共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Genome-Wide Screen of Salmonella Genes Expressed during Infection in Pigs, Using In Vivo Expression Technology 下载免费PDF全文
Yanyan Huang Christopher L. Leming Mitsu Suyemoto Craig Altier 《Applied microbiology》2007,73(23):7522-7530
Pigs are a food-producing species that readily carry Salmonella but, in the great majority of cases, do not show clinical signs of disease. Little is known about the functions required by Salmonella to be maintained in pigs. We have devised a recombinase-based promoter-trapping strategy to identify genes with elevated expression during pig infection with Salmonella enterica serovar Typhimurium. A total of 55 clones with in vivo-induced promoters were selected from a genomic library of ~10,000 random Salmonella DNA fragments fused to the recombinase cre, and the cloned DNA fragments were analyzed by sequencing. Thirty-one genes encoding proteins involved in bacterial adhesion and colonization (including bcfA, hscA, rffG, and yciR), virulence (metL), heat shock (hscA), and a sensor of a two-component regulator (hydH) were identified. Among the 55 clones, 19 were isolated from both the tonsils and the intestine, while 23 were identified only in the intestine and 13 only in tonsils. High temperature and increased osmolarity were identified as environmental signals that induced in vivo-expressed genes, suggesting possible signals for expression. 相似文献
5.
Rapha?l Loll-Krippleber Adeline Feri Marie Nguyen Corinne Maufrais Jennifer Yansouni Christophe d'Enfert Mélanie Legrand 《Eukaryotic cell》2015,14(3):311-322
Loss of heterozygosity (LOH) plays important roles in genome dynamics, notably, during tumorigenesis. In the fungal pathogen Candida albicans, LOH contributes to the acquisition of antifungal resistance. In order to investigate the mechanisms that regulate LOH in C. albicans, we have established a novel method combining an artificial heterozygous locus harboring the blue fluorescent protein and green fluorescent protein markers and flow cytometry to detect LOH events at the single-cell level. Using this fluorescence-based method, we have confirmed that elevated temperature, treatment with methyl methanesulfonate, and inactivation of the Mec1 DNA damage checkpoint kinase triggered an increase in the frequency of LOH. Taking advantage of this system, we have searched for C. albicans genes whose overexpression triggered an increase in LOH and identified four candidates, some of which are known regulators of genome dynamics with human homologues contributing to cancer progression. Hence, the approach presented here will allow the implementation of new screens to identify genes that are important for genome stability in C. albicans and more generally in eukaryotic cells. 相似文献
6.
Fat storage disorders including obesity are pandemic human health problems. As a genetically amenable model organism, Caeno- rhabditis elegans has often been used to explore the molecular mechanisms of fat storage regulation. Dye staining of fixed animals and stimulated Raman scattering (SRS) microscopy methods have been used successfully to study fat storage, but a genetic screening system that takes full advantage of C. elegans transparency to perform live imaging of fluorescent protein reporters has not yet been reported. Here, we investigated the tissue-specific expression of the GFP fusion of Perilipin 1 (PLIN1), a Drosophila lipid droplet-associated protein, in C. elegans. Our results indicate that PLINI::GFP labels lipid droplets and can be used as a fat storage indicator in live worms. Through an RNAi screen, we further identified several previously uncharacterized new fat storage regulators. 相似文献
7.
8.
