首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Cardiac remodeling, a term that spans maladaptation at the molecular, cellular, tissue and organ levels, is the key pathophysiological process that leads to heart failure (HF). In clinic, pressure overload and ischemia are the two most common reasons to induce cardiac remodeling and HF, which includes but is not limited to cardiac hypertrophy, fibrosis, and cardiomyocyte apoptosis. MicroRNAs (miRNAs) are endogenous, single-stranded, short non-coding RNAs. By imperfectly binding to the 3′ untranslated region (UTR) of messenger RNAs (mRNAs), miRNAs are able to suppress target gene expression by promoting degradation or by inhibiting translation of the target mRNAs, thus playing an important role in a wide range of biologic processes. Growing evidence has indicated that miRNAs are aberrantly expressed in the cardiovascular system under experimental and clinical conditions with cardiac remodeling and HF. Clinically there is increasing evidence that miRNAs can act as diagnostic biomarker and even represent a novel therapeutic target in several cardiovascular disorders. This review provides an overview of several miRNAs' impacts in pressure-overload and ischemia-induced cardiac remodeling and HF.  相似文献   

2.
MicroRNAs (miRNAs) are genes involved in normal development and cancer. They inhibit gene expression by associating with 3'-Untranslated regions (3' UTRs) of messenger RNAs (mRNAs), and are thought to regulate a large proportion of protein coding genes. However, it is becoming apparent that miRNA activity is not necessarily always determined by its expression in the cell. MiRNA activity can be affected by RNA-binding proteins (RBPs). For example, the RNA-binding protein HuR associates with the 3'UTR of the CAT1 mRNA after stress, counteracting the effect of miR-122. Second, we found that the expression of an RNA-binding protein called Dead end (Dnd1) prohibits the function of several miRNAs by blocking the accessibility of target mRNAs. Dnd1 function is essential for proper development of primordial germ cells (PGCs) in zebrafish and mammals, indicating a crucial role for RBP/miRNA interplay on 3'UTRs of mRNAs in developmental decisions. In this perspective we discuss the interplay between RBPs and miRNAs in the context of germ cells and review current observations implicating RBPs in miRNA function.  相似文献   

3.
4.
脊髓损伤是一个重要的公共卫生难题,脊髓损伤可划分为三个病理生理阶段:原发性损伤期、继发性损伤期和慢性损伤期。基因表达的改变在脊髓损伤中起到了重要作用,miRNAs可以调控转录后所有基因的表达,所以miRNAs是脊髓损伤中一个很具有研究价值的研究对象。miRNAs是20-25碱基组成的非编码RNA,通过与靶mRNAs 3‘UTR结合下调其表达实现的对mRNA翻译进程的调控。miRNAs与中枢神经系统的发育、功能和疾病有密切关系。脊髓损伤后miRNAs通过调节中性粒细胞和炎性反应通路在炎性应答中起到了重要作用;miRNAs在细胞凋亡中表现出了复杂的功能,其表达的改变可能同时刺激和抑制凋亡;miRNAs可通过增强星形胶质细胞肥大和调节胶质瘢痕的进程;miRNAs的下调可能通过促进轴突靶向作用、神经元存活和轴突生长来促进损伤脊髓部位再生进程。目前脊髓损伤仍是现代医学的难题,对神经系统疾病中miRNAs作用的研究,为脊髓损伤治疗提供了一种新的治疗方案,也是将来研究中的热点。  相似文献   

