首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.

Background

The genome of retroviruses, including HIV-1, is packaged as two homologous (+) strand RNA molecules, noncovalently associated close to their 5′-end in a region called dimer linkage structure (DLS). Retroviral HIV-1 genomic RNAs dimerize through complex interactions between dimerization initiation sites (DIS) within the (5′-UTR). Dimer formation is prevented by so calledLong Distance Interaction (LDI) conformation, whereas Branched Multiple Hairpin (BMH) conformation leads to spontaneous dimerization.

Methods and Results

We evaluated the role of SL1 (DIS), PolyA Hairpin signal and a long distance U5-AUG interaction by in-vitro dimerization, conformer assay and coupled dimerization and template-switching assays using antisense PNAs. Our data suggests evidence that PNAs targeted against SL1 produced severe inhibitory effect on dimerization and template-switching processes while PNAs targeted against U5 region do not show significant effect on dimerization and template switching, while PNAs targeted against AUG region showed strong inhibition of dimerization and template switching processes.

Conclusions

Our results demonstrate that PNA can be used successfully as an antisense to inhibit dimerization and template switching process in HIV -1 and both of the processes are closely linked to each other. Different PNA oligomers have ability of switching between two thermodynamically stable forms. PNA targeted against DIS and SL1 switch, LDI conformer to more dimerization friendly BMH form. PNAs targeted against PolyA haipin configuration did not show a significant change in dimerization and template switching process. The PNA oligomer directed against the AUG strand of U5-AUG duplex structure also showed a significant reduction in RNA dimerization as well as template- switching efficiency.The antisense PNA oligomers can be used to regulate the shift in the LDI/BMH equilibrium.  相似文献   

4.
Prostaglandin E2 (PGE2) is induced in vivo by bacterial products including TLR agonists. To determine whether PGE2 is induced directly or via IL-1β, human monocytes and macrophages were cultured with LPS or with Pam3CSK4 in presence of caspase-1 inhibitor, ZVAD, or IL-1R antagonist, Kineret. TLR agonists induced PGE2 in macrophages exclusively via IL-1β-independent mechanisms. In contrast, ZVAD and Kineret reduced PGE2 production in LPS-treated (but not in Pam3CSK4-treated) monocytes, by 30–60%. Recombinant human IL-1β augmented COX-2 and mPGES-1 mRNA and PGE2 production in LPS-pretreated monocytes but not in un-primed or Pam3CSK4-primed monocytes. This difference was explained by the finding that LPS but not Pam3CSK4 induced phosphorylation of IRF3 in monocytes suggesting activation of the TRIF signaling pathway. Knocking down TRIF, TRAM, or IRF3 genes by siRNA inhibited IL-1β-induced COX-2 and mPGES-1 mRNA. Blocking of TLR4 endocytosis during LPS priming prevented the increase in PGE2 production by exogenous IL-1β. Our data showed that TLR2 agonists induce PGE2 in monocytes independently from IL-1β. In the case of TLR4, IL-1β augments PGE2 production in LPS-primed monocytes (but not in macrophages) through a mechanism that requires TLR4 internalization and activation of the TRIF/IRF3 pathway. These findings suggest a key role for blood monocytes in the rapid onset of fever in animals and humans exposed to bacterial products and some novel adjuvants.  相似文献   

5.
Tnr1 is a repetitive sequence in rice with several features characteristic of a transposable DNA element. Its copy number was estimated to be about 3500 per haploid genome by slot-blot hybridization. We have isolated six members of Tnr1 located at different loci by PCR (polymerase chain reaction) and determined their nucleotide sequences. The Tnr1 elements were similar in size and highly homologous (about 85%) to the Tnr1 sequence identified first in the Waxy gene in Oryza glaberrima. A consensus sequence of 235 by could be derived from the nucleotide sequences of all the Tnr1 members. The consensus sequence showed that base substitutions occurred frequently in Tnr1 by transition, and that Tnr1 has terminal inverted repeat sequences of 75 bp. Almost all the chromosomal sequences that flank the Tnr1 members were 5′-PuTA-3′ and 5′-TAPy-3′, indicating that Tnr1 transposed to 5′-PuTAPy-3′ sites, duplicating the TA sequence. PCR-amplified fragments from some rice species did not contain the Tnr1 members at corresponding loci. Comparison of nucleotide sequences of the fragments with or without a Tnr1 member confirmed preferential transposition of Tnr1 to 5′-PuTAPy-3′ sites, duplicating the TA sequence. One amplified sequence suggested that imprecise excision had occurred to remove a DNA segment containing a Tnr1 member and its neighboring sequences at the Waxy locus of rice species with genome types other than AA. We also present data that may suggest that Tnr1 is a defective form of an autonomous transposable element.  相似文献   

