首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prokaryotic and eukaryotic microbes are key organisms in aquatic ecosystems and play pivotal roles in the biogeochemical cycles, but little is known about genetic diversity of these communities in subtropical rivers. In this study, microbial planktonic communities were determined by using denaturing gradient gel electrophoresis (DGGE) analysis from the Jiulong River, southeast China, and their relationships with local environmental factors were studied. The Betaproteobacteria (26%) and Dinophyceae (26%) were the most dominant taxa in prokaryotic and eukaryotic clones derived from DGGE bands, respectively. Further, both cluster and ordination analyses of prokaryotic and eukaryotic DGGE fingerprinting resulted in three identical groups from the 15 sites, which were closely related with the environmental factors. Partial redundancy analysis (partial RDA) revealed that agricultural pollution (phosphorus and nitrogen) and saltwater intrusion (conductivity and salinity) were the main factors impacting microbial community composition, by explaining more than two-thirds of the total variation in both prokaryotic (67.0%) and eukaryotic (70.5%) communities. Moreover, the robust and quantifiable relationship between DGGE results and environmental variables indicated that the community-level molecular fingerprinting techniques could support the physicochemical assessment of riverine water quality and ecosystem health.  相似文献   

2.
The hyporheic zone of stream ecosystems is a critical habitat for microbial communities. However, the factors influencing hyporheic bacterial communities along spatial and seasonal gradients remain poorly understood. We sought to characterize patterns in bacterial community composition among the sediments of a small stream in southern Ontario, Canada. We used sampling cores to collect monthly hyporheic water and sediment microbial communities in 2006 and 2007. We described bacterial communities terminal-restriction fragment length polymorphism (TRFLP) and tested for spatial and seasonal relationships with physicochemical parameters using multivariate statistics. Overall, the hyporheic zone appears to be a DOC, oxygen, and nitrogen sink. Microbial communities were distinct from those at the streambed surface and from soil collected in the adjacent watershed. In the sediments, microbial communities were distinct between the fall, spring, and summer seasons, and bacterial communities were more diverse at streambed surface and near-surface sites compared with deeper sites. Moreover, bacterial communities were similar between consecutive fall seasons despite shifting throughout the year, suggesting recurring community assemblages associated with season and location in the hyporheic zone. Using canonical correspondence analysis, seasonal patterns in microbial community composition and environmental parameters were correlated in the following way: temperature was related to summer communities; DOC (likely from biofilm and allochthonous inputs) influenced most fall communities; and nitrogen associated strongly with winter and spring communities. Our results also suggest that labile DOC entering the hyporheic zone occurred in concert with shifts in the bacterial community. Generally, seasonal patterns in hyporheic physicochemistry and microbial biodiversity remain largely unexplored. Therefore, we highlight the importance of seasonal and spatial resolution when assessing surface- and groundwater interactions in stream ecosystems.  相似文献   

3.

Bacterial and archaeal assemblages are one of the most important contributors to the recycling of nutrients and the decomposition of organic matter in aquatic sediments. However, their spatiotemporal variation and its driving factors remain unclear, especially for drinking reservoirs, which are strongly affected by human consumption. Using quantitative PCR and Illumina MiSeq sequencing, we investigated the bacterial and archaeal communities in the sediments of a drinking reservoir, the Miyun Reservoir, one of the most important drinking sources for Beijing City. The abundance of bacteria and archaea presented no spatiotemporal variation. With respect to community diversity, visible spatial and temporal differences were observed in archaea, whereas the bacterial community showed minor variation. The bacterial communities in the reservoir sediment mainly included Proteobacteria, Bacteroidetes, Nitrospirae, Acidobacteria, and Verrucomicrobia. The bacterial community structure showed obvious spatial variation. The composition of the bacterial operational taxonomic units (OTUs) and main phyla were dam-specific; the composition of samples in front of the dam were significantly different from the composition of the other samples. The archaeal communities were mainly represented by Woesearchaeota and Euryarchaeota. Distinctly spatial and seasonal variation was observed in the archaeal community structure. The sediment NH4 +–N, pH, and water depth were identified as the key driving factors of changes in the composition of the bacterial and archaeal communities. Water depth might have the greatest influence on the microbial community structure. The dam-specific community structure may be related to the greater water depth in front of the dam. This finding indicates that water depth might be the greatest contributor to the microbial community structure in the Miyun Reservoir.

