首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement.  相似文献   

2.
The steady two-dimensional flow and heat transfer over a stretching/shrinking sheet in a nanofluid is investigated using Buongiorno’s nanofluid model. Different from the previously published papers, in the present study we consider the case when the nanofluid particle fraction on the boundary is passively rather than actively controlled, which make the model more physically realistic. The governing partial differential equations are transformed into nonlinear ordinary differential equations by a similarity transformation, before being solved numerically by a shooting method. The effects of some governing parameters on the fluid flow and heat transfer characteristics are graphically presented and discussed. Dual solutions are found to exist in a certain range of the suction and stretching/shrinking parameters. Results also indicate that both the skin friction coefficient and the local Nusselt number increase with increasing values of the suction parameter.  相似文献   

3.
In this study, the steady forced convection flow and heat transfer due to an impermeable stretching surface in a porous medium saturated with a nanofluid are investigated numerically. The Brinkman-Forchheimer model is used for the momentum equations (porous medium), whereas, Bongiorno’s model is used for the nanofluid. Uniform temperature and nanofluid volume fraction are assumed at the surface. The boundary layer equations are transformed to ordinary differential equations in terms of the governing parameters including Prandtl and Lewis numbers, viscosity ratio, porous medium, Brownian motion and thermophoresis parameters. Numerical results for the velocity, temperature and concentration profiles, as well as for the reduced Nusselt and Sherwood numbers are obtained and presented graphically.  相似文献   

4.
The effects of hydrodynamic and thermal slip boundary conditions on the double-diffusive free convective flow of a nanofluid along a semi-infinite flat solid vertical plate are investigated numerically. It is assumed that free stream is moving. The governing boundary layer equations are non-dimensionalized and transformed into a system of nonlinear, coupled similarity equations. The effects of the controlling parameters on the dimensionless velocity, temperature, solute and nanofluid concentration as well as on the reduced Nusselt number, reduced Sherwood number and the reduced nanoparticle Sherwood number are investigated and presented graphically. To the best of our knowledge, the effects of hydrodynamic and thermal slip boundary conditions have not been investigated yet. It is found that the reduced local Nusselt, local solute and the local nanofluid Sherwood numbers increase with hydrodynamic slip and decrease with thermal slip parameters.  相似文献   

5.
The turbulent properties of conducting fluids in an external constant magnetic field are known to change with increasing field strength. A study is made of the behavior of the second-order structural function of the velocity field in a homogeneous incompressible turbulent fluid in the presence of an external uniform magnetic field. It is shown that, depending on the magnetic field strength, there may be different governing parameters of the system in both the inertial and dissipative intervals of turbulence. This leads to new spectral scalings that are consistent with experimental ones.  相似文献   

6.
The present exploration discusses the influence of Newtonian heating on the magnetohydrodynamic (MHD) three dimensional couple stress nanofluid past a stretching surface. Viscous dissipation and Joule heating effects are also considered. Moreover, the nanofluid model includes the combined effects of thermophoresis and Brownian motion. Using an appropriate transformation, the governing non linear partial differential equations are converted into nonlinear ordinary differential equations. Series solutions using Homotopy Analysis method (HAM) are computed. Plots are presented to portrait the arising parameters in the problem. It is seen that an increase in conjugate heating parameter results in considerable increase in the temperature profile of the stretching wall. Skin friction coefficient, local Nusselt and local Sherwood numbers tabulated and analyzed. Higher values of conjugate parameter, Thermophoresis parameter and Brownian motion parameter result in enhancement of temperature distribution.  相似文献   

7.
This article addresses the steady three-dimensional flow of an Oldroyd-B nanofluid over a bidirectional stretching surface with heat generation/absorption effects. Suitable similarity transformations are employed to reduce the governing partial differential equations into coupled nonlinear ordinary differential equations. These nonlinear ordinary differential equations are then solved analytically by using the homotpy analysis method (HAM). Graphically results are presented and discussed for various parameters, namely, Deborah numbers and , heat generation/absorption parameter Prandtl parameter , Brownian motion parameters, thermophoresis parameter and Lewis number . We have seen that the increasing values of the Brownian motion parameter and thermophoresis parameter leads to an increase in the temperature field and thermal boundary layer thickness while the opposite behavior is observed for concentration field and concentration boundary layer thickness. To see the validity of the present work, the numerical results are compared with the analytical solutions obtained by Homotopy analysis method and noted an excellent agreement for the limiting cases.  相似文献   

