首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although dispersal is often considered to be a plastic, condition-dependent trait with low heritability, growing evidence supports medium to high levels of dispersal heritability. Obtaining unbiased estimates of dispersal heritability in natural populations nevertheless remains crucial to understand the evolution of dispersal strategies and their population consequences. Here we show that dispersal propensity (i.e. the probability of dispersal between habitat patches) displays a significant heritability in the collared flycatcher Ficedula albicollis, as estimated by within-family resemblance when accounting for environmental factors. Offspring of dispersing mothers or fathers had a higher propensity to disperse to a new habitat patch themselves. The effect of parental dispersal status was additional to that of local habitat quality, as measured by local breeding population size and success, confirming previous results about condition-dependent dispersal in this population. The estimated levels of heritability varied between 0.30±0.07 and 0.47±0.10, depending on parent–offspring comparisons made and correcting for a significant assortative mating with respect to dispersal status. Siblings also displayed a significant resemblance in dispersal propensity. These results suggest that variation in between-patch natal dispersal in the collared flycatcher is partly genetically determined, and we discuss ways to quantify this genetic basis and its implications.  相似文献   

2.
The evolutionary consequences of individual genetic diversity are frequently studied by assessing heterozygosity–fitness correlations (HFCs). The prevalence of positive and negative HFCs and the predominance of general versus local effects in wild populations are far from understood, partly because comprehensive studies testing for both inbreeding and outbreeding depression are lacking. We studied a genetically diverse population of blue tits in southern Germany using a genome‐wide set of 87 microsatellites to investigate the relationship between proxies of reproductive success and measures of multilocus and single‐locus individual heterozygosity (MLH and SLH). We used complimentary measures of MLH and partitioned markers into functional categories according to their position in the blue tit genome. HFCs based on MLH were consistently negative for functional loci, whereas correlations were rather inconsistent for loci found in nonfunctional areas of the genome. Clutch size was the only reproductive variable showing a general effect. We found evidence for local effects for three measures of reproductive success: arrival date at the breeding site, the probability of breeding at the study site and male reproductive success. For these, we observed consistent, and relatively strong, negative effects at one functional locus. Remarkably, this marker had a similar effect in another blue tit population from Austria (~400 km to the east). We suggest that a genetic local effect on timing of arrival might be responsible for most negative HFCs detected, with carry‐over effects on other reproductive traits. This effect could reflect individual differences in the distance between overwintering areas and breeding sites.  相似文献   

3.

Purpose

To describe the frequency of MLH1 promoter methylation in colorectal cancer (CRC); to explore the associations between MLH1 promoter methylation and clinicopathological and molecular factors using a systematic review and meta-analysis.

Methods

A literature search of the PubMed and Embase databases was conducted to identify relevant articles published up to September 7, 2012 that described the frequency of MLH1 promoter methylation or its associations with clinicopathological and molecular factors in CRC. The pooled frequency, odds ratio (OR) and 95% confidence intervals (95% CI) were calculated.

Results

The pooled frequency of MLH1 promoter methylation in unselected CRC was 20.3% (95% CI: 16.8–24.1%). They were 18.7% (95% CI: 14.7–23.6%) and 16.4% (95% CI: 11.9–22.0%) in sporadic and Lynch syndrome (LS) CRC, respectively. Significant associations were observed between MLH1 promoter methylation and gender (pooled OR = 1.641, 95% CI: 1.215–2.215; P = 0.001), tumor location (pooled OR = 3.804, 95% CI: 2.715–5.329; P<0.001), tumor differentiation (pooled OR = 2.131, 95% CI: 1.464–3.102; P<0.001), MSI (OR: 27.096, 95% CI: 13.717–53.526; P<0.001). Significant associations were also observed between MLH1 promoter methylation and MLH1 protein expression, BRAF mutation (OR = 14.919 (95% CI: 6.427–34.631; P<0.001) and 9.419 (95% CI: 2.613–33.953; P = 0.001), respectively).