  相似文献   

4.
Scientific understanding of biotic effects on the water trophic level is lacking for urban lakes during algal bloom development stage. Based on the Illumina MiSeq sequencing, quantitative polymerase chain reaction (PCR), and multiple statistical analyses, we estimated distribution patterns and ecological roles of planktonic bacteria and eukaryotes in urban lakes during algal bloom development stage (i.e., April, May, and June). Cyanobacteria and Chlorophyta mainly dominated algal blooms. Bacteria exhibited significantly higher absolute abundance and community diversity than eukaryotes, whereas abundance and diversity of eukaryotic rather than bacterial community relate closely to the water trophic level. Multinutrient cycling (MNC) index was significantly correlated with eukaryotic diversity rather than bacterial diversity. Stronger species replacement, broader environmental breadth, and stronger phylogenetic signal were found for eukaryotic community than for bacterial community. In contrast, bacterial community displayed stronger community stability and environmental constraint than eukaryotic community. Stochastic and differentiating processes contributed more to community assemblies of bacteria and eukaryotes. Our results emphasized that a strong linkage between planktonic diversity and MNC ensured a close relationship between planktonic diversity and the water trophic level of urban lakes. Our findings could be useful to guide the formulation and implementation of environmental lake protection measures.  相似文献   

5.
Small eukaryotes have key roles in aquatic ecosystems, influencing their local environment, global biogeochemical cycles and climate. Their impact depends on community structure, which varies along time. However, very few studies take into account temporal variation. This is especially true for small, shallow freshwater systems, which remain largely understudied despite their wide variety, global surface and intense microbial activity. We have monthly followed changes in the community structure of small microbial eukaryotes (0.2–5 μm cell diameter) for 2 years in four ponds and one brook located in North-Western France based on massive 18S rDNA amplicon 454 pyrosequencing. We detected a total of 3742 stringently defined operational taxonomic units (OTUs) encompassing all recognized eukaryotic supergroups and lineages of uncertain affiliation. Although geographically close, protist communities in the five ecosystems were contrasting, with very few shared OTUs, suggesting that environmental selection mainly drives community structure. The temporal dynamics of different high-rank taxa appeared complex and rapid at monthly scales. Despite this, a clear and reproducible seasonality was observed. As expected, low-abundance OTUs dominated the community. Although some of them appeared sporadically or remained at low frequencies during the survey, others occasionally reached relatively high abundances, sometimes recurrently. This shows that at least a fraction of low-abundance eukaryotes constitutes a seed bank. The annual proportion of primary producers, free-living heterotrophs and parasites appeared remarkably constant among the different ecosystems, suggesting underlying trends of ecosystem carrying capacity for these functional groups.  相似文献   

