首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heterogeneous nuclear ribonucleoproteins (hnRNPs), including hnRNP H, are RNA-binding proteins that function as splicing factors and are involved in downstream gene regulation. hnRNP H, which binds to G triplet regions in RNA, has been shown to play an important role in regulating the staged expression of late proteins in viral systems. Here, we report that the specific association between hnRNP H and a late viral capsid protein, human papillomavirus (HPV) L1 protein, leads to the suppressed function of hnRNP H in the presence of the L1 protein. The direct interaction between the L1 protein and hnRNP H was demonstrated by complex formation in solution and intracellularly using a variety of biochemical and immunochemical methods, including peptide mapping, specific co-immunoprecipitation and confocal fluorescence microscopy. These results support a working hypothesis that a late viral protein HPV16 L1, which is down regulated by hnRNP H early in the viral life cycle may provide an auto-regulatory positive feedback loop that allows the rapid production of HPV capsid proteins through suppression of the function of hnRNP H at the late stage of the viral life cycle. In this positive feedback loop, the late viral gene products that were down regulated earlier themselves disable their suppressors, and this feedback mechanism could facilitate the rapid production of capsid proteins, allowing staged and efficient viral capsid assembly.  相似文献   

2.
Papillomaviruses are a family of nonenveloped DNA tumor viruses. Some sexually transmitted human papillomavirus (HPV) types, including HPV type 16 (HPV16), cause cancer of the uterine cervix. Papillomaviruses encode two capsid proteins, L1 and L2. The major capsid protein, L1, can assemble spontaneously into a 72-pentamer icosahedral structure that closely resembles native virions. Although the minor capsid protein, L2, is not required for capsid formation, it is thought to participate in encapsidation of the viral genome and plays a number of essential roles in the viral infectious entry pathway. The abundance of L2 and its arrangement within the virion remain unclear. To address these questions, we developed methods for serial propagation of infectious HPV16 capsids (pseudoviruses) in cultured human cell lines. Biochemical analysis of capsid preparations produced using various methods showed that up to 72 molecules of L2 can be incorporated per capsid. Cryoelectron microscopy and image reconstruction analysis of purified capsids revealed an icosahedrally ordered L2-specific density beneath the axial lumen of each L1 capsomer. The relatively close proximity of these L2 density buttons to one another raised the possibility of homotypic L2 interactions within assembled virions. The concept that the N and C termini of neighboring L2 molecules can be closely apposed within the capsid was supported using bimolecular fluorescence complementation or "split GFP" technology. This structural information should facilitate investigation of L2 function during the assembly and entry phases of the papillomavirus life cycle.  相似文献   

3.
Persistent papillomas developed in ~10% of out-bred immune-competent SKH-1 mice following MusPV1 challenge of their tail, and in a similar fraction the papillomas were transient, suggesting potential as a model. However, papillomas only occurred in BALB/c or C57BL/6 mice depleted of T cells with anti-CD3 antibody, and they completely regressed within 8 weeks after depletion was stopped. Neither CD4+ nor CD8+ T cell depletion alone in BALB/c or C57BL/6 mice was sufficient to permit visible papilloma formation. However, low levels of MusPV1 were sporadically detected by either genomic DNA-specific PCR analysis of local skin swabs or in situ hybridization of the challenge site with an E6/E7 probe. After switching to CD3+ T cell depletion, papillomas appeared upon 14/15 of mice that had been CD4+ T cell depleted throughout the challenge phase, 1/15 of CD8+ T cell depleted mice, and none in mice without any prior T cell depletion. Both control animals and those depleted with CD8-specific antibody generated MusPV1 L1 capsid-specific antibodies, but not those depleted with CD4-specific antibody prior to T cell depletion with CD3 antibody. Thus, normal BALB/c or C57BL/6 mice eliminate the challenge dose, whereas infection is suppressed but not completely cleared if their CD4 or CD8 T cells are depleted, and recrudescence of MusPV1 is much greater in the former following treatment with CD3 antibody, possibly reflecting their failure to generate capsid antibody. Systemic vaccination of C57BL/6 mice with DNA vectors expressing MusPV1 E6 or E7 fused to calreticulin elicits potent CD8 T cell responses and these immunodominant CD8 T cell epitopes were mapped. Adoptive transfer of a MusPV1 E6-specific CD8+ T cell line controlled established MusPV1 infection and papilloma in RAG1-knockout mice. These findings suggest the potential of immunotherapy for HPV-related disease and the importance of host immunogenetics in the outcome of infection.  相似文献   