Conclusion

The frequency of MLH1 promoter methylation in unselected CRC was 20.3%. They were 18.7% in sporadic CRC and 16.4% in LS CRC, respectively. MLH1 promoter methylation may be significantly associated with gender, tumor location, tumor differentiation, MSI, MLH1 protein expression, and BRAF mutation.  相似文献   

4.
Habitat specialists inhabiting scarce and scattered habitat patches pose interesting questions related to dispersal such as how specialized terrestrial mammals do to colonize distant patches crossing hostile matrices. We assess dispersal patterns of the southern water vole (Arvicola sapidus), a habitat specialist whose habitat patches are distributed through less than 2% of the study area (overall 600 km2) and whose populations form a dynamic metapopulational network. We predict that individuals will require a high ability to move through the inhospitable matrix in order to avoid genetic and demographic isolations. Genotypes (N = 142) for 10 microsatellites and sequences of the whole mitochondrial Control Region (N = 47) from seven localities revealed a weak but significant genetic structure partially explained by geographic distance. None of the landscape models had a significant effect on genetic structure over that of the Euclidean distance alone and no evidence for efficient barriers to dispersal was found. Contemporary gene flow was not severely limited for A. sapidus as shown by high migration rates estimates (>10%) between non-neighbouring areas. Sex-biased dispersal tests did not support differences in dispersal rates, as shown by similar average axial parent-offspring distances, in close agreement with capture-mark-recapture estimates. As predicted, our results do not support any preferences of the species for specific landscape attributes on their dispersal pathways. Here, we combine field and molecular data to illustrate how a habitat specialist mammal might disperse like a habitat generalist, acquiring specific long-distance dispersal strategies as an adaptation to patchy, naturally fragmented, heterogeneous and unstable habitats.  相似文献   

5.

Background

The -93G>A (rs1800734) polymorphism located in the promoter of mismatch repair gene, MLH1, has been identified as a low-penetrance variant for cancer risk. Many published studies have evaluated the association between the MLH1 -93G>A polymorphism and colorectal cancer (CRC) risk. However, the results remain conflicting rather than conclusive.

Objective

The aim of this study was to assess the association between the MLH1 -93G>A polymorphism and the risk of CRC.

Methods

To derive a more precise estimation of the association, a meta-analysis of six studies (17,791 cases and 13,782 controls) was performed. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to evaluate the strength of the association. Four of these published studies were performed on subjects of known microsatellite instability (MSI) status. An additional analysis including 742 cases and 10,895 controls was used to assess the association between the MLH1 -93G>A polymorphism and the risk of MSI-CRC.

Results

The overall results indicated that the variant genotypes were associated with a significantly increased risk of CRC (AG versus GG: OR = 1.06, 95% CI = 1.01–1.11; AA/AG versus GG: OR = 1.06, 95% CI = 1.01–1.11). This increased risk was also found during stratified analysis of MSI status (AA versus GG: OR = 2.52, 95% CI = 1.94–3.28; AG versus GG: OR = 1.29, 95% CI = 1.10–1.52; AA/AG versus GG: OR = 1.45, 95% CI = 1.24–1.68; AA versus AG/GG: OR = 2.29, 95% CI = 1.78–2.96). Egger’s test did not show any evidence of publication bias.

Conclusion

Our results suggest that the MLH1 -93G>A polymorphism may contribute to individual susceptibility to CRC and act as a risk factor for MSI-CRC.  相似文献   

6.
Analysing pollen movement is a key to understanding the reproductive system of plant species and how it is influenced by the spatial distribution of potential mating partners in fragmented populations. Here we infer parameters related to levels of pollen movement and diversity of the effective pollen cloud for the wind-pollinated shrub Pistacia lentiscus across a highly disturbed landscape using microsatellite loci. Paternity analysis and the indirect KinDist and Mixed Effect Mating models were used to assess mating patterns, the pollen dispersal kernel, the effective number of males (Nep) and their relative individual fertility, as well as the existence of fine-scale spatial genetic structure in adult plants. All methods showed extensive pollen movement, with high rates of pollen flow from outside the study site (up to 73–93%), fat-tailed dispersal kernels and large average pollination distances (δ = 229–412 m). However, they also agreed in detecting very few pollen donors (Nep = 4.3–10.2) and a large variance in their reproductive success: 70% of males did not sire any offspring among the studied female plants and 5.5% of males were responsible for 50% of pollinations. Although we did not find reduced levels of genetic diversity, the adult population showed high levels of biparental inbreeding (14%) and strong spatial genetic structure (Sp = 0.012), probably due to restricted seed dispersal and scarce safe sites for recruitment. Overall, limited seed dispersal and the scarcity of successful pollen donors can be contributing to generate local pedigrees and to increase inbreeding, the prelude of genetic impoverishment.  相似文献   