Jitao David Zhang Cindy Koerner Stephanie Bechtel Christian Bender Ioanna Keklikoglou Christian Schmidt Anja Irsigler Ute Ernst ?zgür Sahin Stefan Wiemann Ulrich Tschulena 《PloS one》2011,6(7)
Analysis of biological processes is frequently performed with the help of phenotypic assays where data is mostly acquired in single end-point analysis. Alternative phenotypic profiling techniques are desired where time-series information is essential to the biological question, for instance to differentiate early and late regulators of cell proliferation in loss-of-function studies. So far there is no study addressing this question despite of high unmet interests, mostly due to the limitation of conventional end-point assaying technologies. We present the first human kinome screen with a real-time cell analysis system (RTCA) to capture dynamic RNAi phenotypes, employing time-resolved monitoring of cell proliferation via electrical impedance. RTCA allowed us to investigate the dynamics of phenotypes of cell proliferation instead of using conventional end-point analysis. By introducing data transformation with first-order derivative, i.e. the cell-index growth rate, we demonstrate this system suitable for high-throughput screenings (HTS). The screen validated previously identified inhibitor genes and, additionally, identified activators of cell proliferation. With the information of time kinetics available, we could establish a network of mitotic-event related genes to be among the first displaying inhibiting effects after RNAi knockdown. The time-resolved screen captured kinetics of cell proliferation caused by RNAi targeting human kinome, serving as a resource for researchers. Our work establishes RTCA technology as a novel robust tool with biological and pharmacological relevance amenable for high-throughput screening. 相似文献
9.
10.
11.
Anand K. Ganesan Hsiang Ho Brian Bodemann Sean Petersen Jayavani Aruri Shiney Koshy Zachary Richardson Lu Q. Le Tatiana Krasieva Michael G. Roth Pat Farmer Michael A. White 《PLoS genetics》2008,4(12)
Melanin protects the skin and eyes from the harmful effects of UV irradiation, protects neural cells from toxic insults, and is required for sound conduction in the inner ear. Aberrant regulation of melanogenesis underlies skin disorders (melasma and vitiligo), neurologic disorders (Parkinson''s disease), auditory disorders (Waardenburg''s syndrome), and opthalmologic disorders (age related macular degeneration). Much of the core synthetic machinery driving melanin production has been identified; however, the spectrum of gene products participating in melanogenesis in different physiological niches is poorly understood. Functional genomics based on RNA-mediated interference (RNAi) provides the opportunity to derive unbiased comprehensive collections of pharmaceutically tractable single gene targets supporting melanin production. In this study, we have combined a high-throughput, cell-based, one-well/one-gene screening platform with a genome-wide arrayed synthetic library of chemically synthesized, small interfering RNAs to identify novel biological pathways that govern melanin biogenesis in human melanocytes. Ninety-two novel genes that support pigment production were identified with a low false discovery rate. Secondary validation and preliminary mechanistic studies identified a large panel of targets that converge on tyrosinase expression and stability. Small molecule inhibition of a family of gene products in this class was sufficient to impair chronic tyrosinase expression in pigmented melanoma cells and UV-induced tyrosinase expression in primary melanocytes. Isolation of molecular machinery known to support autophagosome biosynthesis from this screen, together with in vitro and in vivo validation, exposed a close functional relationship between melanogenesis and autophagy. In summary, these studies illustrate the power of RNAi-based functional genomics to identify novel genes, pathways, and pharmacologic agents that impact a biological phenotype and operate outside of preconceived mechanistic relationships. 相似文献
12.
mTOR complex1, the major regulator of mRNA translation in all eukaryotic cells, is strongly activated in most cancers. We performed a genome-wide RNAi screen in a human cancer cell line, seeking genes that regulate S6 phosphorylation, readout of mTORC1 activity. Applying a stringent selection, we retrieved nearly 600 genes wherein at least two RNAis gave significant reduction in S6-P. This cohort contains known regulators of mTOR complex 1 and is significantly enriched in genes whose depletion affects the proliferation/viability of the large set of cancer cell lines in the Achilles database in a manner paralleling that caused by mTOR depletion. We next examined the effect of RNAi pools directed at 534 of these gene products on S6-P in TSC1 null mouse embryo fibroblasts. 76 RNAis reduced S6 phosphorylation significantly in 2 or 3 replicates. Surprisingly, among this cohort of genes the only elements previously associated with the maintenance of mTORC1 activity are two subunits of the vacuolar ATPase and the CUL4 subunit DDB1. RNAi against a second set of 84 targets reduced S6-P in only one of three replicates. However, an indication that this group also bears attention is the presence of rpS6KB1 itself, Rac1 and MAP4K3, a protein kinase that supports amino acid signaling to rpS6KB1. The finding that S6 phosphorylation requires a previously unidentified, functionally diverse cohort of genes that participate in fundamental cellular processes such as mRNA translation, RNA processing, DNA repair and metabolism suggests the operation of feedback pathways in the regulation of mTORC1 operating through novel mechanisms. 相似文献
13.