6.
Saline lakes are intriguing ecosystems harboring extremely productive microbial communities in spite of their extreme environmental conditions. We performed a comprehensive analysis of the genetic diversity (18S rRNA gene) of the planktonic microbial eukaryotes (nano- and picoeukaryotes) in six different inland saline lakes located in the Qaidam Basin. The novelty level are high, with about 11.23% of the whole dataset showing <90% identity to any previously reported sequence in GenBank. At least 4 operational taxonomic units (OTUs) in mesosaline lakes, while up to eighteen OTUs in hypersaline lakes show very low CCM and CEM scores, indicating that these sequences are highly distantly related to any existing sequence. Most of the 18S rRNA gene sequence reads obtained in investigated mesosaline lakes is closely related to Holozoa group (48.13%), whereas Stramenopiles (26.65%) and Alveolates (10.84%) are the next most common groups. Hypersaline lakes in the Qaidam Basin are also dominated by Holozoa group, accounting for 26.65% of the total number of sequence reads. Notably, Chlorophyta group are only found in high abundance in Lake Gasikule (28.00%), whereas less represented in other hypersaline lakes such as Gahai (0.50%) and Xiaochaidan (1.15%). Further analysis show that the compositions of planktonic eukaryotic assemblages are also most variable between different sampling sites in the same lake. Out of the parameters, four show significant correlation to this CCA: altitude, calcium, sodium and potassium concentrations. Overall, this study shows important gaps in the current knowledge about planktonic microbial eukaryotes inhabiting Qaidam Basin (hyper) saline water bodies. The identified diversity and novelty patterns among eukaryotic plankton assemblages in saline lake are of great importance for understanding and interpreting their ecology and evolution.  相似文献   

7.
To expand the understanding of the poorly described planktonic bacterial communities inhabiting Antarctic meltwater ponds, this study characterized the community composition and identified environmental drivers influencing community structure from a total of 41 meltwater ponds: 37 from the McMurdo Ice Shelf (Bratina Island) and four from a terrestrial locale (Miers Valley) during three austral summers. DNA fingerprinting coupled with in situ pH and conductivity was utilized to select ponds for in-depth nutrient and chemical analysis and high-throughput sequencing of the bacterial 16S rRNA gene V5–V6 hypervariable region. Conductivity was the strongest driver of community structure across all ponds and for all time points; however, other influential factors (pH, climatological, Hg, Fe, and PO4) were also identified. Unique members of communities (sequences absent in at least one pond) represented a small percentage of total reads but also represented a large proportion of pond biodiversity that was strongly driven by differing environmental variables (Si, B and S). Significant temporal variation in community structure was also identified within the same ponds although major taxa remained present. Miers Valley ponds exhibit greater similarity to Bratina Island ponds rather than between each other, thereby suggesting regional movement of microorganisms. In summary, these data provide the first in-depth investigation of the intra-seasonal and regional variation of the microbial communities inhabiting these ponds and proved that a total of ten cosmopolitan OTUs were the dominant components of ponds throughout all sampling times and locations, their variable relative abundances driving the major dissimilarities in community structure.  相似文献   

8.
A fundamental issue in microbial and general ecology is the question to what extent environmental conditions dictate the structure of communities and the linkages with functional properties of ecosystems (that is, ecosystem function). We approached this question by taking advantage of environmental gradients established in soil and sediments of small stream corridors in a recently created, early successional catchment. Specifically, we determined spatial and temporal patterns of bacterial community structure and their linkages with potential microbial enzyme activities along the hydrological flow paths of the catchment. Soil and sediments were sampled in a total of 15 sites on four occasions spread throughout a year. Denaturing gradient gel electrophoresis (DGGE) was used to characterize bacterial communities, and substrate analogs linked to fluorescent molecules served to track 10 different enzymes as specific measures of ecosystem function. Potential enzyme activities varied little among sites, despite contrasting environmental conditions, especially in terms of water availability. Temporal changes, in contrast, were pronounced and remarkably variable among the enzymes tested. This suggests much greater importance of temporal dynamics than spatial heterogeneity in affecting specific ecosystem functions. Most strikingly, bacterial community structure revealed neither temporal nor spatial patterns. The resulting disconnect between bacterial community structure and potential enzyme activities indicates high functional redundancy within microbial communities even in the physically and biologically simplified stream corridors of early successional landscapes.  相似文献   

