共查询到20条相似文献,搜索用时 15 毫秒
1.
M. M. Delgado K. A. Bartoń D. Bonte J. M. J. Travis 《Proceedings. Biological sciences / The Royal Society》2014,281(1778)
Dispersal is not a blind process, and evidence is accumulating that individual dispersal strategies are informed in most, if not all, organisms. The acquisition and use of information are traits that may evolve across space and time as a function of the balance between costs and benefits of informed dispersal. If information is available, individuals can potentially use it in making better decisions, thereby increasing their fitness. However, prospecting for and using information probably entail costs that may constrain the evolution of informed dispersal, potentially with population-level consequences. By using individual-based, spatially explicit simulations, we detected clear coevolutionary dynamics between prospecting and dispersal movement strategies that differed in sign and magnitude depending on their respective costs. More specifically, we found that informed dispersal strategies evolve when the costs of information acquisition during prospecting are low but only if there are mortality costs associated with dispersal movements. That is, selection favours informed dispersal strategies when the acquisition and use processes themselves were not too expensive. When non-informed dispersal strategies evolve, they do so jointly with the evolution of long dispersal distance because this maximizes the sampling area. In some cases, selection produces dispersal rules different from those that would be ‘optimal’ (i.e. the best possible population performance—in our context quantitatively measured as population density and patch occupancy—among all possible individual movement rules) for the population. That is, on the one hand, informed dispersal strategies led to population performance below its highest possible level. On the other hand, un- and poorly informed individuals nearly optimized population performance, both in terms of density and patch occupancy. 相似文献
2.
传粉榕小蜂和榕树的互利共生是传粉昆虫与植物间协同进化的典范。在榕果(榕树的隐头状花序)内,还生活着多种非传粉榕小蜂。这些生活在密闭榕果内由传粉榕小蜂和非传粉榕小蜂组成的群落对研究群落生态学有很大价值。然而,对生存在单一榕树的榕果内的所有榕小蜂的种群动态了解很少,特别是缺少相对长期的连续数据。通过野外近3a观察和采样,研究了垂叶榕榕小蜂群落结构和榕小蜂的种群动态。共记录榕小蜂16种;各种榕小蜂根据发生规律可分为常见种和偶见种,Eupristina koningsbergeri,Philotrypesis sp.1,Philotrypesis sp.4,Philotrypesis sp.5,Sycoscapter sp.1,Walkerella benjamini,Walkerella sp.1,Sycophila sp.2,Sycobia sp.2为常见种;Sycobia sp.1,Acophila sp.1,Sycophila sp.1,Ormyrus sp.1等为偶见种。每种榕小蜂在单果上的数量随季节呈波动变化,季节对榕小蜂群落的多样性和均匀性无显著影响。除了传粉榕小蜂外,Sycoscapter sp.1也是优势种类之一。传粉榕小蜂的数量与非传粉榕小蜂总数间呈显著负相关。传粉榕小蜂与非传粉榕小蜂几乎都呈负相关,而与Walkerella sp.1在数量上呈显著正相关。Sycobia sp.2与Sycophila sp.2在同一瘿中出现,数量上呈显著正相关。但其它非传粉榕小蜂种类在数量上的相关性较为复杂,可能是造成各种榕小蜂数量波动的一个原因。 相似文献
3.
4.
Valdovinos FS Ramos-Jiliberto R Garay-Narváez L Urbani P Dunne JA 《Ecology letters》2010,13(12):1546-1559
Species coexistence within ecosystems and the stability of patterns of temporal changes in population sizes are central topics in ecological theory. In the last decade, adaptive behaviour has been proposed as a mechanism of population stabilization. In particular, widely distributed adaptive trophic behaviour (ATB), the fitness-enhancing changes in individuals' feeding-related traits due to variation in their trophic environment, may play a key role in modulating the dynamics of feeding relationships within natural communities. In this article, we review and synthesize models and results from theoretical research dealing with the consequences of ATB on the structure and dynamics of complex food webs. We discuss current approaches, point out limitations, and consider questions ripe for future research. In spite of some differences in the modelling and analytic approaches, there are points of convergence: (1) ATB promotes the complex structure of ecological networks, (2) ATB increases the stability of their dynamics, (3) ATB reverses May's negative complexity-stability relationship, and (4) ATB provides resilience and resistance of networks against perturbations. Current knowledge supports ATB as an essential ingredient for models of community dynamics, and future research that incorporates ATB will be well positioned to address questions important for basic ecological research and its applications. 相似文献
5.
Eco-evolutionary dynamics of communities and ecosystems 总被引:7,自引:0,他引:7
6.
7.
Rapid evolution challenges the assumption that evolution is too slow to impact short-term ecological dynamics. This insight motivates the study of 'Eco-Evolutionary Dynamics' or how evolution and ecological processes reciprocally interact on short time scales. We tested how rapid evolution impacts concurrent population dynamics using an aphid (Myzus persicae) and an undomesticated host (Hirschfeldia incana) in replicated wild populations. We manipulated evolvability by creating non-evolving (single clone) and potentially evolving (two-clone) aphid populations that contained genetic variation in intrinsic growth rate. We observed significant evolution in two-clone populations whether or not they were exposed to predators and competitors. Evolving populations grew up to 42% faster and attained up to 67% higher density, compared with non-evolving control populations but only in treatments exposed to competitors and predators. Increased density also correlates with relative fitness of competing clones suggesting a full eco-evolutionary dynamic cycle defined as reciprocal interactions between evolution and density. 相似文献
8.