8.
A system is described that is capable of producing extremely low frequency (ELF) magnetic fields for relatively short-term exposure of cultured mammalian cells. The system utilizes a ferromagnetic core to contain and direct the magnetic field of a 1,000 turn solenoidal coil and can produce a range of flux densities and induced electric fields much higher than those produced by Helmholtz coils. The system can generate magnetic fields from the microtesla (μT) range up to 0.14 T with induced electric field strengths on the order of 1.0 V/m. The induced electric field can be accurately varied by changing the sample chamber configuration without changing the exposure magnetic field. This gives the system the ability to separate the bioeffects of magnetic and induced electric fields. In the frequency range of 4–100 Hz and magnetic flux density range of 0.005–0.14 T, the maximum total harmonic distortion of the induced electric field is typically less than 1.0%. The temperature of the samples is held constant to within 0.4°C by constant perfusion of warmed culture medium through the sample chamber. © 1993 Wiley-Liss, Inc.  相似文献   

9.
Modeling and simulation of the temperature distribution, the mass concentration, and the heat transfer in the breast tissue are hot issues in magnetic fluid hyperthermia treatment of cancer. The breast tissue can be visualized as a porous matrix with saturated blood. In this paper, 3D in silico study of breast cancer hyperthermia using magnetic nanoparticles (MNPs) is conducted. The 3D FEM models are incorporated to investigate the infusion and backflow of nanofluid in the breast tumor, the diffusion of nanofluid, temperature distribution during the treatment, and prediction of the fraction of tumor necrosis while dealing with the thermal therapy. All the hyperthermia procedures are simulated and analyzed on COMSOL Multiphysics. The sensitivity of frequency and amplitude of the applied magnetic field (AMF) is investigated on the heating effect of the tumor. The mesh dependent solution of Penne's bioheat model is also analyzed. The simulated results demonstrate successful breast cancer treatment using MNPs with minimum side effects. Validation of current simulations results with experimental studies existing in literature advocates the success of our therapy. The increase in the amplitude and frequency of the AMF increases of the temperature in the tumor. The variation of mesh from coarser to finer increased the temperature through small fractions. We have also simulated the magnetic induction problem where the magnetic field is generated by current-carrying coil conductors induce heat in nearby breast tumors due to excitation of MNPs by magnetic flux. This research will aid treatment protocols and real-time clinical breast cancer treatments.  相似文献   

10.
The magnetohydrodynamic (MHD) stagnation point flow of a nanofluid over a permeable stretching/shrinking sheet is studied. Numerical results are obtained using boundary value problem solver bvp4c in MATLAB for several values of parameters. The numerical results show that dual solutions exist for the shrinking case, while for the stretching case, the solution is unique. A stability analysis is performed to determine the stability of the dual solutions. For the stable solution, the skin friction is higher in the presence of magnetic field and increases when the suction effect is increased. It is also found that increasing the Brownian motion parameter and the thermophoresis parameter reduces the heat transfer rate at the surface.  相似文献   

11.
The two-dimensional boundary layer flow and heat transfer to Sisko nanofluid over a non-linearly stretching sheet is scrutinized in the concerned study. Our nanofluid model incorporates the influences of the thermophoresis and Brownian motion. The convective boundary conditions are taken into account. Implementation of suitable transformations agreeing with the boundary conditions result in reduction of the governing equations of motion, energy and concentration into non-linear ordinary differential equations. These coupled non-linear ordinary differential equations are solved analytically by using the homotopy analysis method (HAM) and numerically by the shooting technique. The effects of the thermophoresis and Brownian motion parameters on the temperature and concentration fields are analyzed and graphically presented. The secured results make it clear that the temperature distribution is an increasing function of the thermophoresis and Brownian motion parameters and concentration distribution increases with the thermophoresis parameter but decreases with the Brownian motion parameter. To see the validity of the present work, we made a comparison with the numerical results as well as previously published work with an outstanding compatibility.  相似文献   