6.
The environment of the template sequence 5 of the E-site codon on the 80S ribosome was studied with nonaribonucleotide or dodecaribonucleotide derivatives containing Phe codon UUU at the 3 end and a perfluoroarylazido group at the first or third nucleotide. A photoreactive group was linked to C5 of U or N7 of G. The analogs were positioned on the ribosome with the use of tRNAPhe, which is cognate to the UUU codon and directs it to the P site, bringing a modified nucleotide in position –4 to –9 relative to the first nucleotide of the P-site codon. Upon irradiation of ribosome complexes with tRNAPhe and the mRNA analogs with mild UV light, the analogs crosslinked predominantly to the 40S subunit, modifying the proteins. The major target of modification was S26 in all cases. In addition, S3 was modified to a low extent when the reactive nucleotide was in position –4 and S14 was in position –6. In the absence of tRNA, all mRNA analogs modified S3.  相似文献   

7.
Adenine nucleosides and nucleotides are important signaling molecules involved in control of key mechanisms of xenotransplant rejection. Extracellular pathway that converts ATP and ADP to AMP, and AMP to adenosine mainly mediated by ecto-nucleoside triphosphate diphosphohydrolase 1, (ENTPD1 or CD39) and ecto-5′-nucleotidase (E5NT or CD73) respectively, is considered as important target for xenograft protection. To clarify feasibility of combined expression of human ENTPD1 and E5NT and to study its functional effect we transfected pig endothelial cell line (PIEC) with both genes together. To do this we have produced a dicistronic construct bearing F2A sequence in frame between human E5NT and human ENTPD1 coding sequences. PIEC cells were mock-transfected as transfection control or transfected with plasmids encoding human ENTPD1 or human E5NT. PIEC cells were exposed to 50 μM ATP or 50 μM ADP or 50 μM AMP. Conversion of extracellular substrates into products (ATP/ADP/AMP/adenosine) was measured by HPLC in the media collected at specific time intervals. Following addition of AMP, production of adenosine in the medium of E5NT/ENTPD1- and E5NT- transfected cells increased to 14.2 ± 1.1 and 24.5 ± 3.4 μM respectively while it remained below 1 μM in controls and in ENTPD1-transfected cells. A marked increase of adenosine formation from ADP or ATP was observed only in E5NT/ENTPD1-transfected cells (11.7 ± 0.1 and 5.7 ± 2.2 μM respectively) but not in any other condition studied. This study indicates feasibility and functionality of combined expression of human E5NT and ENTPD1 in pig endothelial cells using F2A sequence bearing construct.  相似文献   

8.
9.
Small noncoding HIV-1 leader exon 3 is defined by its splice sites A2 and D3. While 3′ splice site (3′ss) A2 needs to be activated for vpr mRNA formation, the location of the vpr start codon within downstream intron 3 requires silencing of splicing at 5′ss D3. Here we show that the inclusion of both HIV-1 exon 3 and vpr mRNA processing is promoted by an exonic splicing enhancer (ESEvpr) localized between exonic splicing silencer ESSV and 5′ss D3. The ESEvpr sequence was found to be bound by members of the Transformer 2 (Tra2) protein family. Coexpression of these proteins in provirus-transfected cells led to an increase in the levels of exon 3 inclusion, confirming that they act through ESEvpr. Further analyses revealed that ESEvpr supports the binding of U1 snRNA at 5′ss D3, allowing bridging interactions across the upstream exon with 3′ss A2. In line with this, an increase or decrease in the complementarity of 5′ss D3 to the 5′ end of U1 snRNA was accompanied by a higher or lower vpr expression level. Activation of 3′ss A2 through the proposed bridging interactions, however, was not dependent on the splicing competence of 5′ss D3 because rendering it splicing defective but still competent for efficient U1 snRNA binding maintained the enhancing function of D3. Therefore, we propose that splicing at 3′ss A2 occurs temporally between the binding of U1 snRNA and splicing at D3.  相似文献   

