首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endothelial cells, covering the inner surface of vessels and the heart, are permanently exposed to fluid flow, which affects the endothelial structure and the function. The response of endothelial cells to fluid shear stress is frequently investigated in cone-plate systems. For this type of device, we performed an analytical and numerical analysis of the steady, laminar, three-dimensional flow of a Newtonian fluid at low Reynolds numbers. Unsteady oscillating and pulsating flow was studied numerically by taking the geometry of a corresponding experimental setup into account. Our investigation provides detailed information with regard to shear-stress distribution at the plate as well as secondary flow. We show that: (i) there is a region on the plate where shear stress is almost constant and an analytical approach can be applied with high accuracy; (ii) detailed information about the flow in a real cone-plate device can only be obtained by numerical simulations; (iii) the pulsating flow is quasi-stationary; and (iv) there is a time lag on the order of 10(-3) s between cone rotation and shear stress generated on the plate.  相似文献   

2.
The fluid dynamic data in Andersen cascade impactor (ACI) are still lacking. Airflows and those affected parameters can be predicted in a preseparator and Andersen cascade impactor (ACI) by computational modeling. This study developed a validated computational fluid dynamic (CFD) model of an ACI and investigated the effects of the preseparator on the CFD parameters. Validation of the computational nozzle velocity for each of the stage 0 to stage 5 of the ACI stages was found to be within a 3.56% error. The flow field indicated that the preseparator accelerated the airflow velocity at the induction tube from 1.13 to 3.71 ± 0.09 m/s and 2.40 to 8.68 ± 0.16 m/s (at 28.3 and 60 L/min of flow rate, respectively). The preseparator produced a nozzle''s wall shear stress ranged from 0.08 to 0.34 Pa on a collection plate, while the ex-preseparator spread wall shear from the plate''s center was in a range of 0.11 to 0.37 Pa (at 28.3 L/min of flow rate). Moreover, the nozzle velocities increased along the distance from the middle of the collection plate to the periphery. The CFD explained the airflow of the preseparator equipped model by accelerating the airflow along the inlet port to maximize the trapping of desirable particles and the generation of a smooth wall shear stress at the collection plate to reduce the particle re-entrainment. While, the ex-preseparator generated an airflow that resulted in a higher wall shear stress occurring on the lower stages.Key words: ACI, flow field, preseparator, wall shear stress  相似文献   

3.
The aim of this work is to develop a unique in vitro set-up in order to analyse the influence of the shear thinning fluid-properties on the flow dynamics within the bulge of an abdominal aortic aneurysm (AAA). From an experimental point of view, the goals are to elaborate an analogue shear thinning fluid mimicking the macroscopic blood behaviour, to characterise its rheology at low shear rates and to propose an experimental device able to manage such an analogue fluid without altering its feature while reproducing physiological flow rate and pressure, through compliant AAA. Once these experimental prerequisites achieved, the results obtained in the present work show that the flow dynamics is highly dependent on the fluid rheology. The main results point out that the propagation of the vortex ring, generated in the AAA bulge, is slower for shear thinning fluids inducing a smaller travelled distance by the vortex ring so that it never impacts the anterior wall in the distal region, in opposition to Newtonian fluids. Moreover, scalar shear rate values are globally lower for shear thinning fluids inducing higher maximum stress values than those for the Newtonian fluids. Consequently, this work highlights that a Newtonian fluid model is finally inadequate to obtain a reliable prediction of the flow dynamics within AAA.  相似文献   

