首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ceramides (CERs) are key intermediate sphingolipids implicated in contributing to mitochondrial dysfunction and the development of multiple metabolic conditions. Despite the growing evidence of CER role in disease risk, kinetic methods to measure CER turnover are lacking, particularly using in vivo models. The utility of orally administered 13C3, 15N l-serine, dissolved in drinking water, was tested to quantify CER 18:1/16:0 synthesis in 10-week-old male and female C57Bl/6 mice. To generate isotopic labeling curves, animals consumed either a control diet or high-fat diet (HFD; n = 24/diet) for 2 weeks and varied in the duration of the consumption of serine-labeled water (0, 1, 2, 4, 7, or 12 days; n = 4 animals/day/diet). Unlabeled and labeled hepatic and mitochondrial CERs were quantified using liquid chromatography tandem MS. Total hepatic CER content did not differ between the two diet groups, whereas total mitochondrial CERs increased with HFD feeding (60%, P < 0.001). Within hepatic and mitochondrial pools, HFD induced greater saturated CER concentrations (P < 0.05) and significantly elevated absolute turnover of 16:0 mitochondrial CER (mitochondria: 59%, P < 0.001 vs. liver: 15%, P = 0.256). The data suggest cellular redistribution of CERs because of the HFD. These data demonstrate that a 2-week HFD alters the turnover and content of mitochondrial CERs. Given the growing data on CERs contributing to hepatic mitochondrial dysfunction and the progression of multiple metabolic diseases, this method may now be used to investigate how CER turnover is altered in these conditions.  相似文献   

2.
Second messengers are small rapidly diffusing molecules or ions that relay signals between receptors and effector proteins to produce a physiological effect. Lipid messengers constitute one of the four major classes of second messengers. The hydrolysis of two main classes of lipids, glycerophospholipids and sphingolipids, generate parallel profiles of lipid second messengers: phosphatidic acid (PA), diacylglycerol (DAG), and lysophosphatidic acid versus ceramide, ceramide-1-phosphate, sphingosine, and sphingosine-1-phosphate, respectively. In this review, we examine the mechanisms by which these lipid second messengers modulate aldosterone production at multiple levels. Aldosterone is a mineralocorticoid hormone responsible for maintaining fluid volume, electrolyte balance, and blood pressure homeostasis. Primary aldosteronism is a frequent endocrine cause of secondary hypertension. A thorough understanding of the signaling events regulating aldosterone biosynthesis may lead to the identification of novel therapeutic targets. The cumulative evidence in this literature emphasizes the critical roles of PA, DAG, and sphingolipid metabolites in aldosterone synthesis and secretion. However, it also highlights the gaps in our knowledge, such as the preference for phospholipase D-generated PA or DAG, as well as the need for further investigation to elucidate the precise mechanisms by which these lipid second messengers regulate optimal aldosterone production.  相似文献   

3.
Hyperhomocysteinemia (HHcy) is considered as a risk factor for several complications, including cardiovascular and neurological disorders. A high methionine low folate (HMLF) diet chronically causes HHcy by accumulating homocysteine in the systemic circulation. Elevated Hcy level is also associated with the incidence of diabetes mellitus. However, very few studies focus on the impact of HMLF diet on glucose homeostasis, and that on gut microbiome profile. HHcy was induced by feeding C57BL/6 mice a HMLF diet for 8 weeks. The HMLF diet feeding resulted in a progressive body weight loss, and development of slight glucose intolerance and insulin resistance in HHcy mice. Notably, the HMLF diet alters the gut microbiome profile and increases the relative abundance of porphyromonadaceae family of bacteria in HHcy mice. These findings provide new insights into the roles of dysregulated glucose homeostasis and gut flora in the pathogenesis of HHcy-related complications.  相似文献   

4.
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease with increased risk in patients with metabolic syndrome. There are no FDA-approved treatments, but FXR agonists have shown promising results in clinical studies for NAFLD management. In addition to FXR, fibroblast growth factor receptor FGFR4 is a key mediator of hepatic bile acid synthesis. Using N-acetylgalactosamine–conjugated siRNA, we knocked down FGFR4 specifically in the liver of mice on chow or high-fat diet and in mouse primary hepatocytes to determine the role of FGFR4 in metabolic processes and hepatic steatosis. Liver-specific FGFR4 silencing increased bile acid production and lowered serum cholesterol. Additionally, we found that high-fat diet–induced liver steatosis and insulin resistance improved following FGFR4 knockdown. These improvements were associated with activation of the FXR-FGF15 axis in intestinal cells, but not in hepatocytes. We conclude that targeting FGFR4 in the liver to activate the intestinal FXR-FGF15 axis may be a promising strategy for the treatment of NAFLD and metabolic dysfunction.  相似文献   