12.
In this study, we examined cleavage and survival of fertilized Xenopus embryos exposed to 8 T static magnetic fields (SMFs). We investigated fertilized Xenopus embryos exposed to magnetic field either in static chamber or in a rotating culture system. Our results showed that the exposure to the strong magnetic field of 8 T changed the third cleavage furrow from the usual horizontal one to a perpendicular one; however, when the direction of gravity was randomized by exposing embryos to magnetic field in a rotating culture system, the third cleavage furrow were formed horizontally, a finding which suggests that the observed distortion of the third cleavage furrow in magnetism-exposed embryos was accomplished by altering gravity effects which were elicited by diamagnetic force due to high gradient magnetic field. Our results also showed that the exposure to the strong magnetic field did not damage survival. These results demonstrate that SMF and altering gravity cause distortion of the third cleavage furrow and show that effects of exposing cleavage embryos to magnetic field were transient and did not affect the post-cleavage development. We also showed that strong magnetic field is not hazardous to the cleavage and blastula-gastrula transition of developing embryonic cells.  相似文献   

13.
This article investigates the magnetohydrodynamic (MHD) three-dimensional flow of couple stress nanofluid subject to the convective boundary condition. Flow is generated due to a nonlinear stretching of the surface in two lateral directions. Temperature and nanoparticles concentration distributions are studied through the Brownian motion and thermophoresis effects. Couple stress fluid is considered electrically conducting through a non-uniform applied magnetic field. Mathematical formulation is developed via boundary layer approach. Nonlinear ordinary differential systems are constructed by employing suitable transformations. The resulting systems have been solved for the convergent series solutions of velocities, temperature and nanoparticles concentration profiles. Graphs are sketched to see the effects of different interesting flow parameters on the temperature and nanoparticles concentration distributions. Numerical values are computed to analyze the values of skin-friction coefficients and Nusselt number.  相似文献   

14.
为了进一步探索经颅磁刺激工作机理并改进或研制出新的经颅磁刺激激励源.本文从经颅磁刺激的原理推导出了磁场、感应电流及激励源原理电路电流的表达式,利用大脑-线圈和大脑-线圈-铁芯两种经颅磁刺激模型分析影响因素与头模型各组织的磁场和感应电流分布.对比分析表明电流的性质,线圈半径,线圈激励特性与铁芯对感应电流分布与电磁场分布有着本质的影响.对经颅磁刺激参数及结构要件的研究与分析可用于指导刺激线圈参数及激励源电路参数的设置,以及探索新的激励源制作.  相似文献   

15.
We have studied the effects of a weak permanent magnetic field (PMF) with strength of 403 A/m on the composition and content of polar and neutral lipids and the composition of their fatty acids (FAs). The lipids were isolated from the third, fourth, and fifth leaves of onion (Allium cepa L., cv. Arzamasskii) plants, and their composition was determined using TLC and GLC techniques. Plants growth under the conditions of a natural geomagnetic field served as a control. Most intense changes in the lipid content induced by PMF were observed in the fourth onion leaf. The content of total lipids and that of polar lipids (glyco-and phospholipids) changed, whereas the content of neutral lipids either decreased or remained unchanged. The phospholipid/sterol ratio increased, causing an increase in the fluidity of the membrane lipid bilayer. PMF induced an increase in the concentration of linolenic acid and the relative content of total unsaturated FAs. The effects of PMF on the content and composition of lipids in the third and fifth onion leaves were less pronounced, demonstrating differences between the leaves of various ages in their sensitivity to the effects of magnetic field. It is concluded that changes in the weak PMF within the limits of changes in the strength of geomagnetic field in the course of evolution can affect biochemical and physiological processes of plants.  相似文献   

16.