4.
The shear stresses derived from blood flow regulate many aspects of vascular and immunobiology. In vitro studies on the shear stress‐mediated mechanobiology of endothelial cells have been carried out using systems analogous to the cone‐and‐plate viscometer in which a rotating, low‐angle cone applies fluid shear stress to cells grown on an underlying, flat culture surface. We recently developed a device that could perform high‐throughput studies on shear‐mediated mechanobiology through the rotation of cone‐tipped shafts in a standard 96‐well culture plate. Here, we present a model of the three‐dimensional flow within the culture wells with a rotating, cone‐tipped shaft. Using this model we examined the effects of modifying the design parameters of the system to allow the device to create a variety of flow profiles. We first examined the case of steady‐state flow with the shaft rotating at constant angular velocity. By varying the angular velocity and distance of the cone from the underlying plate we were able to create flow profiles with controlled shear stress gradients in the radial direction within the plate. These findings indicate that both linear and non‐linear spatial distributions in shear stress can be created across the bottom of the culture plate. In the transition and “parallel shaft” regions of the system, the angular velocities needed to provide high levels of physiological shear stress (5 Pa) created intermediate Reynolds number Taylor‐Couette flow. In some cases, this led to the development of a flow regime in which stable helical vortices were created within the well. We also examined the system under oscillatory and pulsatile motion of the shaft and demonstrated minimal time lag between the rotation of the cone and the shear stress on the cell culture surface. Biotechnol. Bioeng. 2013; 110: 1782–1793. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
A flow system for the study of shear forces upon cultured endothelial cells   总被引:5,自引:0,他引:5  
A parallel plate chamber in a flow system has been designed to study the effects of fluid shear stresses on cells. The system was applied to the study of cultured endothelial cells grown on cover slips which were accommodated in recessed wells in the base plate. Dye injection studies in the chamber indicated laminar flow over the cells. Shear rates measured over the cover slips by an electrochemical technique were found to be linear with flow rate. Laser doppler anemometry showed parabolic profiles between the plates. Endothelial cells subjected to flow showed a correlation between the time required for orientation and the magnitude of the shear stress.  相似文献   

6.
Forces applied to tendon during movement cause cellular deformation, as well as fluid movement. The goal of this study was to test the hypothesis that rabbit tendon fibroblasts detect and respond to fluid-induced shear stress. Cells were isolated from the paratenon of the rabbit Achilles tendon and then subjected to fluid flow at 1 dyn/cm(2) for 6h in a specially designed multi-slide flow device. The application of fluid flow led to an increased expression of the collagenase-1 (MMP-1), stromelysin-1 (MMP-3), cyclooxygenase II (COX-2) and interleukin-1beta (IL-1beta) genes. The release of proMMP-3 into the medium exhibited a dose-response with the level of fluid shear stress. However, not all cells aligned in the direction of flow. In other experiments, the same cells were incubated with the calcium-reactive dye FURA-2 AM, then subjected to laminar fluid flow in a parallel plate flow chamber. The cells did not significantly increase intracellular calcium concentration when exposed to fluid shear stress levels of up to 25 dyn/cm(2). These results show that gene expression in rabbit tendon cells is sensitive to fluid flow, but that signal transduction is not dependent on intracellular calcium transients. The upregulation of the MMP-1, MMP-3 and COX-2 genes shows that fluid flow could be an important mechanical stimulus for tendon remodelling or injury.  相似文献   

7.
Prevention of microbial adhesion and detachment of adhering microorganisms from surfaces is important in many environmental, industrial, and medical applications. Fluid shear is an obvious parameter for stimulating microbial detachment from surfaces, but recently it has been pointed out that a passing air-liquid interface also has potential in stimulating microbial detachment. In the present study, the ability of microbubbles to stimulate detachment of bacterial strains from a glass surface is compared with the effects of fluid flow. Adhesion and detachment of Actinomyces naeslundii T14V-J1, Streptococcus oralis J22, and their coadhering aggregates were studied on glass, mounted in a parallel plate flow chamber. High fluid wall shear rates (11,000 to 16,000 s(-1)) were established in a laminar flow regime in the absence and presence of microbubbles. Wall shear rates stimulated detachment ranging from 70% to 30% for S. oralis and A. naeslundii, respectively. Coadhering aggregates were detached up to 54%. The presence of microbubbles in the flow increased the detachment of A. naeslundii within 2 min of flow from 40% in the absence of microbubbles to 98%, while detachment of neither S. oralis nor coadhering aggregates was affected by the presence of microbubbles. In summary, extremely high fluid flows can be effective in stimulating microbial detachment, depending on the strain involved. The addition of microbubbles to the flow allows the detachment of tenaciously adhering bacteria not detached by flow alone, but not of adhering coaggregates.  相似文献   