10.

Background

α-defensin-5 (HD5) is a key effector of the innate immune system with broad anti-bacterial and anti-viral activities. Specialized epithelial cells secrete HD5 in the genital and gastrointestinal mucosae, two anatomical sites that are critically involved in HIV-1 transmission and pathogenesis. We previously found that human neutrophil defensins (HNP)-1 and -2 inhibit HIV-1 entry by specific bilateral interaction both with the viral envelope and with its primary cellular receptor, CD4. Despite low amino acid identity, human defensin-5 (HD5) shares with HNPs a high degree of structural homology.

Methodology/Principal Findings

Here, we demonstrate that HD5 inhibits HIV-1 infection of primary CD4+ T lymphocytes at low micromolar concentration under serum-free and low-ionic-strength conditions similar to those occurring in mucosal fluids. Blockade of HIV-1 infection was observed with both primary and laboratory-adapted strains and was independent of the viral coreceptor-usage phenotype. Similar to HNPs, HD5 inhibits HIV-1 entry into the target cell by interfering with the reciprocal interaction between the external envelope glycoprotein, gp120, and CD4. At high concentrations, HD5 was also found to downmodulate expression of the CXCR4 coreceptor, but not of CCR5. Consistent with its broad spectrum of activity, antibody competition studies showed that HD5 binds to a region overlapping with the CD4- and coreceptor-binding sites of gp120, but not to the V3 loop region, which contains the major determinants of coreceptor-usage specificity.

Conclusion/Significance

These findings provide new insights into the first line of immune defense against HIV-1 at the mucosal level and open new perspectives for the development of preventive and therapeutic strategies.  相似文献   

11.
12.
13.
The 5′ leader of the HIV-1 RNA genome encodes signals that control various steps in the replication cycle, including the dimerization initiation signal (DIS) that triggers RNA dimerization. The DIS folds a hairpin structure with a palindromic sequence in the loop that allows RNA dimerization via intermolecular kissing loop (KL) base pairing. The KL dimer can be stabilized by including the DIS stem nucleotides in the intermolecular base pairing, forming an extended dimer (ED). The role of the ED RNA dimer in HIV-1 replication has hardly been addressed because of technical challenges. We analyzed a set of leader mutants with a stabilized DIS hairpin for in vitro RNA dimerization and virus replication in T cells. In agreement with previous observations, DIS hairpin stability modulated KL and ED dimerization. An unexpected previous finding was that mutation of three nucleotides immediately upstream of the DIS hairpin significantly reduced in vitro ED formation. In this study, we tested such mutants in vivo for the importance of the ED in HIV-1 biology. Mutants with a stabilized DIS hairpin replicated less efficiently than WT HIV-1. This defect was most severe when the upstream sequence motif was altered. Virus evolution experiments with the defective mutants yielded fast replicating HIV-1 variants with second site mutations that (partially) restored the WT hairpin stability. Characterization of the mutant and revertant RNA molecules and the corresponding viruses confirmed the correlation between in vitro ED RNA dimer formation and efficient virus replication, thus indicating that the ED structure is important for HIV-1 replication.  相似文献   