5.
The Δ-6 desaturase (D6D) enzyme is not only critical for the synthesis of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from α-linolenic acid (ALA), but recent evidence suggests that it also plays a role in adipocyte lipid metabolism and body weight; however, the mechanisms remain largely unexplored. The goal of this study was to investigate if a D6D deficiency would inhibit triacylglycerol storage and alter lipolytic and lipogenic pathways in mouse white adipose tissue (WAT) depots due to a disruption in EPA and DHA production. Male C57BL/6J D6D knockout (KO) and wild-type (WT) mice were fed either a 7% w/w lard or flax (ALA rich) diet for 21 weeks. Energy expenditure, physical activity, and substrate utilization were measured with metabolic caging. Inguinal and epididymal WAT depots were analyzed for changes in tissue weight, fatty acid composition, adipocyte size, and markers of lipogenesis, lipolysis, and insulin signaling. KO mice had lower body weight, higher serum nonesterified fatty acids, smaller WAT depots, and reduced adipocyte size compared to WT mice without altered food intake, energy expenditure, or physical activity, regardless of the diet. Markers of lipogenesis and lipolysis were more highly expressed in KO mice compared to WT mice in both depots, regardless of the diet. These changes were concomitant with lower basal insulin signaling in WAT. Collectively, a D6D deficiency alters triacylglycerol/fatty acid cycling in WAT by promoting lipolysis and reducing fatty acid re-esterification, which may be partially attributed to a reduction in WAT insulin signaling.  相似文献   

6.
CYP7B1 catalyzes mitochondria-derived cholesterol metabolites such as (25R)26-hydroxycholesterol (26HC) and 3β-hydroxy-5-cholesten-(25R)26-oic acid (3βHCA) and facilitates their conversion to bile acids. Disruption of 26HC/3βHCA metabolism in the absence of CYP7B1 leads to neonatal liver failure. Disrupted 26HC/3βHCA metabolism with reduced hepatic CYP7B1 expression is also found in nonalcoholic steatohepatitis (NASH). The current study aimed to understand the regulatory mechanism of mitochondrial cholesterol metabolites and their contribution to onset of NASH. We used Cyp7b1−/− mice fed a normal diet (ND), Western diet (WD), or high-cholesterol diet (HCD). Serum and liver cholesterol metabolites as well as hepatic gene expressions were comprehensively analyzed. Interestingly, 26HC/3βHCA levels were maintained at basal levels in ND-fed Cyp7b1−/− mice livers by the reduced cholesterol transport to mitochondria, and the upregulated glucuronidation and sulfation. However, WD-fed Cyp7b1−/− mice developed insulin resistance (IR) with subsequent 26HC/3βHCA accumulation due to overwhelmed glucuronidation/sulfation with facilitated mitochondrial cholesterol transport. Meanwhile, Cyp7b1−/− mice fed an HCD did not develop IR or subsequent evidence of liver toxicity. HCD-fed mice livers revealed marked cholesterol accumulation but no 26HC/3βHCA accumulation. The results suggest 26HC/3βHCA-induced cytotoxicity occurs when increased cholesterol transport into mitochondria is coupled to decreased 26HC/3βHCA metabolism driven with IR. Supportive evidence for cholesterol metabolite-driven hepatotoxicity is provided in a diet-induced nonalcoholic fatty liver mouse model and by human specimen analyses. This study uncovers an insulin-mediated regulatory pathway that drives the formation and accumulation of toxic cholesterol metabolites within the hepatocyte mitochondria, mechanistically connecting IR to cholesterol metabolite-induced hepatocyte toxicity which drives nonalcoholic fatty liver disease.  相似文献   

7.
8.
Plasma lipid levels are altered in chronic conditions such as type 2 diabetes and cardiovascular disease as well as during acute stresses such as fasting and cold exposure. Advances in MS-based lipidomics have uncovered a complex plasma lipidome of more than 500 lipids that serve functional roles, including as energy substrates and signaling molecules. This plasma lipid pool is maintained through regulation of tissue production, secretion, and uptake. A major challenge in understanding the lipidome complexity is establishing the tissues of origin and uptake for various plasma lipids, which is valuable for determining lipid functions. Using cold exposure as an acute stress, we performed global lipidomics on plasma and in nine tissues that may contribute to the circulating lipid pool. We found that numerous species of plasma acylcarnitines (ACars) and ceramides (Cers) were significantly altered upon cold exposure. Through computational assessment, we identified the liver and brown adipose tissue as major contributors and consumers of circulating ACars, in agreement with our previous work. We further identified the kidney and intestine as novel contributors to the circulating ACar pool and validated these findings with gene expression analysis. Regression analysis also identified that the brown adipose tissue and kidney are interactors with the plasma Cer pool. Taken together, these studies provide an adaptable computational tool to assess tissue contribution to the plasma lipid pool. Our findings have further implications in understanding the function of plasma ACars and Cers, which are elevated in metabolic diseases.  相似文献   