4.
5.
The organotypic raft culture system has allowed the study of the differentiation-dependent aspects of the human papillomavirus (HPV) life cycle. However, genetic strategies to more completely understand the HPV life cycle are limited. The generation of chimeric viruses has been a useful tool in other virus systems to analyze infection and replication. To investigate the specificity of the interaction of nonstructural genes of one HPV type with the structural genes of another HPV type, we have replaced the L2 and L1 open reading frames (ORFs) of HPV type 18 (HPV18) with the L2 and L1 ORFs of HPV type 16 (HPV16). The resulting HPV18/16 chimeric construct was introduced into primary keratinocytes, where it was stably maintained episomally at a range of 50 to 100 copies of HPV genomic DNA, similar to that typically found in HPV-infected cells in vivo. The integrity of the HPV18/16 genomic DNA chimera was demonstrated. Upon differentiation in raft cultures, late viral functions, including viral DNA amplification, capsid gene expression, and virion morphogenesis, occurred. Chimeric HPV18/16 virions were purified from the raft cultures and were capable of infecting keratinocytes in vitro. Additionally, infection was specifically neutralized with human HPV16 virus-like particle (VLP)-specific antiserum and not with human HPV18 VLP-specific antiserum. Our data demonstrate that the nonstructural genes of HPV18 functionally interact with the structural genes of HPV16, allowing the complete HPV life cycle to occur. We believe that this is the first report of the propagation of chimeric HPV by normal life cycle pathways.  相似文献   

6.
Prior studies, which have relied upon the use of pseudovirions generated in heterologous cell types, have led to sometimes conflicting conclusions regarding the role of the minor capsid protein of papillomaviruses, L2, in the viral life cycle. In this study we carry out analyses with true virus particles assembled in the natural host cell to assess L2's role in the viral infectious life cycle. For these studies we used the organotypic (raft) culture system to recapitulate the full viral life cycle of the high-risk human papillomavirus HPV31, which was either wild type or mutant for L2. After transfection, the L2 mutant HPV31 genome was able to establish itself as a nuclear plasmid in proliferating populations of poorly differentiated (basal-like) human keratinocytes and to amplify its genome to high copy number, support late viral gene expression, and cause formation of virus particles in human keratinocytes that had been induced to undergo terminal differentiation. These results indicate that aspects of both the nonproductive and productive phases of the viral life cycle occur normally in the absence of functional L2. However, upon the analysis of the virus particles generated, we found an approximate 10-fold reduction in the amount of viral DNA encapsidated into L2-deficient virions. Furthermore, there was an over-100-fold reduction in the infectivity of L2-deficient virus. Because the latter deficiency cannot be accounted for solely by the 10-fold decrease in encapsidation, we conclude that L2 contributes to at least two steps in the production of infectious virus.  相似文献   

7.
The immunocytes that regulate papillomavirus infection and lesion development in humans and animals remain largely undefined. We found that immunocompetent mice with varying H-2 haplotypes displayed asymptomatic skin infection that produced L1 when challenged with 6×1010 MusPV1 virions, the recently identified domestic mouse papillomavirus (also designated “MmuPV1”), but were uniformly resistant to MusPV1-induced papillomatosis. Broad immunosuppression with cyclosporin A resulted in variable induction of papillomas after experimental infection with a similar dose, from robust in Cr:ORL SENCAR to none in C57BL/6 mice, with lesional outgrowth correlating with early viral gene expression and partly with reported strain-specific susceptibility to chemical carcinogens, but not with H-2 haplotype. Challenge with 1×1012 virions in the absence of immunosuppression induced small transient papillomas in Cr:ORL SENCAR but not in C57BL/6 mice. Antibody-induced depletion of CD3+ T cells permitted efficient virus replication and papilloma formation in both strains, providing experimental proof for the crucial role of T cells in controlling papillomavirus infection and associated disease. In Cr:ORL SENCAR mice, immunodepletion of either CD4+ or CD8+ T cells was sufficient for efficient infection and papillomatosis, although deletion of one subset did not inhibit the recruitment of the other subset to the infected epithelium. Thus, the functional cooperation of CD4+ and CD8+ T cells is required to protect this strain. In contrast, C57BL/6 mice required depletion of both CD4+ and CD8+ T cells for infection and papillomatosis, and separate CD4 knock-out and CD8 knock-out C57BL/6 were also resistant. Thus, in C57BL/6 mice, either CD4+ or CD8+ T cell-independent mechanisms exist that can protect this particular strain from MusPV1-associated disease. These findings may help to explain the diversity of pathological outcomes in immunocompetent humans after infection with a specific human papillomavirus genotype.  相似文献   