8.
动脉粥样硬化(atherosclerosis)的非随机分布与当地的血流动力环境有关。借助平行平板式平直流槽和以T型分叉流槽为代表的平行平板式异型流槽,可以模拟血管的主要形状特征,首先,在数值模拟的基础上分析了流型特征参数,确定了流槽的设计尺寸。然后,通过实验研究,探讨流型改变对内皮细胞血管活性物质分泌的影响,发现扩张效应流线偏转和驻点效应使得异型流槽前列环素和内皮素的分泌水平与相同入口雷诺数(Re)条件下的平直流槽分别有降低趋势和显著差异。为进一步研究流型对血管内皮细胞的影响提供了实验数据。  相似文献   

9.
The steady boundary layer flow of a viscous and incompressible fluid over a moving vertical flat plate in an external moving fluid with viscous dissipation is theoretically investigated. Using appropriate similarity variables, the governing system of partial differential equations is transformed into a system of ordinary (similarity) differential equations, which is then solved numerically using a Maple software. Results for the skin friction or shear stress coefficient, local Nusselt number, velocity and temperature profiles are presented for different values of the governing parameters. It is found that the set of the similarity equations has unique solutions, dual solutions or no solutions, depending on the values of the mixed convection parameter, the velocity ratio parameter and the Eckert number. The Eckert number significantly affects the surface shear stress as well as the heat transfer rate at the surface.  相似文献   

10.
Synovial joints are loaded by weight bearing, stretching, and fluid-driven shear. To simulate in vitro fluid-driven shear, we developed an "oscillating Couette flow mechanical shear loader". Oscillating Couette flow mimics relative motion of articular surfaces; hence, characterizing flow-induced shear by the loader enhances understanding of mechanotransduction in the joint tissue. Here, the analytical and computational models for an oscillating Couette flow were used to predict time-varying shear distribution on a plate surface, applying numerical simulation to evaluate the effects of finite plate dimension in a 2D flow. Shear stress on the plate was significantly different from that in simpler models (unbounded plates and viscous low-frequency flow). High-stress spots appeared near the leading and trailing edges of a moving plate, and a relatively uniform shear region was restricted to the interior area. Stress prediction in an example experimental geometry is presented, where the frequency and finite width effects are feasibly accounted.  相似文献   

11.
Red cells which adhere to a surface in a parallel plate flow channel are stretched when acted on by a fluid shear stress. Three types of stretching are studied: whole cell stretching, the stretching of a red cell evagination, and tether (long, thin membrane process) stretching. In addition, the stretching of a large scale model cell attached to a surface is studied in a Couette flow channel. The results indicate that the uniaxial stretching of red cell membrane can be described by a linear stress-strain relationship. Simple theories developed from free body diagrams permit the calculation of a value for the modulus of elasticity of cell membrane in each of the three experiments. In all cases the value for the modulus is on the order of 104 dyn/cm2 for an assumed membrane thickness of 0.01 μm. It was also observed that red cell tethers steadily increase in length when the fluid shear stress is greater than approximately 1.5 dyn/cm2 and tether lengths in excess of 200 μm have been achieved. Tethers appear to possess both fluid and elastic properties.  相似文献   