9.
Oral and gut Bacteroidetes produce unique classes of serine-glycine lipodipeptides and glycine aminolipids that signal through host Toll-like receptor 2. These glycine lipids have also been detected in human arteries, but their effects on atherosclerosis are unknown. Here, we sought to investigate the bioactivity of bacterial glycine lipids in mouse models of atherosclerosis. Lipid 654 (L654), a serine-glycine lipodipeptide species, was first tested in a high-fat diet (HFD)-fed Ldlr?/? model of atherosclerosis. Intraperitoneal administration of L654 over 7 weeks to HFD-fed Ldlr?/? mice resulted in hypocholesterolemic effects and significantly attenuated the progression of atherosclerosis. We found that L654 also reduced liver inflammatory and extracellular matrix gene expression, which may be related to inhibition of macrophage activation as demonstrated in vivo by lower major histocompatibility complex class II gene expression and confirmed in cell experiments. In addition, L654 and other bacterial glycine lipids in feces, liver, and serum were markedly reduced alongside changes in Bacteroidetes relative abundance in HFD-fed mice. Finally, we tested the bioactivities of L654 and related lipid 567 in chow-fed Apoe?/? mice, which displayed much higher fecal glycine lipids relative to HFD-fed Ldlr?/? mice. Administration of L654 or lipid 567 for 7 weeks to these mice reduced the liver injury marker alanine aminotransferase, but other effects seen in Ldlr?/? were not observed. Therefore, we conclude that conditions in which gut microbiome-derived glycine lipids are lost, such as HFD, may exacerbate the development of atherosclerosis and liver injury, whereas correction of such depletion may protect from these disorders.  相似文献   

10.
The cellular energy and biomass demands of cancer drive a complex dynamic between uptake of extracellular FAs and their de novo synthesis. Given that oxidation of de novo synthesized FAs for energy would result in net-energy loss, there is an implication that FAs from these two sources must have distinct metabolic fates; however, hitherto, all FAs have been considered part of a common pool. To probe potential metabolic partitioning of cellular FAs, cancer cells were supplemented with stable isotope-labeled FAs. Structural analysis of the resulting glycerophospholipids revealed that labeled FAs from uptake were largely incorporated to canonical (sn-) positions on the glycerol backbone. Surprisingly, labeled FA uptake also disrupted canonical isomer patterns of the unlabeled lipidome and induced repartitioning of n-3 and n-6 PUFAs into glycerophospholipid classes. These structural changes support the existence of differences in the metabolic fates of FAs derived from uptake or de novo sources and demonstrate unique signaling and remodeling behaviors usually hidden from conventional lipidomics.  相似文献   

11.
Acetoacetyl-CoA synthetase (AACS) is the key enzyme in the anabolic utilization of ketone bodies (KBs) for denovo lipid synthesis, a process that bypasses citrate and ATP citrate lyase. This review shows that AACS is a highly regulated, cytosolic, and lipogenic enzyme and that many tissues can readily use KBs for denovo lipid synthesis. AACS has a low micromolar Km for acetoacetate, and supply of acetoacetate should not limit its activity in the fed state. In many tissues, AACS appears to be regulated in conjunction with the need for cholesterol, but in adipose tissue, it seems tied to fatty acid synthesis. KBs are readily utilized as substrates for lipid synthesis in lipogenic tissues, including liver, adipose tissue, lactating mammary gland, skin, intestinal mucosa, adrenals, and developing brain. In numerous studied cases, KBs served several-fold better than glucose as substrates for lipid synthesis, and when present, KBs suppressed the utilization of glucose for lipid synthesis. Here, it is hypothesized that a physiological role for the utilization of KBs for lipid synthesis is a metabolic process of lipid interconversion. Fatty acids are converted to KBs in liver, and then, the KBs are utilized to synthesize cholesterol and other long-chain fatty acids in liver and nonhepatic tissues. The conversion of fatty acids to cholesterol via the KBs may be a particularly important example of lipid interconversion. Utilizing KBs for lipid synthesis is glucose sparing and probably is important with low carbohydrate diets. Metabolic situations and tissues where this pathway may be important are discussed.  相似文献   