7.
Life history traits play an important role in population dynamics and correlate, both positively and negatively, with dispersal in a wide range of taxa. Most invertebrate studies on trade-offs between life history traits and dispersal have focused on dispersal via flight, yet much less is known about how life history trade-offs influence species that disperse by other means. In this study, we identify effects of investing in dispersal morphology (dispersal expression) on life history traits in the male dimorphic bulb mite (Rhizoglyphus robini). This species has a facultative juvenile life stage (deutonymph) during which individuals can disperse by phoresy. Further, adult males are either fighters (which kill other mites) or benign scramblers. Here, in an experiment, we investigate the effects of investing in dispersal on size at maturity, sex and male morph ratio, and female lifetime reproductive success. We show that life history traits correlate negatively with the expression of the dispersal stage. Remarkably, all males that expressed the dispersal life stage developed into competitive fighters and none into scramblers. This suggests that alternative, male reproductive strategies and dispersal should not be viewed in isolation but considered concurrently.  相似文献   

8.
Animal dispersal is associated with diverse costs and benefits that vary among individuals based on phenotype and ecological conditions. For example, females may disperse when males benefit more from defending territories in familiar environments. Similarly, size differences in dispersal propensity may occur when dispersal costs are size-dependent. When individuals do disperse, they may adopt behavioral strategies that minimize dispersal costs. Dispersing fish, for example, may travel within shoals to reduce predation risks. Further, kin shoaling may augment inclusive fitness by reducing predation of relatives. However, studies are lacking on the role of kin shoaling in dispersal. We explored how sex and size influence dispersal and kin shoaling in the cichlid Neolamprologus caudopunctatus. We microsatellite genotyped over 900 individuals from two populations separated by a potential dispersal barrier, and documented patterns of population structure, migration and within-shoal relatedness. Genetic differentiation across the barrier was greater for smaller than larger fish, suggesting larger fish had dispersed longer distances. Females exhibited weaker genetic differentiation and 11 times higher migration rates than males, indicating longer-distance female-biased dispersal. Small females frequently shoaled with siblings, possibly offsetting dispersal costs associated with higher predation risks. In contrast, small males appeared to avoid kin shoaling, possibly to avoid local resource competition. In summary, long-distance dispersal in N. caudopunctatus appears to be female-biased, and kin-based shoaling by small females may represent a behavioral adaptation that reduces dispersal costs. Our study appears to be the first to provide evidence that sex differences in dispersal influence sex differences in kin shoaling.  相似文献   

9.
Dispersal of natural enemies through a crop is a key component of biological control. The release strategy should optimize the number of predators that are released, the release frequency and number of release sites throughout a crop with regards to the distance that natural enemies can disperse from their release point. In this study, dispersal rate and behaviour of Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) was investigated in potted greenhouse chrysanthemums in the presence or absence of prey (Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Results demonstrate that A. swirskii did not disperse far from the release site. Presence of prey did not influence dispersal, but had an effect on predator survival in one experiment. Only a quarter of the A. swirskii eventually attempted to disperse by going down to the ground. The presence of inter-plant contact greatly improved movement of A. swirskii between plants. It is concluded that good coverage with predators of the crop is needed when using A. swirskii in a biological control program. Having a continuous crop canopy will promote dispersal.  相似文献   

10.
Dragonflies are good indicators of environmental health and biodiversity. Most studies addressing dragonfly ecology have focused on the importance of aquatic habitats, while the value of surrounding terrestrial habitats has often been overlooked. However, species associated with temporary aquatic habitats must persist in terrestrial environments for long periods. Little is known about the importance of terrestrial habitat patches for dragonflies, or about other factors that initiate or influence dispersal behaviour. The aim of this study was to reveal the relationship between population dynamics of the threatened dragonfly species Sympetrum depressiusculum at its natal site and its dispersal behaviour or routine movements within its terrestrial home range. We used a mark–release–recapture method (marking 2,881 adults) and exuviae collection with the Jolly–Seber model and generalized linear models to analyse seasonal and spatial patterns of routine movement in a heterogeneous Central European landscape. Our results show that utilisation of terrestrial habitat patches by adult dragonflies is not random and may be relatively long term (approximately 3 mo). Adult dragonflies were present only in areas with dense vegetation that provided sufficient resources; the insects were absent from active agricultural patches (p = 0.019). These findings demonstrate that even a species tightly linked to its natal site utilises an area that is several orders of magnitude larger than the natal site. Therefore, negative trends in the occurrence of various dragonfly species may be associated not only with disturbances to their aquatic habitats, but also with changes in the surrounding terrestrial landscape.  相似文献   