9.
10.
Bacterioplankton in freshwater streams play a critical role in stream nutrient cycling. Despite their ecological importance, the temporal variability in the structure of stream bacterioplankton communities remains understudied. We investigated the composition and temporal variability of stream bacterial communities and the influence of physicochemical parameters on these communities. We used barcoded pyrosequencing to survey bacterial communities in 107 streamwater samples collected from four locations in the Colorado Rocky Mountains from September 2008 to November 2009. The four sampled locations harboured distinct communities yet, at each sampling location, there was pronounced temporal variability in both community composition and alpha diversity levels. These temporal shifts in bacterioplankton community structure were not seasonal; rather, their diversity and composition appeared to be driven by intermittent changes in various streamwater biogeochemical conditions. Bacterial communities varied independently of time, as indicated by the observation that communities in samples collected close together in time were no more similar than those collected months apart. The temporal turnover in community composition was higher than observed in most previously studied microbial, plant or animal communities, highlighting the importance of stochastic processes and disturbance events in structuring these communities over time. Detailed temporal sampling is important if the objective is to monitor microbial community dynamics in pulsed ecosystems like streams.  相似文献   

11.
Increasing evidence has emerged for non-random spatial distributions of microbes, but knowledge of the processes that cause variation in microbial assemblage among ecosystems is lacking. For instance, some studies showed that deterministic processes such as habitat specialization are important, while other studies hold that bacterial communities are assembled by stochastic forces. Here we examine the relative influence of deterministic and stochastic processes for bacterial communities from subsurface environments, stream biofilm, lake water, lake sediment and soil using pyrosequencing of the 16S ribosomal RNA gene. We show that there is a general pattern in phylogenetic signal in species ecological niches across recent evolutionary time for all studied habitats, enabling us to infer the influences of community assembly processes from patterns of phylogenetic turnover in community composition. The phylogenetic dissimilarities among-habitat types were significantly higher than within them, and the communities were clustered according to their original habitat types. For communities within-habitat types, the highest phylogenetic turnover rate through space was observed in subsurface environments, followed by stream biofilm on mountainsides, whereas the sediment assemblages across regional scales showed the lowest turnover rate. Quantifying phylogenetic turnover as the deviation from a null expectation suggested that measured environmental variables imposed strong selection on bacterial communities for nearly all sample groups. For three sample groups, spatial distance reflected unmeasured environmental variables that impose selection, as opposed to spatial isolation. Such characterization of spatial and environmental variables proved essential for proper interpretation of partial Mantel results based on observed beta diversity metrics. In summary, our results clearly indicate a dominant role of deterministic processes on bacterial assemblages and highlight that bacteria show strong habitat associations that have likely emerged through evolutionary adaptation.  相似文献   

12.
The presence of predators can impact a variety of organisms within the ecosystem, including microorganisms. Because the effects of fish predators and their phenotypic differences on microbial communities have not received much attention, we tested how the presence/absence, genotype, and plasticity of the predatory three‐spine stickleback (Gasterosteus aculeatus) influence aquatic microbes in outdoor mesocosms. We reared lake and stream stickleback genotypes on contrasting food resources to adulthood, and then added them to aquatic mesocosm ecosystems to assess their impact on the planktonic bacterial community. We also investigated whether the effects of fish persisted following the removal of adults, and the subsequent addition of a homogenous juvenile fish population. The presence of adult stickleback increased the number of bacterial OTUs and altered the size structure of the microbial community, whereas their phenotype affected bacterial community composition. Some of these effects were detectable after adult fish were removed from the mesocosms, and after juvenile fish were placed in the tanks, most of these effects disappeared. Our results suggest that fish can have strong short‐term effects on microbial communities that are partially mediated by phenotypic variation of fish.  相似文献   