12.
Peroxisomes are single-membrane bounded organelles that in humans play a dual role in lipid metabolism, including the degradation of very long-chain fatty acids and the synthesis of ether lipids/plasmalogens. The first step in de novo ether lipid synthesis is mediated by the peroxisomal enzyme glyceronephosphate O-acyltransferase, which has a strict substrate specificity reacting only with the long-chain acyl-CoAs. The aim of this study was to determine the origin of these long-chain acyl-CoAs. To this end, we developed a sensitive method for the measurement of de novo ether phospholipid synthesis in cells and, by CRISPR-Cas9 genome editing, generated a series of HeLa cell lines with deficiencies of proteins involved in peroxisomal biogenesis, beta-oxidation, ether lipid synthesis, or metabolite transport. Our results show that the long-chain acyl-CoAs required for the first step of ether lipid synthesis can be imported from the cytosol by the peroxisomal ABCD proteins, in particular ABCD3. Furthermore, we show that these acyl-CoAs can be produced intraperoxisomally by chain shortening of CoA esters of very long-chain fatty acids via beta-oxidation. Our results demonstrate that peroxisomal beta-oxidation and ether lipid synthesis are intimately connected and that the peroxisomal ABC transporters play a crucial role in de novo ether lipid synthesis.  相似文献   

13.
The lipids in the uppermost layer of the skin, the stratum corneum (SC), play an important role in the skin barrier function. The three main subclasses in the SC lipid matrix are ceramides (CER), cholesterol, and free fatty acids. In inflammatory skin diseases, such as atopic dermatitis and psoriasis, the SC lipid composition is modulated compared to the composition in healthy SC. One of the main alterations is the molar ratio between the concentration of CER N-(tetracosanoyl)-sphingosine (CER NS) and CER N-(tetracosanoyl)-phytosphingosine (CER NP), which correlated with an impaired skin barrier function. In the present study, we investigated the impact of varying the CER NS:CER NP ratios on the lipid organization, lipid arrangement, and barrier functionality in SC lipid model systems. The results indicate that a higher CER NS:CER NP ratio as observed in diseased skin did not alter the lipid organization or lipid arrangement in the long periodicity phase encountered in SC. The trans-epidermal water loss, an indication of the barrier functionality, was significantly higher for the CER NS:CER NP 2:1 model (mimicking the ratio in inflammatory skin diseases) compared to the CER NS:CER NP 1:2 ratio (in healthy skin). These findings provide a more detailed insight into the lipid organization in both healthy and diseased skin and suggest that in vivo the molar ratio between CER NS:CER NP contributes to barrier impairment as well but might not be the main factor.  相似文献   

14.
Large quantities of vitamin A are stored as retinyl esters (REs) in specialized liver cells, the hepatic stellate cells (HSCs). To date, the enzymes controlling RE degradation in HSCs are poorly understood. In this study, we identified KIAA1363 (also annotated as arylacetamide deacetylase 1 or neutral cholesterol ester hydrolase 1) as a novel RE hydrolase. We show that KIAA1363 is expressed in the liver, mainly in HSCs, and exhibits RE hydrolase activity at neutral pH. Accordingly, addition of the KIAA1363-specific inhibitor JW480 largely reduced RE hydrolase activity in lysates of cultured murine and human HSCs. Furthermore, cell fractionation experiments and confocal microscopy studies showed that KIAA1363 localizes to the endoplasmic reticulum. We demonstrate that overexpression of KIAA1363 in cells led to lower cellular RE content after a retinol loading period. Conversely, pharmacological inhibition or shRNA-mediated silencing of KIAA1363 expression in cultured murine and human HSCs attenuated RE degradation. Together, our data suggest that KIAA1363 affects vitamin A metabolism of HSCs by hydrolyzing REs at the endoplasmic reticulum, thereby counteracting retinol esterification and RE storage in lipid droplets.  相似文献   

15.
Stereotyped as a nexus of dNTP synthesis, the dual-subunit enzyme — ribonucleotide reductase (RNR) — is coming into view as a paradigm of oligomerization and moonlighting behavior. In the present issue of ‘omics’, we discuss what makes the larger subunit of this enzyme (RNR-α) so interesting, highlighting its emerging cellular interactome based on its unique oligomeric dynamism that dictates its compartment-specific occupations. Linking the history of the field with the multivariable nature of this exceedingly sophisticated enzyme, we further discuss implications of new data pertaining to DNA-damage response, S-phase checkpoints, and ultimately tumor suppression. We hereby hope to provide ideas for those interested in these fields and exemplify conceptual frameworks and tools that are useful to study RNR's broader roles in biology.  相似文献   