14.
The phase III Thai RV144 vaccine trial showed an estimated vaccine efficacy (VE) to prevent HIV-1 infection of 31.2%, which has motivated the search for immune correlates of vaccine protection. In a recent report, several single nucleotide polymorphisms (SNPs) in FCGR2C were identified to associate with the level of VE in the RV144 trial. To investigate the functional significance of these SNPs, we utilized a large scale B cell RNA sequencing database of 462 individuals from the 1000 Genomes Project to examine associations between FCGR2C SNPs and gene expression. We found that the FCGR2C SNPs that associated with vaccine efficacy in RV144 also strongly associated with the expression of FCGR2A/C and one of them also associated with the expression of Fc receptor-like A (FCRLA), another Fc-γ receptor (FcγR) gene that was not examined in the previous report. These results suggest that the expression of FcγR genes is influenced by these SNPs either directly or in linkage with other causal variants. More importantly, these results motivate further investigations into the potential for a causal association of expression and alternative splicing of FCGR2C and other FcγR genes with the HIV-1 vaccine protection in the RV144 trial and other similar studies.  相似文献   

15.
16.
17.
Enterovirus 71 (EV71) is one causative agent of hand, foot, and mouth disease (HFMD), which may lead to severe neurological disorders and mortality in children. EV71 genome is a positive single-stranded RNA containing a single open reading frame (ORF) flanked by 5′-untranslated region (5′UTR) and 3′UTR. The 5′UTR is fundamentally important for virus replication by interacting with cellular proteins. Here, we revealed that poly(C)-binding protein 1 (PCBP1) specifically binds to the 5′UTR of EV71. Detailed studies indicated that the RNA-binding K-homologous 1 (KH1) domain of PCBP1 is responsible for its binding to the stem-loop I and IV of EV71 5′UTR. Interestingly, we revealed that PCBP1 is distributed in the nucleus and cytoplasm of uninfected cells, but mainly localized in the cytoplasm of EV71-infected cells due to interaction and co-localization with the viral RNA. Furthermore, sub-cellular distribution analysis showed that PCBP1 is located in ER-derived membrane, in where virus replication occurred in the cytoplasm of EV71-infected cells, suggesting PCBP1 is recruited in a membrane-associated replication complex. In addition, we found that the binding of PCBP1 to 5′UTR resulted in enhancing EV71 viral protein expression and virus production so as to facilitate viral replication. Thus, we revealed a novel mechanism in which PCBP1 as a positive regulator involved in regulation of EV71 replication in the host specialized membrane-associated replication complex, which provides an insight into cellular factors involved in EV71 replication.  相似文献   

18.
19.
GlcNAc-1-phosphotransferase is a Golgi-resident 540-kDa complex of three subunits, α2β2γ2, that catalyze the first step in the formation of the mannose 6-phosphate (M6P) recognition marker on lysosomal enzymes. Anti-M6P antibody analysis shows that human primary macrophages fail to generate M6P residues. Here we have explored the sorting and intracellular targeting of cathepsin D as a model, and the expression of the GlcNAc-1-phosphotransferase complex in macrophages. Newly synthesized cathepsin D is transported to lysosomes in an M6P-independent manner in association with membranes whereas the majority is secreted. Realtime PCR analysis revealed a 3–10-fold higher GlcNAc-1-phosphotransferase subunit mRNA levels in macrophages than in fibroblasts or HeLa cells. At the protein level, the γ-subunit but not the β-subunit was found to be proteolytically cleaved into three fragments which form irregular 97-kDa disulfide-linked oligomers in macrophages. Size exclusion chromatography showed that the γ-subunit fragments lost the capability to assemble with other GlcNAc-1-phosphotransferase subunits to higher molecular complexes. These findings demonstrate that proteolytic processing of the γ-subunit represents a novel mechanism to regulate GlcNAc-1-phosphotransferase activity and the subsequent sorting of lysosomal enzymes.  相似文献   