13.
土壤微生物群落构建理论与时空演变特征   总被引:6,自引:0,他引:6  
贺纪正  王军涛 《生态学报》2015,35(20):6575-6583
土壤微生物作为陆地生态系统的重要组成部分,直接或间接地参与几乎所有的土壤生态过程,在物质循环、能量转换以及污染物降解等过程中都发挥着重要作用。对土壤微生物时空演变规律及其形成机制的研究,不仅是微生物演变和进化的基础科学问题,也是预测微生物及其所介导的生态功能对环境条件变化响应、适应和反馈的理论依据。讨论了土壤微生物群落的定义、测度方法和指标,认为群落是联系动植物宏观生态学与微生物生态学的基础,群落构建机制是宏观和微观生态学都需要研究的核心科学问题;从生态学的群落构建理论出发,阐述了包括生态位理论/中性理论、过程理论和多样性-稳定性理论在土壤微生物时空演变研究中的应用,以及微生物群落在时间和空间上的分布特征及其尺度效应;确立了以微生物群落构建理论为基础、不同时空尺度下土壤微生物群落演变特征为主要内容的微生物演变研究的基本框架。  相似文献   

14.
To quantify the major environmental drivers of stream bacterial population dynamics, we modelled temporal differences in stream bacterial communities to quantify community shifts, including those relating to cyclical seasonal variation and more sporadic bloom events. We applied Illumina MiSeq 16S rRNA bacterial gene sequencing of 892 stream biofilm samples, collected monthly for 36-months from six streams. The streams were located a maximum of 118 km apart and drained three different catchment types (forest, urban and rural land uses). We identified repeatable seasonal patterns among bacterial taxa, allowing their separation into three ecological groupings, those following linear, bloom/trough and repeated, seasonal trends. Various physicochemical parameters (light, water and air temperature, pH, dissolved oxygen, nutrients) were linked to temporal community changes. Our models indicate that bloom events and seasonal episodes modify biofilm bacterial populations, suggesting that distinct microbial taxa thrive during these events including non-cyanobacterial community members. These models could aid in determining how temporal environmental changes affect community assembly and guide the selection of appropriate statistical models to capture future community responses to environmental change.  相似文献   

15.
Sampling ecosystems, even at a local scale, at the temporal and spatial resolution necessary to capture natural variability in microbial communities are prohibitively expensive. We extrapolated marine surface microbial community structure and metabolic potential from 72 16S rRNA amplicon and 8 metagenomic observations using remotely sensed environmental parameters to create a system-scale model of marine microbial metabolism for 5904 grid cells (49 km2) in the Western English Chanel, across 3 years of weekly averages. Thirteen environmental variables predicted the relative abundance of 24 bacterial Orders and 1715 unique enzyme-encoding genes that encode turnover of 2893 metabolites. The genes'' predicted relative abundance was highly correlated (Pearson Correlation 0.72, P-value <10−6) with their observed relative abundance in sequenced metagenomes. Predictions of the relative turnover (synthesis or consumption) of CO2 were significantly correlated with observed surface CO2 fugacity. The spatial and temporal variation in the predicted relative abundances of genes coding for cyanase, carbon monoxide and malate dehydrogenase were investigated along with the predicted inter-annual variation in relative consumption or production of ∼3000 metabolites forming six significant temporal clusters. These spatiotemporal distributions could possibly be explained by the co-occurrence of anaerobic and aerobic metabolisms associated with localized plankton blooms or sediment resuspension, which facilitate the presence of anaerobic micro-niches. This predictive model provides a general framework for focusing future sampling and experimental design to relate biogeochemical turnover to microbial ecology.  相似文献   

16.
While water and sediment microbial communities exhibit pronounced spatio-temporal patterns in freshwater lakes, the underlying drivers are yet poorly understood. Here, we evaluated the importance of spatial and temporal variation in abiotic environmental factors for bacterial and microeukaryotic community assembly and distance–decay relationships in water and sediment niches in Hongze Lake. By sampling across the whole lake during both Autumn and Spring sampling time points, we show that only bacterial sediment communities were governed by deterministic community assembly processes due to abiotic environmental drivers. Nevertheless, consistent distance–decay relationships were found with both bacterial and microeukaryotic communities, which were relatively stable with both sampling time points. Our results suggest that spatio-temporal variation in environmental factors was important in explaining mainly bacterial community assembly in the sediment, possibly due lesser disturbance. However, clear distance–decay patterns emerged also when the community assembly was stochastic. Together, these results suggest that abiotic environmental factors do not clearly drive the spatial structuring of lake microbial communities, highlighting the need to understand the role of other potential drivers, such as spatial heterogeneity and biotic species interactions.  相似文献   