5.
Most mammalian genes often feature alternative polyadenylation (APA) sites and hence diverse 3’UTR lengths. Proliferating cells were reported to favor APA sites that result in shorter 3’UTRs. One consequence of such shortening is escape of mRNAs from targeting by microRNAs (miRNAs) whose binding sites are eliminated. Such a mechanism might provide proliferation-related genes with an expression gain during normal or cancerous proliferation. Notably, miRNA sites tend to be more active when located near both ends of the 3’UTR compared to those located more centrally. Accordingly, miRNA sites located near the center of the full 3’UTR might become more active upon 3''UTR shortening. To address this conjecture we performed 3'' sequencing to determine the 3'' ends of all human UTRs in several cell lines. Remarkably, we found that conserved miRNA binding sites are preferentially enriched immediately upstream to APA sites, and this enrichment is more prominent in pro-differentiation/anti-proliferative genes. Binding sites of the miR17-92 cluster, upregulated in rapidly proliferating cells, are particularly enriched just upstream to APA sites, presumably conferring stronger inhibitory activity upon shortening. Thus 3’UTR shortening appears not only to enable escape from inhibition of growth promoting genes but also to potentiate repression of anti-proliferative genes.  相似文献   

6.
Physiological cardiac hypertrophy is an adaptive mechanism, induced during chronic exercise. As it is reversible and not associated with cardiomyocyte death, it is considered as a natural tactic to prevent cardiac dysfunction and failure. Though, different studies revealed the importance of microRNAs (miRNAs) in pathological hypertrophy, their role during physiological hypertrophy is largely unexplored. Hence, this study is aimed at revealing the global expression profile of miRNAs during physiological cardiac hypertrophy. Chronic swimming protocol continuously for eight weeks resulted in induction of physiological hypertrophy in rats and histopathology revealed the absence of tissue damage, apoptosis or fibrosis. Subsequently, the total RNA was isolated and small RNA sequencing was executed. Analysis of small RNA reads revealed the differential expression of a large set of miRNAs during physiological hypertrophy. The expression profile of the significantly differentially expressed miRNAs was validated by qPCR. In silico prediction of target genes by miRanda, miRdB and TargetScan and subsequent qPCR analysis unraveled that miRNAs including miR-99b, miR-100, miR-19b, miR-10, miR-208a, miR-133, miR-191a, miR-22, miR-30e and miR-181a are targeting the genes that primarily regulate cell proliferation and cell death. Gene ontology and pathway mapping showed that the differentially expressed miRNAs and their target genes were mapped to apoptosis and cell death pathways principally via PI3K/Akt/mTOR and MAPK signaling. In summary, our data indicates that regulation of these miRNAs with apoptosis regulating potential can be one of the major key factors in determining pathological or physiological hypertrophy by controlling fibrosis, apoptosis and cell death mechanisms.  相似文献   

7.
骨骼肌的生长发育是影响猪肉产量和品质的重要因素,其受遗传和营养等众多因素的精细调控。MicroRNA (miRNA)是一种长度约为22 nt的非编码RNA,通过与靶基因的mRNA 3′UTR序列结合,调控其转录后的表达发挥作用。近年来,大量的研究表明miRNA参与机体的生长发育、生殖、疾病等多种生命过程。本文对miRNA在猪骨骼肌发育调控中的作用进行了综述,以期为猪的遗传改良提供参考和借鉴。  相似文献   

8.
微小RNA(MicroRNAs,mi RNAs)是真核生物中一类长度约为21到23个核苷酸的非编码小分子单链RNA。mi RNA通过与靶m RNA 3′UTR(3′-untranslated region,3′非编码区)完全或不完全结合,抑制翻译或直接诱导其降解,发挥转录后负调控作用。mi RNA参与机体多种生理和病理过程,且可通过调控其靶标基因参与各种信号通路,影响血管生成。mi R-378属于诸多mi RNAs中的一种。目前已知mi R-378的研究主要集中在肿瘤发生及血管生成、心血管疾病和脑缺血等病理过程,其中与肿瘤发生及血管生成相关研究居多。mi R-378在不同肿瘤中的发挥的作用也不一样,在脑胶质瘤,肺癌,横纹肌肉瘤等肿瘤中发挥促癌基因的作用,在卵巢癌,胃癌,大肠癌等肿瘤中发挥抑癌基因的作用。但是,mi R-378调节肿瘤血管生成的作用机制还有待于深入研究。本文主要对mi R-378在四种肿瘤(脑胶质瘤、肺腺癌、卵巢癌和横纹肌肉瘤)中调控血管生成的相关性研究进展进行综述,以期为这些疾病的治疗和预防提供一种新的思路。  相似文献   