11.
Dispersal often covaries with other traits, and this covariation was shown to have a genetic basis. Here, we wanted to explore to what extent genetic constraints and correlational selection can explain patterns of covariation between dispersal and key life‐history traits—lifespan and reproduction. A prediction from the fitness‐associated dispersal hypothesis was that lower genetic quality is associated with higher dispersal propensity as driven by the benefits of genetic mixing. We wanted to contrast it with a prediction from a different model that individuals putting more emphasis on current rather than future reproduction disperse more, as they are expected to be more risk‐prone and exploratory. However, if dispersal has inherent costs, this will also result in a negative genetic correlation between higher rates of dispersal and some aspects of performance. To explore this issue, we used the dioecious nematode Caenorhabditis remanei and selected for increased and decreased dispersal propensity for 10 generations, followed by five generations of relaxed selection. Dispersal propensity responded to selection, and females from high‐dispersal lines dispersed more than females from low‐dispersal lines. Females selected for increased dispersal propensity produced fewer offspring and were more likely to die from matricide, which is associated with a low physiological condition in Caenorhabditis nematodes. There was no evidence for differences in age‐specific reproductive effort between high‐ and low‐dispersal females. Rather, reproductive output of high‐dispersal females was consistently reduced. We argue that our data provide support for the fitness‐associated dispersal hypothesis.  相似文献   

12.
The ideal free distribution (IFD) predicts that organisms will disperse to sites that maximize their fitness based on availability of resources. Habitat heterogeneity underlies resource variation and influences spatial variation in demography and the distribution of populations. We relate nest site productivity at multiple scales measured over a decade to habitat quality in a box-nesting population of Forpus passerinus (green-rumped parrotlets) in Venezuela to examine critical IFD assumptions. Variation in reproductive success at the local population and neighborhood scales had a much larger influence on productivity (fledglings per nest box per year) than nest site or female identity. Habitat features were reliable cues of nest site quality. Nest sites with less vegetative cover produced greater numbers of fledglings than sites with more cover. However, there was also a competitive cost to nesting in high-quality, low-vegetative cover nest boxes, as these sites experienced the most infanticide events. In the lowland local population, water depth and cover surrounding nest sites were related with F. passerinus productivity. Low vegetative cover and deeper water were associated with lower predation rates, suggesting that predation could be a primary factor driving habitat selection patterns. Parrotlets also demonstrated directional dispersal. Pairs that changed nest sites were more likely to disperse from poor-quality nest sites to high-quality nest sites rather than vice versa, and juveniles were more likely to disperse to, or remain in, the more productive of the two local populations. Parrotlets exhibited three characteristics fundamental to the IFD: habitat heterogeneity within and between local populations, reliable habitat cues to productivity, and active dispersal to sites of higher fitness.  相似文献   

13.
As wild populations decline, ex situ propagation provides a potential bank of genetic diversity and a hedge against extinction. These programs are unlikely to succeed if captive populations do not recover from the severe bottleneck imposed when they are founded with a limited number of individuals from remnant populations. In small captive populations allelic richness may be lost due to genetic drift, leading to a decline in fitness. Wild populations of the Hawaiian tree snail Achatinella lila, a hermaphroditic snail with a long life history, have declined precipitously due to introduced predators and other human impacts. A captive population initially thrived after its founding with seven snails, exceeding 600 captive individuals in 2009, but drastically declined in the last five years. Measures of fitness were examined from 2,018 captive snails that died between 1998 and 2012, and compared with genotypic data for six microsatellite loci from a subset of these deceased snails (N = 335), as well as live captive snails (N = 198) and wild snails (N = 92). Surprisingly, the inbreeding coefficient (Fis) declined over time in the captive population, and is now approaching values observed in the 2013 wild population, despite a significant decrease in allelic richness. However, adult annual survival and fecundity significantly declined in the second generation. These measures of fitness were positively correlated with heterozygosity. Snails with higher measures of heterozygosity had more offspring, and third generation offspring with higher measures of heterozygosity were more likely to reach maturity. These results highlight the importance of maintaining genetic diversity in captive populations, particularly those initiated with a small number of individuals from wild remnant populations. Genetic rescue may allow for an increase in genetic diversity in the captive population, as measures of heterozygosity and rarified allelic richness were higher in wild tree snails.  相似文献   