16.
17.
18.
Chemotherapy-induced cachexia causes severe metabolic abnormalities independently of cancer and reduces the therapeutic efficacy of chemotherapy. The underlying mechanism of chemotherapy-induced cachexia remains unclear. Here we investigated the cytarabine (CYT)-induced alteration in energy balance and its underlying mechanisms in mice. We compared energy balance-associated parameters among the three groups of mice: CON, CYT, and PF (pair-fed mice with the CYT group) that were intravenously administered vehicle or CYT. Weight gain, fat mass, skeletal muscle mass, grip strength, and nocturnal energy expenditure were significantly lowered in the CYT group than in the CON and PF groups. The CYT group demonstrated less energy intake than the CON group and higher respiratory quotient than the PF group, indicating that CYT induced cachexia independently from the anorexia-induced weight loss. Serum triglyceride was significantly lower in the CYT group than in the CON group, whereas the intestinal mucosal triglyceride levels and the lipid content within the small intestine enterocyte were higher after lipid loading in the CYT group than in the CON and PF groups, suggesting that CYT inhibited lipid uptake in the intestine. This was not associated with obvious intestinal damage. The CYT group showed increased zipper-like junctions of lymphatic endothelial vessel in duodenal villi compared to that in the CON and CYT groups, suggesting their imperative role in the CYT-induced inhibition of lipid uptake. CYT worsens cachexia independently of anorexia by inhibiting the intestinal lipid uptake, via the increased zipper-like junctions of lymphatic endothelial vessel.  相似文献   

19.
Moisturizing compounds are commonly applied topically to human stratum corneum (SC). Many types of molecular species are employed, most commonly including humectants and occlusives. We find new evidence of keratin dispersion caused by the moisturizing compound ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid), and provide the first characterization of its impacts on the hydration kinetics and biomechanics of SC. A second compound, 2-(2-hydroxyethoxy)ethylguanidine succinate (HEG) was investigated for comparison. A suite of biomechanical and biochemical assays including FTIR, drying stress, and cellular cohesion were used. Studies were conducted on normal, lipid-extracted, and lipid plus natural moisturizing factor extracted SC. Ectoine was found to improve the dispersity and hydration of keratin bundles in corneocytes. It also decreased rates of stress development in lipid extracted SC when exposed to a dry environment by ~30% while improving stress reduction during rehydration by ~20%. Peak stresses were increased in harsh drying environments of <5% RH, but SC swelling measurements suggest that water retention was improved in ambient conditions. Further, changes up to ~4 J/m2 were seen in cohesion after ectoine treatments, suggesting corneodesmosome interactions. HEG was tested and found to disperse keratin without impacting corneodesmosomes. These results indicate that keratin dispersants produce beneficial effects on SC hydration kinetics, ultimately resulting in higher SC hydration under ambient conditions.  相似文献   

20.
Human and animal model data show that maternal obesity promotes nonalcoholic fatty liver disease in offspring and alters bile acid (BA) homeostasis. Here we investigated whether offspring exposed to maternal obesogenic diets exhibited greater cholestatic injury. We fed female C57Bl6 mice conventional chow (CON) or high fat/high sucrose (HF/HS) diet and then bred them with lean males. Offspring were fed 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) for 2 weeks to induce cholestasis, and a subgroup was then fed CON for an additional 10 days. Additionally, to evaluate the role of the gut microbiome, we fed antibiotic-treated mice cecal contents from CON or HF/HS offspring, followed by DDC for 2 weeks. We found that HF/HS offspring fed DDC exhibited increased fine branching of the bile duct (ductular reaction) and fibrosis but did not differ in BA pool size or intrahepatic BA profile compared to offspring of mice fed CON. We also found that after 10 days recovery, HF/HS offspring exhibited sustained ductular reaction and periportal fibrosis, while lesions in CON offspring were resolved. In addition, cecal microbiome transplant from HF/HS offspring donors worsened ductular reaction, inflammation, and fibrosis in mice fed DDC. Finally, transfer of the microbiome from HF/HS offspring replicated the cholestatic liver injury phenotype. Taken together, we conclude that maternal HF/HS diet predisposes offspring to increased cholestatic injury after DDC feeding and delays recovery after returning to CON diets. These findings highlight the impact of maternal obesogenic diet on hepatobiliary injury and repair pathways during experimental cholestasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号