9.
Cardiac hypertrophy is a physiological adaptive response of the heart to diverse pathophysiological stimuli. Initially, it may be adaptive to normalize wall stress and to preserve contractile performance. This adaptive process may gradually progress to dilated cardiomyopathy, fibrotic diseases, arrhythmia, heart failure and even sudden death. Although various molecular pathways responsible for the coordinated control of the hypertrophic program, little is known about their underlying molecular mechanisms. Very recently, increasing evidence showed that miRNAs are key modulators of both cardiovascular development and function, which govern the process of cardiac hypertrophy and heart failure. MicroRNAs (miRNAs) act in a complex functional network in which each single miRNAs might control thousands of distinct target genes, and each single protein-coding gene can be regulated by many different miRNAs. Identifying the roles of miRNAs, their target genes and signaling pathways in cardiac hypertrophy by bioinformatic analysis will provide more insight into the molecular mechanisms underlying this disease process. Currently, bioinformatics resource such as GO and KEGG was applied to describe the miRNAs target genes function and identify the mRNA interaction networks that are responsible for various cellular processes. It provides a useful approach to observe the function of microRNA in physiological and pathological conditions. In this review, we will give a discussion on the dysregulation of specific miRNAs in cardiac hypertrophy and signaling pathways linking the hypertrophy-regulating miRNAs to the pathological process of cardiac hypertrophy. Finally, we place special emphasis on the essential role of bioinformatics analysis to predict the target genes and miRNAs gene networks.  相似文献   

10.
Reduced biotinidase activity is associated with a spectrum of deficiency ranging from total deficiency to heterozygous levels, a finding that is not always explained by the pathogenic variants observed in the BTD gene. The investigation of miRNAs, regulatory elements and variants in the 3’UTR region may present relevance in understanding the genotype-phenotype association. The aims of the study were to characterize the regulatory elements of the 3’UTR of the BTD gene and identify variants and miRNAs which may explain the discrepancies observed between genotype and biochemical phenotype. We evaluated 92 individuals with reduced biotinidase activity (level of heterozygotes = 33, borderline = 35, partial DB = 20 or total DB= 4) with previously determined BTD genotype. The 3’UTR of the BTD gene was Sanger sequenced. In silico analysis was performed to identify miRNAs and regulatory elements. No variants were found in the 3’UTR. We found 97 possible miRNAs associated with the BTD gene, 49 predicted miRNAs involved in the alanine, biotin, citrate and pyruvate metabolic pathways and 5 genes involved in biotin metabolism. Six AU-rich elements were found. Our data suggest variants in the 3''UTR of BTD do not explain the genotype-phenotype discrepancies found in Brazilian individuals with reduced biotinidase.  相似文献   

11.
Molecular Biology - miRNAs regulate the expression of many genes and are involved in the development of diseases. We studied miRNAs that interact partly or fully complementarily with the 5'UTR,...  相似文献   

12.
13.