8.
9.
We provide evidence that the human papillomavirus (HPV) E2 protein regulates HPV late gene expression. High levels of E2 caused a read-through at the early polyadenylation signal pAE into the late region of the HPV genome, thereby inducing expression of L1 and L2 mRNAs. This is a conserved property of E2 of both mucosal and cutaneous HPV types. Induction could be reversed by high levels of HPV-16 E1 protein, or by the polyadenylation factor CPSF30. HPV-16 E2 inhibited polyadenylation in vitro by preventing the assembly of the CPSF complex. Both the N-terminal and hinge domains of E2 were required for induction of HPV late gene expression in transfected cells as well as for inhibition of polyadenylation in vitro. Finally, overexpression of HPV-16 E2 induced late gene expression from a full-length genomic clone of HPV-16. We speculate that the accumulation of high levels of E2 during the viral life cycle, not only turns off the expression of the pro-mitotic viral E6 and E7 genes, but also induces the expression of the late HPV genes L1 and L2.  相似文献   

10.
Human papillomaviruses (HPVs) are small circular DNA viruses that cause warts. Infection with high-risk anogenital HPVs, such as HPV type 16 (HPV16), is associated with human cancers, specifically cervical cancer. The life cycle of HPVs is intimately tied to the differentiation status of the host epithelium and has two distinct stages: the nonproductive stage and the productive stage. In the nonproductive stage, which arises in the poorly differentiated basal epithelial compartment of a wart, the virus maintains itself as a low-copy-number nuclear plasmid. In the productive stage, which arises as the host cell undergoes terminal differentiation, viral DNA is amplified; the capsid genes, L1 and L2, are expressed; and progeny virions are produced. This stage of the viral life cycle relies on the ability of the virus to reprogram the differentiated cells to support DNA synthesis. Papillomaviruses encode multiple oncoproteins, E5, E6, and E7. In the present study, we analyze the role of one of these viral oncogenes, E5, in the viral life cycle. To assess the role of E5 in the HPV16 life cycle, we introduced wild-type (WT) or E5 mutant HPV16 genomes into NIKS, a keratinocyte cell line that supports the papillomavirus life cycle. By culturing these cells under conditions that allow them to remain undifferentiated, a state similar to that of basal epithelial cells, we determined that E5 does not play an essential role in the nonproductive stage of the HPV16 life cycle. To determine if E5 plays a role in the productive stage of the viral life cycle, we cultured keratinocyte populations in organotypic raft cultures, which promote the differentiation and stratification of epithelial cells. We found that cells harboring E5 mutant genomes displayed a quantitative reduction in the percentage of suprabasal cells undergoing DNA synthesis, compared to cells containing WT HPV16 DNA. This reduction in DNA synthesis, however, did not prevent amplification of viral DNA in the differentiated cellular compartment. Likewise, late viral gene expression and the perturbation of normal keratinocyte differentiation were retained in cells harboring E5 mutant genomes. These data demonstrate that E5 plays a subtle role during the productive stage of the HPV16 life cycle.  相似文献   