20.
The human immunodeficiency virus type 1 (HIV-1) accessory protein Vif is encoded by an incompletely spliced mRNA resulting from splicing of the major splice donor in the HIV-1 genome, 5′ splice site (5′ss) D1, to the first splice acceptor, 3′ss A1. We have shown previously that splicing of HIV-1 vif mRNA is tightly regulated by suboptimal 5′ss D2, which is 50 nucleotides downstream of 3′ss A1; a GGGG silencer motif proximal to 5′ss D2; and an SRp75-dependent exonic splicing enhancer (ESEVif). In agreement with the exon definition hypothesis, mutations within 5′ss D2 that are predicted to increase or decrease U1 snRNP binding affinity increase or decrease the usage of 3′ss A1 (D2-up and D2-down mutants, respectively). In this report, the importance of 5′ss D2 and ESEVif for avoiding restriction of HIV-1 by APOBEC3G (A3G) was determined by testing the infectivities of a panel of mutant viruses expressing different levels of Vif. The replication of D2-down and ESEVif mutants in permissive CEM-SS cells was not significantly different from that of wild-type HIV-1. Mutants that expressed Vif in 293T cells at levels greater than 10% of that of the wild type replicated similarly to the wild type in H9 cells, and Vif levels as low as 4% were affected only modestly in H9 cells. This is in contrast to Vif-deleted HIV-1, whose replication in H9 cells was completely inhibited. To test whether elevated levels of A3G inhibit replication of D2-down and ESEVif mutants relative to wild-type virus replication, a Tet-off Jurkat T-cell line that expressed approximately 15-fold-higher levels of A3G than control Tet-off cells was generated. Under these conditions, the fitness of all D2-down mutant viruses was reduced relative to that of wild-type HIV-1, and the extent of inhibition was correlated with the level of Vif expression. The replication of an ESEVif mutant was also inhibited only at higher levels of A3G. Thus, wild-type 5′ss D2 and ESEVif are required for production of sufficient Vif to allow efficient HIV-1 replication in cells expressing relatively high levels of A3G.Human immunodeficiency virus type 1 (HIV-1) Vif is a 23-kDa basic protein (4, 9) that is incorporated into virus particles during productive infection (8-10). Replication of HIV-1 in some T-cell lines is dependent on the expression of a functional Vif protein. Replication of Vif-deleted HIV-1 is restricted in these cells, which are termed nonpermissive, because of the presence of several host deaminases, the most important of which for HIV-1 replication is APOBEC3G (A3G) (25, 26). Human A3G is a single-stranded DNA deaminase that inhibits the replication of HIV-1 as well as other types of retroviruses and retrotransposons (5, 12, 17, 25, 32). HIV-1 Vif forms a complex with A3G and other cellular proteins to promote A3G ubiquitination, resulting in proteasomal degradation of A3G (1, 11, 14, 18, 26). Vif-deleted HIV-1 produced in the presence of A3G packages increased levels of A3G compared to those found in the wild type (WT) and has reduced infectivity in nonpermissive T-cell lines. This reduced infectivity in the absence of Vif has been correlated with the dC-to-dU hypermutation of newly synthesized minus-strand viral DNA by A3G (6, 13, 31, 32). However, other studies have shown that A3G is also able to restrict virus replication without hypermutating viral DNA (7, 19).It has previously been shown that the expression of Vif in infected cells is maintained at a relatively low level compared to levels of the other HIV-1 accessory proteins. One mechanism to explain this phenomenon is that Vif is degraded more rapidly than other accessory proteins by the proteasome (3). Another mechanism is that a relatively low level of vif mRNA is produced by alternative splicing (22). Alternative splicing of HIV-1 RNA results in the production of approximately 40 different mRNA species, which include three different mRNA size classes: 1.8-kb, completely spliced RNAs; 4-kb, incompletely spliced RNAs; and 9-kb, unspliced RNAs (Fig. (Fig.1A).1A). The 4-kb mRNA class encodes Vif, Vpr, Tat, Vpu, and Env, and the completely spliced, 1.8-kb mRNA class encodes Tat, Rev, and Nef. Unspliced viral RNA is both packaged into virions as genomic RNA