We explore the physical influence of magnetic field on double-diffusive convection in complex biomimetic (peristaltic) propulsion of nanofluid through a two-dimensional divergent channel. Additionally, porosity effects along with rheological properties of the fluid are also retained in the analysis. The mathematical model is developed by equations of continuity, momentum, energy, and mass concentration. First, scaling analysis is introduced to simplify the rheological equations in the wave frame of reference and then get the final form of equations after applying the low Reynolds number and lubrication approach. The obtained equations are solved analytically by using integration method. Physical interpretation of velocity, pressure gradient, pumping phenomena, trapping phenomena, heat, and mass transfer mechanisms are discussed in detail under magnetic and porous environment. The magnitude of velocity profile is reduced by increasing Grashof parameter. The bolus circulations disappeared from trapping phenomena for larger strength of magnetic and porosity medium. The magnitude of temperature profile and mass concentration are increasing by enhancing the Brownian motion parameter. This study can be productive in manufacturing non-uniform and divergent shapes of micro-lab-chip devices for thermal engineering, industrial, and medical technologies.

  相似文献   

17.
Journal of Biological Physics - The objective of this research is to study the combined influences of applied electric and magnetic fields on the two-phase peristaltic motion of nanofluid through a...  相似文献   

18.
Two-dimensional hydromagnetic flow of an incompressible Jeffrey nanofluid over an exponentially stretching surface is examined in the present article. Heat and mass transfer analysis is performed in the presence of thermal radiation, viscous dissipation, and Brownian motion and thermophoresis effects. Mathematical modelling of considered flow problem is developed under boundary layer and Rosseland’s approximations. The governing nonlinear partial differential equations are converted into ordinary differential equations via transformations. Solution expressions of velocity, temperature and concentration are presented in the series forms. Impacts of physical parameters on the dimensionless temperature and concentration are shown and discussed. Skin-friction coefficients are analyzed numerically. A comparison in a limiting sense is provided to validate the present series solutions.  相似文献   

19.
Orientation of cellulose nanowhiskers (CNWs) derived from tunicates, in an all-cellulose nanocomposite, is achieved through the application of a magnetic field. CNWs are incorporated into a dissolved cellulose matrix system and during solvent casting of the nanocomposite a magnetic field is applied to induce their alignment. Unoriented CNW samples, without the presence of a magnetic field, are also produced. The CNWs are found to orient under the action of the magnetic field, leading to enhanced stiffness and strength of the composites, but not to the level that is theoretically predicted for a fully aligned system. Lowering the volume fraction of the CNWs is shown to allow them to orient more readily in the magnetic field, leading to larger relative increases in the mechanical properties. It is shown, using polarized light microscopy, that the all-cellulose composites have a domain structure, with some domains showing pronounced orientation of CNWs and others where no preferred orientation occurs. Raman spectroscopy is used to both follow the position of bands located at ~1095 and ~895 cm(-1) with deformation and also their intensity as a function rotation angle of the specimens. It is shown that these approaches give valuable independent information on the respective molecular deformation and orientation of the CNWs, and the molecules in the matrix phase, in oriented and nonoriented domains of all-cellulose composites. These data are then related to an increase in the level of molecular deformation in the axial direction, as revealed by the Raman technique. Little orientation of the matrix phase is observed under the action of the magnetic field indicating the dominance of the stiff CNWs in governing mechanical properties.  相似文献   

20.
Electric fields, which are ubiquitous in the context of neurons, are induced either by external electromagnetic fields or by endogenous electric activities. Clinical evidences point out that magnetic stimulation can induce an electric field that modulates rhythmic activity of special brain tissue, which are associated with most brain functions, including normal and pathological physiological mechanisms. Recently, the studies about the relationship between clinical treatment for psychiatric disorders and magnetic stimulation have been investigated extensively. However, further development of these techniques is limited due to the lack of understanding of the underlying mechanisms supporting the interaction between the electric field induced by magnetic stimulus and brain tissue. In this paper, the effects of steady DC electric field induced by magnetic stimulation on the coherence of an interneuronal network are investigated. Different behaviors have been observed in the network with different topologies (i.e., random and small-world network, modular network). It is found that the coherence displays a peak or a plateau when the induced electric field varies between the parameter range we defined. The coherence of the neuronal systems depends extensively on the network structure and parameters. All these parameters play a key role in determining the range for the induced electric field to synchronize network activities. The presented results could have important implications for the scientific theoretical studies regarding the effects of magnetic stimulation on human brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号