11.
During the late phase of human papillomavirus (HPV) infection, the L1 major capsid proteins enter the nuclei of host epithelial cells and, together with the L2 minor capsid proteins, assemble the replicated viral DNA into virions. We investigated the nuclear import of the L1 major capsid protein of high risk HPV16. When digitonin-permeabilized HeLa cells were incubated with HPV16 L1 capsomeres, the L1 protein was imported into the nucleus in a receptor-mediated manner. HPV16 L1 capsomeres formed complexes with Kap alpha2beta1 heterodimers via interaction with Kap alpha2. Accordingly, nuclear import of HPV16 L1 capsomeres was mediated by Kap alpha2beta1 heterodimers, required RanGDP and free GTP, and was independent of GTP hydrolysis. Remarkably, HPV16 L1 capsomeres also interacted with Kap beta2 and binding of RanGTP to Kap beta2 did not dissociate the HPV16 L1.Kap beta2 complex. Significantly, HPV16 L1 capsomeres inhibited the nuclear import of Kap beta2 and of a Kap beta2-specific M9-containing cargo. These data suggest that, during the productive stage of infection, while the HPV16 L1 major capsid protein enters the nucleus via the Kap alpha2beta1-mediated pathway to assemble the virions, it also inhibits the Kap beta2-mediated nuclear import of host hnRNP A1 protein and, in this way, favors virion formation.  相似文献   

12.
J Zhou  X Y Sun  K Louis    I H Frazer 《Journal of virology》1994,68(2):619-625
Encapsidation of papillomavirus DNA involves DNA-protein and protein-protein interactions. We sought to define the role of each human papillomavirus (HPV) capsid protein in HPV DNA encapsidation. HPV16 major (L1) and minor (L2) capsid proteins purified from recombinant vaccinia virus-infected cells were compared for their ability to bind nucleic acids. L2 protein, but not L1 protein, could bind HPV DNA. To map the DNA-binding region of L2, a series of truncated or point-mutated L2 protein open reading frames were used to show that only the N terminal of L2 was required for L2-DNA binding. This interaction depends critically on charged amino acids (Lys or Arg) in the first 12 amino acids of the N terminal of the protein. Several techniques were used to show that L2 interaction with DNA did not require specific DNA sequences. We propose that HPV L2 protein may play a major role in papillomavirus capsid assembly by introducing HPV DNA to the virus particles formed by the self assembly of the L1 major structural protein.  相似文献   

13.
A mouse model of high-risk human papillomavirus infection was developed in which human papillomavirus (HPV) type 16 DNA was inoculated into human foreskin grafted to the skin of severe combined immunodeficient (scid) mice. Grafted skin contained human epidermis and dermis and, like normal human skin, expressed involucrin in differentiating keratinocytes. HPV type 16 DNA, attached to gold particles, was delivered directly into human epidermal cells and induced exophytic papilloma with histologic features of papillomavirus infection, including koilocytosis and expression of papillomavirus capsid antigen. This model should be useful for determining in vivo the functions of viral genes and for developing strategies to prevent and treat HPV-associated disease. It may also be of value in developing animal models of other human skin diseases.  相似文献   

14.
Pseudovirions of human papillomavirus type 16 (HPV16), the principal etiologic agent in 50% of cervical cancers, were used as a model system to investigate the cell surface interactions involved in the exposure of the broadly cross-neutralizing papillomavirus L2 epitopes. These neutralizing epitopes were exposed only after cell surface binding and a subsequent change in capsid conformation that permitted cleavage by the cellular protease furin at a specific highly conserved site in L2 that is immediately upstream of the cross-neutralizing epitopes. Unexpectedly, binding of L2 antibodies led to the release of the capsid/antibody complexes from the cell surface and their accumulation on the extracellular matrix. Study of the dynamics of exposure of the L2 epitopes further revealed that representatives of the apparently dominant class of L1-specific neutralizing antibodies induced by virus-like particle vaccination prevent infection, not by preventing cell surface binding but rather by preventing the conformation change involved in exposure of the L2 neutralizing epitope. These findings suggest a dynamic model of virion-cell surface interactions that has implications for both evolution of viral serotypes and the efficacy of current and future HPV vaccines.  相似文献   