and used as mRNA for Gag and Gag-Pol proteins (2, 27). As shown in Fig. Fig.1A,1A, four different 5′ splice donor sites (5′ss) and eight different 3′ splice acceptor sites (3′ss), which are highly conserved among group M HIV-1 strains, are used to produce alternatively spliced HIV-1 mRNAs at different levels in infected cells (22). The efficiencies with which these 5′ss and 3′ss are used are dependent on the presence of suboptimal cis splicing elements within the 5′ss and 3′ss themselves and more-distant elements, which include exonic splicing silencers, an intronic splicing silencer, and exonic splicing enhancers (ESE) (2, 15, 27).Open in a separate windowFIG. 1.HIV-1 splicing pattern and elements regulating vif mRNA splicing. (A) The conserved 5′ss (D1 to D4) and 3′ss (A1 to A7) located within the 9-kb HIV-1 genome are shown. Completely and incompletely spliced HIV-1 mRNAs (∼4 kb and ∼1.8 kb) are shown as open boxes. Spliced mRNAs are denoted by the translated open reading frame and by the exon content. The incompletely spliced mRNAs, denoted with an I, are differentiated from completely spliced mRNAs by inclusion of the intron between 5′ss D4 and 3′ss A7. Either one or both of the noncoding exons 2 and 3 (shown as gray-shaded exons) can be differentially included within all 1.8- and 4.0-kb mRNA species, with the exception of vif mRNA (1.2I) and vpr mRNA, which can include only exon 2 (1.[2].3I). LTR, long terminal repeat. (B) Three elements regulating vif mRNA splicing are shown: positively acting enhancer ESEVif, the 5′ss D2 (underlined), and a negatively acting G4 silencer motif. The locations of noncoding exon 2 and the start site for Vif protein synthesis are also shown. (C) HIV-1 5′ss D2-down mutants used in this study are shown. Sequences were aligned and compared with that of the consensus metazoan 5′ss. The sequence of the ESEVif mutant used in this study is also aligned and compared with the WT sequence. nt, nucleotides.HIV-1 Vif is translated from a low-abundance, incompletely spliced mRNA resulting from splicing of HIV-1 RNA between the major splice donor site (5′ss D1) and 3′ss A1. We have demonstrated that vif mRNA splicing is tightly regulated by the presence of multiple regulatory elements (Fig. (Fig.1B).1B). These include a highly conserved suboptimal 5′ss (5′ss D2) 50 nucleotides downstream from 3′ss A1, an SRp75-dependent ESE (ESEVif), and a GGGG silencer element proximal to 5′ss D2 (2). Mutations within the relatively weak 5′ss D2 that increase its homology to a consensus 5′ss result in increased inclusion of the noncoding 50-nucleotide exon defined by 3′ss A1 and 5′ss D2 (exon 2), increased single-spliced vif mRNA levels and Vif expression, and an excessive splicing phenotype in which virion production is reduced to 10 to 25% of that of the WT (16). Conversely, mutations that decrease the homology of 5′ss D2 to a consensus 5′ss inhibit splicing at 3′ss A1 and exon 2 inclusion into both incompletely and completely spliced HIV-1 mRNAs as well as decreased levels of vif mRNA. Virus production, however, is not significantly affected. Mutation of ESEVif resulted in a similar phenotype. We have shown previously that increased or decreased exon 2 inclusion into spliced mRNA does not affect the stability or expression of viral mRNAs (15). Based on these results, we hypothesized that the conserved suboptimal 5′ss D2, which together with 3′ss A1 defines exon 2, and ESEVif are necessary to maintain optimal levels of Gag and Gag-Pol required for HIV-1 replication while producing sufficient Vif to overcome the cellular restriction factor A3G (2). To further test this hypothesis, we examined a panel of HIV-1 mutants producing reduced levels of Vif under permissive and nonpermissive conditions. We also investigated the long-term replication capabilities of these mutant viruses in both permissive and nonpermissive A3G-expressing T-cell lines. Mutant viruses demonstrated increasing sensitivity to A3G, which is inversely proportional to their levels of Vif expression. Our results suggest that the reason 5′ss D2 and ESEVif exist in the HIV-1 genome is to regulate the levels of vif mRNA and Vif protein in infected cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号