and 3' flanking sequence onto the beta-globin gene. We demonstrate that exon 15 contains two PLEs that can act independently to regulate the length of poly(A).  相似文献   

8.
Histone pre-mRNA 3' processing is controlled by a hairpin element preceding the processing site that interacts with a hairpin-binding protein (HBP) and a downstream spacer element that serves as anchoring site for the U7 snRNP. In addition, the nucleotides following the hairpin and surrounding the processing site (ACCCA'CA) are conserved among vertebrate histone genes. Single to triple nucleotide mutations of this sequence were tested for their ability to be processed in nuclear extract from animal cells. Changing the first four nucleotides had no qualitative and little if any quantitative effects on histone RNA 3' processing in mouse K21 cell extract, where processing of this gene is virtually independent of the HBP. A gel mobility shift assay revealing HBP interactions and a processing assay in HeLa cell extract (where the contribution of HBP to efficient processing is more important) showed that only one of these mutations, predicted to extend the hairpin by one base pair, affected the interaction with HBP. Mutations in the next three nucleotides affected both the cleavage efficiency and the choice of processing sites. Analysis of these novel sites indicated a preference for the nucleotide 5' of the cleavage site in the order A > C > U > G. Moreover, a guanosine in the 3' position inhibited cleavage. The preference for an A is shared with the cleavage/polyadenylation reaction, but the preference order for the other nucleotides is different [Chen F, MacDonald CC, Wilusz J, 1995, Nucleic Acids Res 23:2614-2620].  相似文献   

9.
Shen Y  Ji G  Haas BJ  Wu X  Zheng J  Reese GJ  Li QQ 《Nucleic acids research》2008,36(9):3150-3161
The position of a poly(A) site of eukaryotic mRNA is determined by sequence signals in pre-mRNA and a group of polyadenylation factors. To reveal rice poly(A) signals at a genome level, we constructed a dataset of 55 742 authenticated poly(A) sites and characterized the poly(A) signals. This resulted in identifying the typical tripartite cis-elements, including FUE, NUE and CE, as previously observed in Arabidopsis. The average size of the 3′-UTR was 289 nucleotides. When mapped to the genome, however, 15% of these poly(A) sites were found to be located in the currently annotated intergenic regions. Moreover, an extensive alternative polyadenylation profile was evident where 50% of the genes analyzed had more than one unique poly(A) site (excluding microheterogeneity sites), and 13% had four or more poly(A) sites. About 4% of the analyzed genes possessed alternative poly(A) sites at their introns, 5′-UTRs, or protein coding regions. The authenticity of these alternative poly(A) sites was partially confirmed using MPSS data. Analysis of nucleotide profile and signal patterns indicated that there may be a different set of poly(A) signals for those poly(A) sites found in the coding regions. Based on the features of rice poly(A) signals, an updated algorithm termed PASS-Rice was designed to predict poly(A) sites.  相似文献   

10.
Almost all eukaryotic mRNAs have a poly (A) tail at the 3′-end. Canonical PAPs (PAPα/γ) polyadenylate nuclear pre-mRNAs. The recent identification of the non-canonical Star-PAP revealed specificity of nuclear PAPs for pre-mRNAs, yet the mechanism how Star-PAP selects mRNA targets is still elusive. Moreover, how Star-PAP target mRNAs having canonical AAUAAA signal are not regulated by PAPα is unclear. We investigate specificity mechanisms of Star-PAP that selects pre-mRNA targets for polyadenylation. Star-PAP assembles distinct 3′-end processing complex and controls pre-mRNAs independent of PAPα. We identified a Star-PAP recognition nucleotide motif and showed that suboptimal DSE on Star-PAP target pre-mRNA 3′-UTRs inhibit CstF-64 binding, thus preventing PAPα recruitment onto it. Altering 3′-UTR cis-elements on a Star-PAP target pre-mRNA can switch the regulatory PAP from Star-PAP to PAPα. Our results suggest a mechanism of poly (A) site selection that has potential implication on the regulation of alternative polyadenylation.  相似文献   

