首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the past decade, the phenomenon of immune priming was documented in many invertebrates in a large number of studies; however, in most of these studies, behavioral evidence was used to identify the immune priming. The underlying mechanism and the degree of specificity of the priming response remain unclear. We studied the mechanism of immune priming in the larvae of the silkworm, Bombyx mori, and analyzed the specificity of the priming response using two closely related Gram-negative pathogenic bacteria (Photorhabdus luminescens TT01 and P. luminescens H06) and one Gram-positive pathogenic bacterium (Bacillus thuringiensis HD-1). Primed with heat-killed bacteria, the B. mori larvae were more likely to survive subsequent homologous exposure (the identical bacteria used in the priming and in the subsequent challenge) than heterologous (different bacteria used in the priming and subsequent exposure) exposure to live bacteria. This result indicated that the B. mori larvae possessed a strong immune priming response and revealed a degree of specificity to TT01, H06 and HD-1 bacteria. The degree of enhanced immune protection was positively correlated with the level of phagocytic ability of the granular cells and the antibacterial activity of the cell-free hemolymph. Moreover, the granular cells of the immune-primed larvae increased the phagocytosis of a previously encountered bacterial strain compared with other bacteria. Thus, the enhanced immune protection of the B. mori larvae after priming was mediated by the phagocytic ability of the granular cells and the antibacterial activity of the hemolymph; the specificity of the priming response was primarily attributed to the phagocytosis of bacteria by the granular cells.  相似文献   

2.
3.
Although lysis of invading organisms is a major innate form of immunity used by invertebrates, it remains unclear whether herbivorous insects have hemolysin or not. To address this general question, we tested the hemolytic (HL) activity of the hemolymph and tissue extracts from various stages of the polyphagous insect Helicoverpa armigera (Hübner) against the erythrocytes from chicken, duck, and rabbit. An HL activity was identified in the hemolymph of H. armigera larvae. Further studies demonstrated that the HL activity is proteinaceous as it was precipitable by deproteinizing agents. Hemolysins were found in Helicoverpa egg, larva, pupa, and adult, but the activity was higher in feeding larvae than in molting or newly molted larvae. Hemolysins were distributed among a variety of larval tissues including salivary gland, fat body, epidermis, midgut, or testes, but the highest activity was found in salivary gland and fat body. Relative to nonparasitized larvae, parasitization of H. armigera larvae by the endoparasitoid Campoletis chlorideae Uchida induced a 3.4‐fold increase in the HL activity in the plasma of parasitized host at day two postparasitization. The present study shows the presence of a parasitoid inducible HL factor in the parasitized insect. The HL activity increased significantly in H. armigera larvae at 12 and 24 h postinjection with Escherichia coli. We infer the HL factor(s) is inducible or due to de novo synthesis, which means that the HL factor(s) is associated with insect immune response by inhibiting or clearance of invading organisms.  相似文献   

4.
5.
Invertebrates mount a sophisticated immune response with the potential to exhibit a form of immune memory through ‘priming’. Increased immune protection following early exposure to bacteria has been found both later in life (within generation priming) and in the next generation (transgeneration priming) in a number of invertebrates. However, it is unclear how general immune priming is and whether immune priming occurs in response to different parasites, including viruses. Here, using Plodia interpuctella (Lepidoptera) and its natural DNA virus, Plodia interpunctella granulosis virus, we find evidence for both within generation and transgeneration immune priming. Individuals previously exposed to low doses of virus, as well as the offspring of exposed individuals, are subsequently less susceptible to viral challenge. Relatively little is known about the mechanisms that underpin viral immunity but it is probable that the viral immune response is somewhat different to that of bacteria. We show that immune priming may, however, be a characteristic of both responses, mediated through different mechanisms, suggesting that immune memory may be a general phenomenon of insect immunity. This is important because immune priming may influence both host–parasite population and evolutionary dynamics.  相似文献   