Pathological cardiac hypertrophy is associated with many diseases including hypertension. Recent studies have identified important roles for microRNAs (miRNAs) in many cardiac pathophysiological processes, including the regulation of cardiomyocyte hypertrophy. However, the role of miR-145-5p in the cardiac setting is still unclear. In this study, H9C2 cells were overexpressed with microRNA-145-5p, and then treated with Ang-II for 24 h, to study the effect of miR-145-5p on Ang-II-induced myocardial hypertrophy in vitro. Results showed that Ang-II treatment down-regulated miR-145-5p expression were revered after miR-145-5p overexpression. Based on results of bioinformatics algorithms, paxillin was predicted as a candidate target gene of miR-145-5p, luciferase activity assay revealed that the luciferase activity of cells was substantial downregulated the following co-transfection with wild paxillin 3′UTR and miR-145-5p compared to that in scramble control, while the inhibitory effect of miR-145-5p was abolished after transfection of mutant paxillin 3′UTR. Additionally, overexpression of miR-145-5p markedly inhibited activation of Rac-1/ JNK /c-jun/ NFATc3 and ANP expression and induced SIRT1 expression in Ang-II treated H9c2 cells. Jointly, our study suggested that miR-145-5p inhibited cardiac hypertrophy by targeting paxillin and through modulating Rac-1/ JNK /c-jun/ NFATc3/ ANP / Sirt1 signaling, therefore proving novel downstream molecular pathway of miR-145-5p in cardiac hypertrophy

  相似文献   

14.
M L Samson 《Genetics》1998,150(2):723-733
The Drosophila locus embryonic lethal abnormal visual system (elav) encodes a nuclear RNA-binding protein essential for normal neuronal differentiation and maintenance of neurons. ELAV is thought to play its role by binding to RNAs produced by other genes necessary for neuronal differentiation and consequently to affect their metabolism by an as yet unknown mechanism. ELAV structural homologues have been identified in a wide range of organisms, including humans, indicating an important conserved role for the protein. Analysis of elav germline transformants presented here shows that one copy of elav minigenes lacking a complete 3'' untranslated region (3'' UTR) rescues null mutations at elav, but that two copies are lethal. Additional in vivo experiments demonstrate that elav expression is regulated through the 3'' UTR of the gene and indicate that this level of regulation is dependent upon ELAV itself. Because ELAV is an RNA-binding protein, the simplest model to account for these findings is that ELAV binds to the 3'' UTR of its own RNA to autoregulate its expression. I discuss the implications of these results for normal elav function.  相似文献   

15.
16.
17.
Cardiac hypertrophy is positively regulated by MicroRNA miR-23a   总被引:1,自引:0,他引:1  
  相似文献   

18.
19.
20.
目的:探讨miRNAs(miR199a-5P、miR206、miR133a-3P、miR499-5P)在异丙肾上腺素(ISO)诱导大鼠心肌肥厚模型组中的表达变化;并运用生物信息学方法分析相关的主要信号通路及分子机制。方法:将16只SD雄性大鼠随机分为2组:对照组和ISO模型组,模型组给予ISO(1 mg/kg)诱导心肌肥厚模型,对照组给予等量生理盐水,均采用背部皮下多点注射。连续给药10 d后采用超声心动图测量舒张期室间隔厚度(IVSd)、舒张期左室后壁厚度(LVPWd)、左室舒张末期内径(LVDd)及心脏收缩功能(EF%);称量心脏重量(HW)、大鼠体重(BW),并计算心脏/体重比(HW/BW);心肌组织HE染色,Image J分析软件测量心肌细胞表面积;RT-qPCR检测大鼠心肌组织中4种miRNAs的表达情况。运用Targetscan、miRDB、miRwalk 数据库预测大鼠4种miRNAs可能的靶基因,FunRich软件分析预测靶基因相关的信号通路。结果:与正常组相比,模型组IVSd、LVPWd增厚,LV增大,EF%明显降低;HW、HW/BW增加;模型组心肌细胞体积明显增大,排列紊乱,细胞表面积增加;模型组miR199a-5P、miR206表达上调(P<0.05);miR133a-3P、miR499-5P表达下调(P<0.05)。应用生物信息学预测4种miRNAs的靶基因可能参与心肌肥厚相关的信号通路主要有:VEGF/VEGFR信号通路、ErbB受体信号通路等。结论:ISO诱导心肌肥厚导致miRNAs表达的改变,生物信息学预测4种miRNAs参与心肌肥厚相关的靶基因及其主要信号通路,这些研究为心肌肥厚的调控机制及其防治措施提供了新思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号