11.
The 5′-leader sequence (called Ω) of tobacco mosaic virus (TMV) functions as a translational enhancer in plants. A poly(CAA) region within Ω is responsible for the translation enhancement and serves as a binding site for the heat shock protein, HSP101, which is required for the translational enhancement. Genetic analysis of the HSP101-mediated enhancement of translation from Ω-containing mRNA suggested that two eukaryotic initiation factors (eIFs), i.e. eIF4G and eIF3, were necessary. In this study, the functional interaction between Ω and other RNA elements known to participate in the recruitment of eIF4G, i.e. the 5′-cap and the poly(A) tail, was examined. Ω exhibited functional overlap with the 5′-cap and the poly(A) tail but not with the native TMV 3′-UTR which contains an independent translational enhancer. Consistent with the role of HSP101 in mediating the translational function of Ω, the enhancement afforded by Ω increased following a heat shock, which elevates expression of HSP101. The use of a fractionated translation lysate revealed that of the two eIF4F proteins present in plants, eIF4F was specifically required for the activity of Ω. The data suggest that Ω is functionally similar to a 5′-cap and a poly(A) tail in that it serves to recruit eIF4F in order to enhance translation from an mRNA.  相似文献   

12.
13.
Regulated nuclear polyadenylation of Xenopus albumin pre-mRNA.   总被引:3,自引:0,他引:3       下载免费PDF全文
Cytoplasmic regulation of the length of poly(A) on mRNA is a well-characterized process involved in translational control during development. In contrast, there is no direct in vivo evidence for regulation of the length of poly(A) added during nuclear pre-mRNA processing in somatic cells. We previously reported that Xenopus serum albumin [Schoenberg et al. (1989) Mol. Endocrinol. 3, 805-815] and transferrin [Pastori et al. (1992) J. Steroid Biochem. Mol. Biol. 42, 649-657], mRNA have exceptionally short poly(A) tails ranging from 12 to 17 residues, whereas vitellogenin mRNA has long poly(A). An RT-PCR protocol was adapted to determine the length of poly(A) added onto pre-mRNA, defined here as that species bearing the terminal intron. Using this assay we show that vitellogenin pre-mRNA has the same long poly(A) tail as mature vitellogenin mRNA. In contrast, albumin pre-mRNA has the same short poly(A) as found on fully-processed albumin mRNA. These results indicate that the short poly(A) tail on albumin mRNA results from regulation of poly(A) addition during nuclear 3' processing.  相似文献   

14.
Early/memory and plasma B-cell lines and fibroblasts were analyzed for their ability to use a 5' proximal (variant) versus a 3' distal (constant) poly(A) site, in the absence of a competing splice, from a set of related constructs. The proximal:distal poly(A) site use (P:D ratio) of the resulting cytoplasmic poly(A)+ mRNA is a measure of poly(A) site strength. In this context the immunoglobulin gamma2b secretory-specific poly(A) site showed a P:D ratio of 1:1 in plasma cells, 0.43:1 in early/memory B-cells and an intermediate value in fibroblasts. Meanwhile, a construct with a proximal SV40 early-like poly(A) site produced mRNA with a P:D ratio of >>50:1 in all cell types. Alterations in the region downstream of the proximal poly(A) addition site and at the site itself resulted in changes in the P:D ratio. However, these poly(A) sites, all with a P:D ratio of < or = 5:1, were used most efficiently in plasma cells. Constructs totally devoid of immunoglobulin sequences, but containing heterologous poly(A) sites producing mRNA with P:D ratios of < or = 5:1, were also used more efficiently in plasma cells. We therefore conclude that weak poly(A) sites, regardless of sequence composition, are used more efficiently in plasma cells than in the other cell types.  相似文献   