14.
Inferring parameters related to the aggregation pattern of parasites and to their dispersal propensity are important for predicting their ecological consequences and evolutionary potential. Nonetheless, it is notoriously difficult to infer these parameters from wildlife parasites given the difficulty in tracking these organisms. Molecular‐based inferences constitute a promising approach that has yet rarely been applied in the wild. Here, we combined several population genetic analyses including sibship reconstruction to document the genetic structure, patterns of sibship aggregation, and the dispersal dynamics of a non‐native parasite of fish, the freshwater copepod ectoparasite Tracheliastes polycolpus. We collected parasites according to a hierarchical sampling design, with the sampling of all parasites from all host individuals captured in eight sites spread along an upstream–downstream river gradient. Individual multilocus genotypes were obtained from 14 microsatellite markers, and used to assign parasites to full‐sib families and to investigate the genetic structure of Tpolycolpus among both hosts and sampling sites. The distribution of full‐sibs obtained among the sampling sites was used to estimate individual dispersal distances within families. Our results showed that Tpolycolpus sibs tend to be aggregated within sites but not within host individuals. We detected important upstream‐to‐downstream dispersal events of Tpolycolpus between sites (modal distance: 25.4 km; 95% CI [22.9, 27.7]), becoming scarcer as the geographic distance from their family core location increases. Such a dispersal pattern likely contributes to the strong isolation‐by‐distance observed at the river scale. We also detected some downstream‐to‐upstream dispersal events (modal distance: 2.6 km; 95% CI [2.2–23.3]) that likely result from movements of infected hosts. Within each site, the dispersal of free‐living infective larvae among hosts likely contributes to increasing genetic diversity on hosts, possibly fostering the evolutionary potential of T. polycolpus.  相似文献   

15.
During early demersal ontogeny, many marine fishes display complex habitat-use patterns. Grunts of the speciose genus Haemulon are among the most abundant fishes on western North Atlantic coral reefs, with most species settling to shallow habitats (≤12 m). To gain understanding into cross-shelf distributional patterns exhibited by newly settled stages of grunts (<2 cm total length), we examined: 1) depth-specific distributions of congeners at settlement among sites at 8 m, 12 m, and 21 m, and 2) depth-variable predation pressure on newly settled individuals (species pooled). Of the six species identified from collections of newly settled specimens (n = 2125), Haemulon aurolineatum (tomtate), H. flavolineatum (French grunt), and H. striatum (striped grunt) comprised 98% of the total abundance; with the first two species present at all sites. Prevalence of H. aurolineatum and H. flavolineatum decreased substantially from the 8-m site to the two deeper sites. In contrast, H. striatum was absent from the 8-m site and exhibited its highest frequency at the 21-m site. Comparison of newly settled grunt delta density for all species on caged (predator exclusion) and control artificial reefs at the shallowest site (8-m) revealed no difference, while the 12-m and 21-m sites exhibited significantly greater delta densities on the caged treatment. This result, along with significantly higher abundances of co-occurring piscivorous fishes at the deeper sites, indicated lower predation pressure at the 8-m site. This study suggests habitat-use patterns of newly settled stages of some coral reef fishes that undergo ontogenetic shifts are a function of depth-variable predation pressure while, for at least one deeper-water species, proximity to adult habitat appears to be an important factor affecting settlement distribution.  相似文献   