6.
7.
8.
Trans-generational immune priming in a social insect   总被引:3,自引:0,他引:3       下载免费PDF全文
Detecting functional homology between invertebrate and vertebrate immunity is of interest in terms of understanding the dynamics and evolution of immune systems. Trans-generational effects on immunity are well known from vertebrates, but their existence in invertebrates remains controversial. Earlier work on invertebrates has interpreted increased offspring resistance to pathogens as trans-generational immune priming. However, interpretation of these earlier studies involves some caveats and thus full evidence for a direct effect of maternal immune experience on offspring immunity is still lacking in invertebrates. Here we show that induced levels of antibacterial activity are higher in the worker offspring of the bumblebee, Bombus terrestris L. when their mother queen received a corresponding immune challenge prior to colony founding. This shows trans-generational immune priming in an insect, with ramifications for the evolution of sociality.  相似文献   

9.
《Genomics》2022,114(4):110381
Diamondback moth (DBM), Plutella xylostella L. (Lepidoptera: Plutellidae) is considered one of the most destructive worldwide agricultural pests and has developed various defence mechanisms to fight against the available pesticides. Understanding the host-defence system of P. xylostella is vital for developing biocontrol-based pest management strategies. Although there are several studies on P. xylostella, little is known about the changes in the immune system during the larva-to-adult metamorphosis. RNA-seq and iTRAQ investigations of P. xylostella from 2-day-old fourth instar larvae (L4D2), pupa (P0), and adult (A0) were done to understand these alterations at a molecular level. A total of 412/ 584 up-regulated and 1430/ 757 down-regulated genes/proteins between larva and pupa, 813/ 589 up-regulated and 1206/ 846 down-regulated genes/proteins between pupa and adult were identified. It was shown that the differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) expression were up-regulated during the pupation and emergence of metamorphosis. The pathway enrichment analysis demonstrated that DEGs and DEPs were mainly associated with the energy generation and metabolism and innate immunity of the insect. The expression of immune-related and developmental-related genes were significantly different during the developmental process of P. xylostella. Moreover, the expression of four focused genes, i.e., serine proteinase inhibitor (Serpin-15), prophenoloxidase activating proteinase 1 (PAP-1) and 3a (PAP-3a), Gram-negative bacteria-binding protein (GNBP-6), was different in developmental stages and after Bacillus thuringiensis HD73 and Metarhizium anisopliae infection. The phenoloxidase (PO) activity in plasma was also significantly up-regulated during the pathogen infection. Recombinant proteins PAP-1, PAP-3a, GNBP-6 could significantly trigger the PO activity in vitro, Serpin-15 could suppress the PO activity. Taken together, these results indicate that Serpin-15, PAP-1, PAP-3a, and GNBP-6 might have the potential for co-regulation of immunity and development in P. xylostella. In conclusion, this study provided the immune system dynamics in the developmental process of P. xylostella and identified four candidate genes that can serve as potential targets for pest control strategies.  相似文献   

10.
11.
昆虫免疫致敏研究进展   总被引:1,自引:0,他引:1  
通常认为昆虫缺少获得性免疫(acquired immunity)且完全依赖天然免疫系统(innate immune defense system)来应对病原微生物的感染。然而越来越多的研究表明,昆虫等无脊椎动物早期的病原菌感染经历能够增强后期遭遇病原感染时的免疫力,这种现象称为免疫致敏(immune priming)。类似于脊椎动物的获得性免疫,一些昆虫在致敏后可以展现出极大程度的特异性和记忆性,致敏保护效应甚至可以达到种或菌株水平的特异性,并且可以跨代传递。昆虫在体内缺乏获得性免疫分子元件的基础上,仍然可以实现免疫的记忆性和特异性,说明昆虫的天然免疫系统存在独特的机制来调控该过程。本文综述了昆虫免疫致敏和跨代传递的研究进展,探讨了昆虫免疫致敏发生的特定条件及影响因素,并对昆虫免疫致敏和跨代传递的潜在调控机理进行了阐述。此外,免疫致敏本身可能是耗能的过程,本文也从致敏可塑的角度探讨了致敏反应的适应性代价。最后,对昆虫免疫致敏未来的研究方向以及在害虫防治中的应用前景进行了展望。  相似文献   