15.
16.
17.
18.
Recently, we and others have reported that mRNAs may be polyadenylated in plant mitochondria, and that polyadenylation accelerates the degradation rate of mRNAs. To further characterize the molecular mechanisms involved in plant mitochondrial mRNA degradation, we have analyzed the polyadenylation and degradation processes of potato atp9 mRNAs. The overall majority of polyadenylation sites of potato atp9 mRNAs is located at or in the vicinity of their mature 3'-extremities. We show that a 3'- to 5'-exoribonuclease activity is responsible for the preferential degradation of polyadenylated mRNAs as compared with non-polyadenylated mRNAs, and that 20-30 adenosine residues constitute the optimal poly(A) tail size for inducing degradation of RNA substrates in vitro. The addition of as few as seven non-adenosine nucleotides 3' to the poly(A) tail is sufficient to almost completely inhibit the in vitro degradation of the RNA substrate. Interestingly, the exoribonuclease activity proceeds unimpeded by stable secondary structures present in RNA substrates. From these results, we propose that in plant mitochondria, poly(A) tails added at the 3' ends of mRNAs promote an efficient 3'- to 5'- degradation process.  相似文献   

19.
Hu J  Lutz CS  Wilusz J  Tian B 《RNA (New York, N.Y.)》2005,11(10):1485-1493
Polyadenylation is an essential step for the maturation of almost all cellular mRNAs in eukaryotes. In human cells, most poly(A) sites are flanked by the upstream AAUAAA hexamer or a close variant, and downstream U/GU-rich elements. In yeast and plants, additional cis elements have been found to be located upstream of the poly(A) site, including UGUA, UAUA, and U-rich elements. In this study, we have developed a computer program named PROBE (Polyadenylation-Related Oligonucleotide Bidimensional Enrichment) to identify cis elements that may play regulatory roles in mRNA polyadenylation. By comparing human genomic sequences surrounding frequently used poly(A) sites with those surrounding less frequently used ones, we found that cis elements occurring in yeast and plants also exist in human poly(A) regions, including the upstream U-rich elements, and UAUA and UGUA elements. In addition, several novel elements were found to be associated with human poly(A) sites, including several G-rich elements. Thus, we suggest that many cis elements are evolutionarily conserved among eukaryotes, and human poly(A) sites have an additional set of cis elements that may be involved in the regulation of mRNA polyadenylation.  相似文献   

20.
Alphaviruses are mosquito-transmitted RNA viruses that cause important diseases in both humans and livestock. Sindbis virus (SIN), the type species of the alphavirus genus, carries a 11.7-kb positive-sense RNA genome which is capped at its 5′ end and polyadenylated at its 3′ end. The 3′ nontranslated region (3′NTR) of the SIN genome carries many AU-rich motifs, including a 19-nucleotide (nt) conserved element (3′CSE) and a poly(A) tail. This 3′CSE and the adjoining poly(A) tail are believed to regulate the synthesis of negative-sense RNA and genome replication in vivo. We have recently demonstrated that the SIN genome lacking the poly(A) tail was infectious and that de novo polyadenylation could occur in vivo (K. R. Hill, M. Hajjou, J. Hu, and R. Raju, J. Virol. 71:2693–2704, 1997). Here, we demonstrate that the 3′-terminal 29-nt region of the SIN genome carries a signal for possible cytoplasmic polyadenylation. To further investigate the polyadenylation signals within the 3′NTR, we generated a battery of mutant genomes with mutations in the 3′NTR and tested their ability to generate infectious virus and undergo 3′ polyadenylation in vivo. Engineered SIN genomes with terminal deletions within the 19-nt 3′CSE were infectious and regained their poly(A) tail. Also, a SIN genome carrying the poly(A) tail but lacking a part or the entire 19-nt 3′CSE was also infectious. Sequence analysis of viruses generated from these engineered SIN genomes demonstrated the addition of a variety of AU-rich sequence motifs just adjacent to the poly(A) tail. The addition of AU-rich motifs to the mutant SIN genomes appears to require the presence of a significant portion of the 3′NTR. These results indicate the ability of alphavirus RNAs to undergo 3′ repair and the existence of a pathway for the addition of AU-rich sequences and a poly(A) tail to their 3′ end in the infected host cell. Most importantly, these results indicate the ability of alphavirus replication machinery to use a multitude of AU-rich RNA sequences abutted by a poly(A) motif as promoters for negative-sense RNA synthesis and genome replication in vivo. The possible roles of cytoplasmic polyadenylation machinery, terminal transferase-like enzymes, and the viral polymerase in the terminal repair processes are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号