14.
Aniket Ghosh Tina Kling Nicolas Snaidero Julio L. Sampaio Andrej Shevchenko Heribert Gras Bart Geurten Martin C. G?pfert J?rg B. Schulz Aaron Voigt Mikael Simons 《PLoS genetics》2013,9(12)
Glia are of vital importance for all complex nervous system. One of the many functions of glia is to insulate and provide trophic and metabolic support to axons. Here, using glial-specific RNAi knockdown in Drosophila, we silenced 6930 conserved genes in adult flies to identify essential genes and pathways. Among our screening hits, metabolic processes were highly represented, and genes involved in carbohydrate and lipid metabolic pathways appeared to be essential in glia. One critical pathway identified was de novo ceramide synthesis. Glial knockdown of lace, a subunit of the serine palmitoyltransferase associated with hereditary sensory and autonomic neuropathies in humans, resulted in ensheathment defects of peripheral nerves in Drosophila. A genetic dissection study combined with shotgun high-resolution mass spectrometry of lipids showed that levels of ceramide phosphoethanolamine are crucial for axonal ensheathment by glia. A detailed morphological and functional analysis demonstrated that the depletion of ceramide phosphoethanolamine resulted in axonal defasciculation, slowed spike propagation, and failure of wrapping glia to enwrap peripheral axons. Supplementing sphingosine into the diet rescued the neuropathy in flies. Thus, our RNAi study in Drosophila identifies a key role of ceramide phosphoethanolamine in wrapping of axons by glia. 相似文献
15.
16.
17.
18.
19.
20.
Arnaud De Muyt Lucie Pereira Daniel Vezon Liudmila Chelysheva Ghislaine Gendrot Aurélie Chambon Sandrine Lainé-Choinard Georges Pelletier Rapha?l Mercier Fabien Nogué Mathilde Grelon 《PLoS genetics》2009,5(9)
Meiotic recombination is initiated by the formation of numerous DNA double-strand breaks (DSBs) catalysed by the widely conserved Spo11 protein. In Saccharomyces cerevisiae, Spo11 requires nine other proteins for meiotic DSB formation; however, unlike Spo11, few of these are conserved across kingdoms. In order to investigate this recombination step in higher eukaryotes, we took advantage of a high-throughput meiotic mutant screen carried out in the model plant Arabidopsis thaliana. A collection of 55,000 mutant lines was screened, and spo11-like mutations, characterised by a drastic decrease in chiasma formation at metaphase I associated with an absence of synapsis at prophase, were selected. This screen led to the identification of two populations of mutants classified according to their recombination defects: mutants that repair meiotic DSBs using the sister chromatid such as Atdmc1 or mutants that are unable to make DSBs like Atspo11-1. We found that in Arabidopsis thaliana at least four proteins are necessary for driving meiotic DSB repair via the homologous chromosomes. These include the previously characterised DMC1 and the Hop1-related ASY1 proteins, but also the meiotic specific cyclin SDS as well as the Hop2 Arabidopsis homologue AHP2. Analysing the mutants defective in DSB formation, we identified the previously characterised AtSPO11-1, AtSPO11-2, and AtPRD1 as well as two new genes, AtPRD2 and AtPRD3. Our data thus increase the number of proteins necessary for DSB formation in Arabidopsis thaliana to five. Unlike SPO11 and (to a minor extent) PRD1, these two new proteins are poorly conserved among species, suggesting that the DSB formation mechanism, but not its regulation, is conserved among eukaryotes. 相似文献