12.
Summary— To analytically study the morphological responses of vascular endothelial cells (ECs) to fluid flow, we designed a parallel plate flow culture chamber in which cells were cultured under fluid shear stress ranging from 0.01 to 2.0 Pa for several days. Via a viewing window of the chamber, EC responses to known levels of fluid shear stress were monitored either by direct observations or by a video-enhanced time-lapse microscopy. Among the responses of cultured ECs to flow, morphological responses take from hours to days to be fully expressed, except for the fluid shear stress-dependent motility pattern change we reported earlier which could be detected within 30 min of flow changes. We report here that ECs exposed to more than 1.0 Pa of fluid shear shear stress have developed lamellipodia in the direction of flow in 10 min. This is the fastest structurally identifiable EC response to fluid shear stress. This was a reversible response. When the flow was stopped or reduced to the level which exerted less than 0.1 Pa of fluid shear stress, the biased lamellipodium development was lost within several minutes. The microtubule organizing center was located posterior to the nucleus in ECs under the influence of flow. However, this position was established only in ECs responding to fluid shear stress for longer than 1 h, indicating that positioning of the microtubule organizing center was not the reason for, but rather the result of, the biased lamellipodium response. Colcemid-treated ECs responded normally to flow, indicating that microtubules were not involved in both flow sensing and the flow-induced, biased lamellipodium development.  相似文献   

13.
Prevention of microbial adhesion and detachment of adhering microorganisms from surfaces is important in many environmental, industrial, and medical applications. Fluid shear is an obvious parameter for stimulating microbial detachment from surfaces, but recently it has been pointed out that a passing air-liquid interface also has potential in stimulating microbial detachment. In the present study, the ability of microbubbles to stimulate detachment of bacterial strains from a glass surface is compared with the effects of fluid flow. Adhesion and detachment of Actinomyces naeslundii T14V-J1, Streptococcus oralis J22, and their coadhering aggregates were studied on glass, mounted in a parallel plate flow chamber. High fluid wall shear rates (11,000 to 16,000 s−1) were established in a laminar flow regime in the absence and presence of microbubbles. Wall shear rates stimulated detachment ranging from 70% to 30% for S. oralis and A. naeslundii, respectively. Coadhering aggregates were detached up to 54%. The presence of microbubbles in the flow increased the detachment of A. naeslundii within 2 min of flow from 40% in the absence of microbubbles to 98%, while detachment of neither S. oralis nor coadhering aggregates was affected by the presence of microbubbles. In summary, extremely high fluid flows can be effective in stimulating microbial detachment, depending on the strain involved. The addition of microbubbles to the flow allows the detachment of tenaciously adhering bacteria not detached by flow alone, but not of adhering coaggregates.  相似文献   

14.
Targeted remodeling is activated by fatigue microcracks and plays an important role in maintaining bone integrity. It is widely believed that fluid flow-induced shear stress plays a major role in modulating the mechanotransduction process. Therefore, it is likely that fluid flow-induced shear stress plays a major role in the initiation of the repair of fatigue damage. Since no in vivo measurements of fluid flow within bone exist, computational and mathematical models must be employed to investigate the fluid flow field and the shear stress occurring within cortical bone. We developed a computational fluid dynamic model of cortical bone to examine the effect of a fatigue microcrack on the fluid flow field. Our results indicate that there are alterations in the fluid flow field as far as 150 microm away from the crack, and that at distances farther than this, the fluid flow field is similar to the fluid flow field of intact bone. Through the crack and immediately above and below it, the fluid velocity is higher, while at the lateral edges it is lower than that calculated for the intact model, with a maximum change of 29%. Our results suggest that the presence of a fatigue microcrack can alter the shear stress in regions near the crack. These alterations in shear stress have the potential to significantly alter mechanotransduction and may play a role in the initiation of the repair of fatigue microcracks.  相似文献   