17.
Environmental degradation may have strong effects on community assembly processes. We examined the assembly of bacterial and fungal communities in anthropogenically altered and near‐pristine streams. Using pyrosequencing of bacterial and fungal DNA from decomposed alder Alnus incana leaves, we specifically examined if environmental degradation deterministically decreases or increases the compositional turnover of bacterial and fungal communities. Our results showed that near‐pristine streams and anthropogenically altered streams supported distinct fungal and bacterial communities. The mechanisms assembling these communities were different in near‐pristine and altered environments. Environmental disturbance homogenized bacterial communities, whereas fungal communities were more dissimilar in disturbed sites than in near‐pristine sites. Compositional variation of both bacteria and fungi was related to water chemistry variables in disturbed sites, further implying the influence of environmental degradation on community assembly. Bacterial and fungal communities in near‐pristine streams were weakly controlled by environmental factors, suggesting that the relative importance of niche‐based versus neutral processes in assembling microbial communities may strongly depend on the spatial scale and local environmental context. Our results thus suggest that environmental degradation may strongly affect the composition and β‐diversity of stream microbial communities colonizing leaf litter, and that the direction of the change can be different between bacteria and fungi. A better understanding of the environmental tolerances of microbes and the mechanisms assembling microbial communities in natural environmental settings is needed to predict how environmental alteration is likely to affect microbial communities.  相似文献   

18.
19.
Estuaries are among the most productive and economically important marine ecosystems at the land–ocean interface and contribute significantly to exchange of CO2 with the atmosphere. Estuarine microbial communities are major links in the biogeochemical C cycle and flow of C in food webs from primary producers to higher consumers. Considerable attention has been given to bacteria and autotrophic eukaryotes in estuarine ecosystems, but less research has been devoted to the role of heterotrophic eukaryotic microbes. Current research is reviewed here on the role of heterotrophic eukaryotic microbes in C biogeochemistry and ecology of estuaries, with particular attention to C budgets, trophodynamics, and the metabolic fate of C in microbial communities. Some attention is given to the importance of these processes in climate change and global warming, especially in relation to sources and sinks of atmospheric CO2, while also documenting the current paucity of research on the role of eukaryotic microbes that contribute to this larger question of C biogeochemistry and the environment. Some recommendations are made for future directions of research and opportunities of applying newer technologies and analytical approaches to a more refined analysis of the role of C in estuarine microbial community processes and the biogeochemical C cycle.  相似文献   

20.
Microbial eukaryotes have important roles in marine food webs, but their diversity and activities in hydrothermal vent ecosystems are poorly characterized. In this study, we analyzed microbial eukaryotic communities associated with bacterial (Beggiatoa) mats in the 2,000 m deep‐sea Guaymas Basin hydrothermal vent system using 18S rRNA gene high‐throughput sequencing of the V4 region. We detected 6,954 distinct Operational Taxonomic Units (OTUs) across various mat systems. Of the sequences that aligned with known protistan phylotypes, most were affiliated with alveolates (especially dinoflagellates and ciliates) and cercozoans. OTU richness and community structure differed among sediment habitats (e.g. different mat types and cold sediments away from mats). Additionally, full‐length 18S rRNA genes amplified and cloned from single cells revealed the identities of some of the most commonly encountered, active ciliates in this hydrothermal vent ecosystem. Observations and experiments were also conducted to demonstrate that ciliates were trophically active and ingesting fluorescent bacteria or Beggiatoa trichomes. Our work suggests that the active and diverse protistan community at the Guaymas Basin hydrothermal vent ecosystem likely consumes substantial amounts of bacterial biomass, and that the different habitats, often defined by distances of just a few 10s of cm, select for particular assemblages and levels of diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号