16.
Overhunting in tropical forests reduces populations of vertebrate seed dispersers. If reduced seed dispersal has a negative impact on tree population viability, overhunting could lead to altered forest structure and dynamics, including decreased biodiversity. However, empirical data showing decreased animal-dispersed tree abundance in overhunted forests contradict demographic models which predict minimal sensitivity of tree population growth rate to early life stages. One resolution to this discrepancy is that seed dispersal determines spatial aggregation, which could have demographic consequences for all life stages. We tested the impact of dispersal loss on population viability of a tropical tree species, Miliusa horsfieldii, currently dispersed by an intact community of large mammals in a Thai forest. We evaluated the effect of spatial aggregation for all tree life stages, from seeds to adult trees, and constructed simulation models to compare population viability with and without animal-mediated seed dispersal. In simulated populations, disperser loss increased spatial aggregation by fourfold, leading to increased negative density dependence across the life cycle and a 10-fold increase in the probability of extinction. Given that the majority of tree species in tropical forests are animal-dispersed, overhunting will potentially result in forests that are fundamentally different from those existing now.  相似文献   

17.
18.
Most studies concerning the foraging ecology of marine vertebrates are limited to breeding adults, although other life history stages might comprise half the total population. For penguins, little is known about juvenile dispersal, a period when individuals may be susceptible to increased mortality given their naïve foraging behaviour. Therefore, we used satellite telemetry to study king penguin fledglings (n = 18) from two sites in the Southwest Atlantic in December 2007. The two sites differed with respect to climate and proximity to the Antarctic Polar Front (APF), a key oceanographic feature generally thought to be important for king penguin foraging success. Accordingly, birds from both sites foraged predominantly in the vicinity of the APF. Eight king penguins were tracked for periods greater than 120 days; seven of these (three from the Falkland Islands and four from South Georgia) migrated into the Pacific. Only one bird from the Falkland Islands moved into the Indian Ocean, visiting the northern limit of the winter pack-ice. Three others from the Falkland Islands migrated to the eastern coast of Tierra del Fuego before travelling south. Derived tracking parameters describing their migratory behaviour showed no significant differences between sites. Nevertheless, generalized linear habitat modelling revealed that juveniles from the Falkland Islands spent more time in comparatively shallow waters with low sea surface temperature, sea surface height and chlorophyll variability. Birds from South Georgia spent more time in deeper waters with low sea surface temperature and sea surface height, but high concentrations of chlorophyll. Our results indicate that inexperienced king penguins, irrespective of the location of their natal site in relation to the position of the APF, develop their foraging skills progressively over time, including specific adaptations to the environment around their prospective breeding site.  相似文献   

19.
Many organisms use cues to decide whether to disperse or not, especially those related to the composition of their environment. Dispersal hence sometimes depends on population density, which can be important for the dynamics and evolution of sub-divided populations. But very little is known about the factors that organisms use to inform their dispersal decision. We investigated the cues underlying density-dependent dispersal in inter-connected microcosms of the freshwater protozoan Paramecium caudatum. In two experiments, we manipulated (i) the number of cells per microcosm and (ii) the origin of their culture medium (supernatant from high- or low-density populations). We found a negative relationship between population density and rates of dispersal, suggesting the use of physical cues. There was no significant effect of culture medium origin on dispersal and thus no support for chemical cues usage. These results suggest that the perception of density – and as a result, the decision to disperse – in this organism can be based on physical factors. This type of quorum sensing may be an adaptation optimizing small scale monitoring of the environment and swarm formation in open water.  相似文献   

20.
Growth curves are monotonically increasing functions that measure repeatedly the same subjects over time. The classical growth curve model in the statistical literature is the Generalized Multivariate Analysis of Variance (GMANOVA) model. In order to model the tree trunk radius (r) over time (t) of trees on different sites, GMANOVA is combined here with the adapted PL regression model Q = A·T+E, where for and for , A =  initial relative growth to be estimated, , and E is an error term for each tree and time point. Furthermore, Ei[–b·r]  = , , with TPR being the turning point radius in a sigmoid curve, and at is an estimated calibrating time-radius point. Advantages of the approach are that growth rates can be compared among growth curves with different turning point radiuses and different starting points, hidden outliers are easily detectable, the method is statistically robust, and heteroscedasticity of the residuals among time points is allowed. The model was implemented with dendrochronological data of 235 Pinus montezumae trees on ten Mexican volcano sites to calculate comparison intervals for the estimated initial relative growth . One site (at the Popocatépetl volcano) stood out, with being 3.9 times the value of the site with the slowest-growing trees. Calculating variance components for the initial relative growth, 34% of the growth variation was found among sites, 31% among trees, and 35% over time. Without the Popocatépetl site, the numbers changed to 7%, 42%, and 51%. Further explanation of differences in growth would need to focus on factors that vary within sites and over time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号