15.
The pulsatile flow of non-Newtonian fluid in a bifurcation model with a non-planar daughter branch is investigated numerically by using the Carreau-Yasuda model to take into account the shear thinning behavior of the analog blood fluid. The objective of this study is to deal with the influence of the non-Newtonian property of fluid and of out-of-plane curvature in the non-planar daughter vessel on wall shear stress (WSS), oscillatory shear index (OSI), and flow phenomena during the pulse cycle. The non-Newtonian property in the daughter vessels induces a flattened axial velocity profile due to its shear thinning behavior. The non-planarity deflects flow from the inner wall of the vessel to the outer wall and changes the distribution of WSS along the vessel, in particular in systole phase. Downstream of the bifurcation, the velocity profiles are shifted toward the flow divider, and low WSS and high shear stress temporal oscillations characterized by OSI occur on the outer wall region of the daughter vessels close to the bifurcation. Secondary motions become stronger with the addition of the out-of-plane curvature induced by the bending of the vessel, and the secondary flow patterns swirl along the non-planar daughter vessel. A significant difference between the non-Newtonian and the Newtonian pulsatile flow is revealed during the pulse cycle; however, reasonable agreement between the non-Newtonian and the rescaled Newtonian flow is found. Calculated results for the pulsatile flow support the view that the non-planarity of blood vessels and the non-Newtonian properties of blood are an important factor in hemodynamics and may play a significant role in vascular biology and pathophysiology.  相似文献   

16.
Endothelial cells in vivo are well known to respond to parallel shear stress induced by luminal blood flow. In addition, fluid filtration across endothelium (transendothelial flow) may trigger nitric oxide (NO) production, presumably via shear stress within intercellular clefts. Since NO regulates neutrophil-endothelial interactions, we determined whether transendothelial flow regulates neutrophil transmigration. Interleukin-1beta-treated human umbilical vein endothelial cell (HUVEC) monolayers cultured on a polycarbonate filter were placed in a custom chamber with or without a modest hydrostatic pressure gradient (DeltaP, 10 cm H(2)O) to induce transendothelial flow. In other experiments, cells were studied in a parallel plate flow chamber at various transendothelial flows (DeltaP = 0, 5, and 10 cm H(2)O) and luminal flows (shear stress of 0, 1, and 2 dyn/cm(2)). In the absence of luminal flow, transendothelial flow reduced transmigration of freshly isolated human neutrophils from 57% to 14% (P < 0.05) and induced an increase in NO detected with a fluorescent assay (DAF-2DA). The NO synthase inhibitor L-NAME prevented the effects of transendothelial flow on neutrophil transmigration, while a NO donor (DETA/NO, 1 mM) inhibited neutrophil transmigration. Finally, in the presence of luminal flow (1 and 2 dyn/cm(2)), transendothelial flow also inhibited transmigration. On the basis of HUVEC morphometry and measured transendothelial volume flow, we estimated cleft shear stress to range from 49 to 198 dyn/cm(2). These shear stress estimates, while substantial, are of similar magnitude to those reported by others with similar analyses. These data are consistent with the hypothesis that endothelial cleft shear stress inhibits neutrophil transmigration via a NO-dependent mechanism.  相似文献   

17.
Choi HW  Barakat AI 《Biorheology》2005,42(6):493-509
Endothelial cell (EC) responsiveness to shear stress is essential for vasoregulation and plays a role in atherogenesis. Although blood is a non-Newtonian fluid, EC flow studies in vitro are typically performed using Newtonian fluids. The goal of the present study was to determine the impact of non-Newtonian behavior on the flow field within a model flow chamber capable of producing flow disturbance and whose dimensions permit Reynolds and Womersley numbers comparable to those present in vivo. We performed two-dimensional computational fluid dynamic simulations of steady and pulsatile laminar flow of Newtonian and non-Newtonian fluids over a backward facing step. In the non-Newtonian simulations, the fluid was modeled as a shear-thinning Carreau fluid. Steady flow results demonstrate that for Re in the range 50-400, the flow recirculation zone downstream of the step is 22-63% larger for the Newtonian fluid than for the non-Newtonian fluid, while spatial gradients of shear stress are larger for the non-Newtonian fluid. In pulsatile flow, the temporal gradients of shear stress within the flow recirculation zone are significantly larger for the Newtonian fluid than for the non-Newtonian fluid. These findings raise the possibility that in regions of flow disturbance, EC mechanotransduction pathways stimulated by Newtonian and non-Newtonian fluids may be different.  相似文献   