12.
13.
14.
15.
为探究大黄鱼(Larimichthys crocea)抗溶藻弧菌(Vibrio alginolyticus)感染的免疫应答机制, 研究通过转录组测序及生物信息学分析的手段, 在转录组水平分析了溶藻弧菌感染24h后大黄鱼头肾中基因表达水平的变化, 共获得1903个差异表达基因(Differentially expressed genes, DEGs), 其中641个上调表达基因, 1262个下调表达基因。通过Gene Ontology(GO)和Kyoto encyclopedia of genes and genomes(KEGG)富集分析发现, 一些先天性免疫相关基因, 包括补体(C1qbp、C1QL2和C7)、热休克蛋白(hspd1、hspa4、hspa5和hspa9)、抗菌肽(Hepcidin-1)、C型凝集素受体(Clec4e和MR1)、己糖激酶(hex1)、精氨酸酶(Arg-II)和线粒体翻译延伸因子(TUFM)等基因表达水平均显著上调; 而许多与获得性免疫相关基因, 包括T、B淋巴细胞增殖分化(FcR5和CCL17)、T细胞调控(TCRα、TCRβ、CD3ε、CD3γδ、CD3ζ、ZAP-70和ITK)及免疫球蛋白参与抗原识别(Ighv 5A、Ighv 914和Ighv XIG14)等基因表达水平均显著下调。结果表明, 在感染早期, 大黄鱼先天性免疫在抵御溶藻弧菌感染中发挥重要作用, 而此时获得性免疫受到了抑制。  相似文献   

16.
Invertebrates have an immune response that differs considerably from the acquired immune response found in vertebrates. However, new studies indicate that past experience with a pathogen can provide individual invertebrates, or their descendants, with enhanced immunity. This prophylactic effect, termed immunological priming, is functionally similar to the acquired immune response in vertebrates. This newfound complexity of invertebrate immunity begs investigation into the conditions under which immunological priming should evolve, and its consequences for population dynamics.  相似文献   

17.
The cotton bollworm Helicoverpa armigera and the tobacco budworm Heliothis virescens are closely related generalist insect herbivores and serious pest species on a number of economically important crop plants including cotton. Even though cotton is well defended by its major defensive compound gossypol, a toxic sesquiterpene dimer, larvae of both species are capable of developing on cotton plants. In spite of severe damage larvae cause on cotton plants, little is known about gossypol detoxification mechanisms in cotton-feeding insects. Here, we detected three monoglycosylated and up to five diglycosylated gossypol isomers in the feces of H. armigera and H. virescens larvae fed on gossypol-supplemented diet. Candidate UDP-glycosyltransferase (UGT) genes of H. armigera were selected by microarray studies and in silico analyses and were functionally expressed in insect cells. In enzymatic assays, we show that UGT41B3 and UGT40D1 are capable of glycosylating gossypol mainly to the diglycosylated gossypol isomer 5 that is characteristic for H. armigera and is absent in H. virescens feces. In conclusion, our results demonstrate that gossypol is partially metabolized by UGTs via glycosylation, which might be a crucial step in gossypol detoxification in generalist herbivores utilizing cotton as host plant.  相似文献   

18.
刘小民  袁明龙 《遗传》2018,40(6):451-466
在长期进化过程中,昆虫形成了强大的天然免疫防御系统,即体液免疫和细胞免疫。体液免疫主要包括Toll、IMD和JAK/STAT 3条信号通路,通过信号转导及免疫途径调控免疫相关基因的表达,诱导产生抗菌肽和其他效应分子。细胞免疫由血细胞介导,主要完成对病原物的包裹、吞噬和集结等。近年来,昆虫基因组学快速发展,通过生物信息学等方法从昆虫基因组数据中已鉴定到大量免疫相关基因,对这些基因的研究加深了人们对昆虫天然免疫分子机制的认识和理解。根据基因功能,免疫相关基因分为识别、信号转导、调制器、效应分子、黑化反应、RNA干扰和其他基因等7类,这些基因通过互作来调控体液免疫和细胞免疫。本文对昆虫免疫相关基因的分类、功能及家族进化等方面的研究成果进行总结,并对今后昆虫免疫的研究重点进行了展望,以期为昆虫免疫分子机制的研究及开发新的害虫防治策略提供依据。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号