15.
Y Tomita  H Shirasawa    B Simizu 《Journal of virology》1987,61(8):2389-2394
The human papillomavirus (HPV) genome contains two large open reading frames (ORFs), designated L1 and L2. To characterize the antigenic properties of the L1 ORF-encoded proteins, we cloned the L1 ORFs of HPV6b and HPV16 in plasmids, and these were expressed in Escherichia coli. First, the HPV6b DNA, representing 85.2% of the L1 ORF, was cloned in pUC19 and expressed in E. coli JM83 and RB791 as a 160,000-molecular-weight (160K) fusion protein with E. coli beta-galactosidase (6bL1/beta-gal). Second, the HPV16 DNA, representing 89.8% of the L1 ORF, was cloned in pKK233-2 and expressed as a 56K protein (16L1) in strain RB791. Both the 6bL1/beta-gal and 16L1 proteins cross-reacted with anti-bovine papillomavirus type 1 (BPV1) antibody raised against disrupted BPV1 particles. An antibody raised against the 6bL1/beta-gal fusion protein reacted with the 16L1 protein and also with native papillomavirus antigens in human genital condyloma and bovine fibropapilloma tissues, as determined by biotin-streptavidin staining. Furthermore, the anti-6bL1/beta-gal antibody recognized a 54K protein which seemed to be a major capsid protein of BPV1 and also a 56K protein of biopsies harboring HPV6 or HPV11. From these results we concluded that the papillomavirus L1 gene product contains genus-specific (common) antigens and that the HPV6 and HPV11 L1 genes specify the 56K capsid protein.  相似文献   

16.
OBJECTIVE: To investigate the prevalence of HPV L1 capsid proteins in HPV-infected HSIL and LSIL. STUDY DESIGN: Cervical smears from 74 women with cytologically and histologically confirmed LSIL (n = 32) and HSIL (n = 42) were collected prospectively to detect HPV high-risk (hr) types 16, 18, 33, 35, 39, 45, 56 and 58 L1-DNA by standardized L1-consensus primer PCR (MY 09/11) and L1 capsid proteins by immunocytochemistry using monoclonal antibodies T31 (HPV16) and T16 (HPV hr) in a standardized protocol. RESULTS: In HSIL and LSIL, L1 DNA was found for HPV hr in 93% and 59% and for HPV16 in 69% and 37% of the specimens, respectively. HPV L1 capsid proteins were detected in HSIL and LSIL for HPV hr in 33% and 44% and for HPV16 in 29% and 31% of the specimens, respectively. Expression of L1 capsid proteins was significantly reduced, by 59.6% for HPV hr L1 DNA-positive HSIL (P < .01) and by 40.4% for HPV 16 L1 DNA-positive HSIL (P < .01). In HPV 16 DNA-positive and HPV hr DNA-positive LSIL, no significant reduction of corresponding L1 capsid protein expression could be demonstrated. CONCLUSION: These data suggest a disturbed viral cellular interaction in HPV 16 and HPV hr-infected HSIL, with loss of viral L1 capsid antigen. In this context there is a possible role of T31 and T16 as prognostic markers to predict the prognosis of CIN.  相似文献   

17.
Cervical cancer arises from lesions caused by infection with high-risk types of human papillomavirus (HPV). Therefore, vaccination against HPV could prevent carcinogenesis by preventing HPV infection or inducing lesion regression. HPV E2 protein is an attractive candidate for vaccine development because it is required for papilloma formation, is involved in all stages of the virus life cycle, and is expressed in all premalignant lesions as well as some cancers. This study reports vaccination against E2 protein using a rabbit model of papillomavirus infection. A recombinant adenovirus (Ad) vector expressing the E2 protein of cottontail rabbit papillomavirus (CRPV) was tested for therapeutic efficacy in CRPV-infected rabbits. Primary immunization with the Ad-E2 vaccine, compared to immunization with a control Ad vector, reduced the number of papilloma-forming sites from 17 of 45 to 4 of 45. After booster immunization, vaccinated rabbits formed no new papillomas versus an additional 23 papillomas in rabbits that received the control vector. Papillomas in the Ad-E2 vaccinees were significantly smaller than those in the control rabbits, and all four papillomas in the Ad-E2 vaccinated rabbits regressed. No CRPV DNA was detected either in the regression sites or in sites that did not form papillomas, indicating that the vaccination led to clearance of CRPV from all infected sites.  相似文献   