18.
Endothelial cells in blood vessels are exposed to bloodflow and thus fluid shear stress. In arterial bifurcations and stenoses, disturbed flow causes zones of recirculation and stagnation, which are associated with both spatial and temporal gradients of shear stress. Such gradients have been linked to the generation of atherosclerotic plaques. For in-vitro studies of endothelial cell responses, the sudden-expansion flow chamber has been widely used and described. A two-dimensional numerical simulation of the onset phase of flow through the chamber was performed. The wall shear stress action on the bottom plate was computed as a function of time and distance from the sudden expansion. The results showed that depending on the time for the flow to be established, significant temporal gradients occurred close to the second stagnation point of flow. Slowly ramping the flow over 15 s instead of 200 ms reduces the temporal gradients by a factor of 300, while spatial gradients are reduced by 23 percent. Thus, the effects of spatial and temporal gradients can be observed separately. In experiments on endothelial cells, disturbed flow stimulated cell proliferation only when flow onset was sudden. The spatial patterns of proliferation rate match the exposure to temporal gradients. This study provides information on the dynamics of spatial and temporal gradients to which the cells are exposed in a sudden-expansion flow chamber and relates them to changes in the onset phase of flow.  相似文献   

19.
Chen J  Lu XY 《Journal of biomechanics》2004,37(12):1899-1911
The non-Newtonian fluid flow in a bifurcation model with a non-planar daughter branch is investigated by using finite element method to solve the three-dimensional Navier–Stokes equations coupled with a non-Newtonian constitutive model, in which the shear thinning behavior of the blood fluid is incorporated by the Carreau–Yasuda model. The objective of this study is to investigate the influence of the non-Newtonian property of fluid as well as of curvature and out-of-plane geometry in the non-planar daughter vessel on wall shear stress (WSS) and flow phenomena. In the non-planar daughter vessel, the flows are typified by the skewing of the velocity profile towards the outer wall, creating a relatively low WSS at the inner wall. In the downstream of the bifurcation, the velocity profiles are shifted towards the flow divider. The low WSS is found at the inner walls of the curvature and the lateral walls of the bifurcation. Secondary flow patterns that swirl fluid from the inner wall of curvature to the outer wall in the middle of the vessel are also well documented for the curved and bifurcating vessels. The numerical results for the non-Newtonian fluid and the Newtonian fluid with original Reynolds number and the corresponding rescaled Reynolds number are presented. Significant difference between the non-Newtonian flow and the Newtonian flow is revealed; however, reasonable agreement between the non-Newtonian flow and the rescaled Newtonian flow is found. Results of this study support the view that the non-planarity of blood vessels and the non-Newtonian properties of blood are an important factor in hemodynamics and may play a significant role in vascular biology and pathophysiology.  相似文献   

20.
Receptor-mediated adhesion of bacteria to biological surfaces is a significant step leading to infection. Due to an increase in bacterial antibiotic resistance, novel methods to block and disrupt these specific interactions have gained considerable interest as possible therapeutic strategies. Recently, several monoclonal antibodies specific for the Staphylococcus aureus collagen receptor demonstrated specialized ability to displace attached cells from collagen in static assays. In this study, we experimentally examine the monoclonal antibody detachment functionality under physiological shear conditions to evaluate the role of this parameter in the detachment process. The detachment of staphylococci from collagen was quantified in real-time using a parallel plate flow chamber, phase contrast video-microscopy and digital image processing. The results demonstrate a unimodal dependence of detachment on fluid wall shear rate. The observed decrease in effective detachment rate with increasing force at the highest shear levels evaluated is counterintuitive and has not been previously demonstrated. Several possible mechanisms of this result are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号