18.
The L1 major capsid proteins of human papillomavirus (HPV) types 11 and 16 were purified and analyzed for structural integrity and in vitro self-assembly. Proteins were expressed in Escherichia coli as glutathione-S-transferase-L1 (GST-L1) fusions and purified to near homogeneity as pentamers (equivalent to viral capsomeres), after thrombin cleavage from the GST moiety and removal of tightly associated GroEL protein. Sequences at the amino and carboxy termini contributing to formation of L1 pentamers and to in vitro capsid assembly were identified by deletion analysis. For both HPV11 and HPV16 L1, up to at least ten residues could be deleted from the amino terminus (Delta N10) and 30 residues from the carboxy terminus (Delta C30) without affecting pentamer formation. The HPV16 pentamers assembled into relatively regular, 72-pentamer shells ("virus-like particles" or VLPs) at low pH, with the exception of HPV16 L1 Delta N10, which assembled into a 12-pentamer, T=1 capsid (small VLP) under all conditions tested. The production of large quantities of assembly-competent L1, using the expression and purification protocol described here, has been useful for crystallographic analysis, and will be valuable for studies of virus-receptor interactions and potentially for vaccine design.  相似文献   

19.
Current L1 virus-like particle (VLP) vaccines provide type-restricted protection against a small subset of the human papillomavirus (HPV) genotypes associated with cervical cancer, necessitating continued cytologic screening of vaccinees. Cervical cancer is most problematic in countries that lack the resources for screening or highly multivalent HPV VLP vaccines, suggesting the need for a low-cost, broadly protective vaccinogen. Here, N-terminal L2 polypeptides comprising residues 1 to 88 or 11 to 200 derived from HPV16, bovine papillomavirus type 1 (BPV1), or cottontail rabbit papillomavirus (CRPV) were produced in bacteria. Rabbits were immunized with these N-terminal L2 polypeptides and concurrently challenged with CRPV and rabbit oral papillomavirus (ROPV). Vaccination with either N-terminal L2 polypeptides of CRPV effectively protected rabbits from CRPV challenge but not from papillomas induced by cutaneous challenge with CRPV genomic DNA. Furthermore, papillomas induced by CRPV genomic DNA deficient for L2 expression grew at the same rate as those induced by wild-type CRPV genomic DNA, further suggesting that the L2 polypeptide vaccines lack therapeutic activity. Neutralizing serum antibody titers of >15 correlated with protection (P < 0.001), a finding consistent with neutralizing antibody-mediated protection. Surprisingly, a remarkable degree of protection against heterologous papillomavirus types was observed after vaccination with N-terminal L2 polypeptides. Notably, vaccination with HPV16 L2 11-200 protected against cutaneous and mucosal challenge with CRPV and ROPV, respectively, papillomaviruses that are evolutionarily divergent from HPV16. Further, vaccination with HPV16 L2 11-200 generates broadly cross-neutralizing serum antibody, suggesting the potential of L2 as a second-generation preventive HPV vaccine antigen.  相似文献   

20.
BPHE-1 cells, which harbor 50 to 200 viral episomes, encapsidate viral genome and generate infectious bovine papillomavirus type 1 (BPV1) upon coexpression of capsid proteins L1 and L2 of BPV1, but not coexpression of BPV1 L1 and human papillomavirus type 16 (HPV16) L2. BPV1 L2 bound in vitro via its C-terminal 85 residues to purified L1 capsomers, but not with intact L1 virus-like particles in vitro. However, when the efficiency of BPV1 L1 coimmunoprecipitation with a series of BPV1 L2 deletion mutants was examined in vivo, the results suggested that residues 129 to 246 and 384 to 460 contain independent L1 interaction domains. An L2 mutant lacking the C-terminal L1 interaction domain was impaired for encapsidation of the viral genome. Coexpression of BPV1 L1 and a chimeric L2 protein composed of HPV16 L2 residues 1 to 98 fused to BPV1 L2 residues 99 to 469 generated infectious virions. However, inefficient encapsidation was seen when L1 was coexpressed with either BPV1 L2 with residues 91 to 246 deleted or with BPV1 L2 with residues 1 to 225 replaced with HPV16 L2. Impaired genome encapsidation did not correlate closely with impairment of the L2 proteins either to localize to promyelocytic leukemia oncogenic domains (PODs) or to induce localization of L1 or E2 to PODs. We conclude that the L1-binding domain located near the C terminus of L2 may bind L1 prior to completion of capsid assembly, and that both L1-binding domains of L2 are required for efficient encapsidation of the viral genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号