Ecological and life history characteristics such as population size, dispersal pattern, and mating system mediate the influence of genetic drift and gene flow on population subdivision. Bull trout (Salvelinus confluentus) and mountain whitefish (Prosopium williamsoni) differ markedly in spawning location, population size and mating system. Based on these differences, we predicted that bull trout would have reduced genetic variation within and greater differentiation among populations compared with mountain whitefish. To test this hypothesis, we used microsatellite markers to determine patterns of genetic divergence for each species in the Clark Fork River, Montana, USA. As predicted, bull trout had a much greater proportion of genetic variation partitioned among populations than mountain whitefish. Among all sites, FST was seven times greater for bull trout (FST = 0.304 for bull trout, 0.042 for mountain whitefish. After removing genetically differentiated high mountain lake sites for each species FST, was 10 times greater for bull trout (FST = 0.176 for bull trout; FST = 0.018 for mountain whitefish). The same characteristics that affect dispersal patterns in these species also lead to predictions about the amount and scale of adaptive divergence among populations. We provide a theoretical framework that incorporates variation in ecological and life history factors, neutral divergence, and adaptive divergence to interpret how neutral and adaptive divergence might be correlates of ecological and life history factors. 相似文献
9.
Eric P. Palkovacs Michael C. Marshall Brad A. Lamphere Benjamin R. Lynch Dylan J. Weese Douglas F. Fraser David N. Reznick Catherine M. Pringle Michael T. Kinnison 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2009,364(1523):1617-1628
Evolution has been shown to be a critical determinant of ecological processes in some systems, but its importance relative to traditional ecological effects is not well known. In addition, almost nothing is known about the role of coevolution in shaping ecosystem function. Here, we experimentally evaluated the relative effects of species invasion (a traditional ecological effect), evolution and coevolution on ecosystem processes in Trinidadian streams. We manipulated the presence and population-of-origin of two common fish species, the guppy (Poecilia reticulata) and the killifish (Rivulus hartii). We measured epilithic algal biomass and accrual, aquatic invertebrate biomass, and detrital decomposition. Our results show that, for some ecosystem responses, the effects of evolution and coevolution were larger than the effects of species invasion. Guppy evolution in response to alternative predation regimes significantly influenced algal biomass and accrual rates. Guppies from a high-predation site caused an increase in algae relative to guppies from a low-predation site; algae effects were probably shaped by observed divergence in rates of nutrient excretion and algae consumption. Rivulus–guppy coevolution significantly influenced the biomass of aquatic invertebrates. Locally coevolved populations reduced invertebrate biomass relative to non-coevolved populations. These results challenge the general assumption that intraspecific diversity is a less critical determinant of ecosystem function than is interspecific diversity. Given existing evidence for contemporary evolution in these fish species, our findings suggest considerable potential for eco-evolutionary feedbacks to operate as populations adapt to natural or anthropogenic perturbations. 相似文献
10.
11.
12.
Food web complexity and chaotic population dynamics 总被引:6,自引:0,他引:6
In mathematical models, very simple communities consisting of three or more species frequently display chaotic dynamics which implies that long‐term predictions of the population trajectories in time are impossible. Communities in the wild tend to be more complex, but evidence for chaotic dynamics from such communities is scarce. We used supercomputing power to test the hypothesis that chaotic dynamics become less frequent in model ecosystems when their complexity increases. We determined the dynamical stability of a universe of mathematical, nonlinear food web models with varying degrees of organizational complexity. We found that the frequency of unpredictable, chaotic dynamics increases with the number of trophic levels in a food web but decreases with the degree of complexity. Our results suggest that natural food webs possess architectural properties that may intrinsically lower the likelihood of chaotic community dynamics. 相似文献
13.
Population genomics of marine fishes: identifying adaptive variation in space and time 总被引:1,自引:0,他引:1
EINAR E. NIELSEN JAKOB HEMMER-HANSEN PETER FOGED LARSEN† DORTE BEKKEVOLD 《Molecular ecology》2009,18(15):3128-3150
Studies of adaptive evolution have experienced a recent revival in population genetics of natural populations and there is currently much focus on identifying genomic signatures of selection in space and time. Insights into local adaptation, adaptive response to global change and evolutionary consequences of selective harvesting can be generated through population genomics studies, allowing the separation of the effects invoked by neutral processes (drift-migration) from those due to selection. Such knowledge is important not only for improving our basic understanding of natural as well as human-induced evolutionary processes, but also for predicting future trajectories of biodiversity and for setting conservation priorities. Marine fishes possess a number of features rendering them well suited for providing general insights into adaptive genomic evolution in natural populations. These include well-described population structures, substantial and rapidly developing genomic resources and abundant archived samples enabling temporal studies. Furthermore, superior possibilities for conducting large-scale experiments under controlled conditions, due to the economic resources provided by the large and growing aquaculture industry, hold great promise for utilizing recent technological developments. Here, we review achievements in marine fish genomics to date and highlight potential avenues for future research, which will provide both general insights into evolution in high gene flow species, as well as specific knowledge which can lead to improved management of marine organisms. 相似文献
14.
Living in the branches: population dynamics and ecological processes in dendritic networks 总被引:3,自引:0,他引:3
Spatial structure regulates and modifies processes at several levels of ecological organization (e.g. individual/genetic, population and community) and is thus a key component of complex systems, where knowledge at a small scale can be insufficient for understanding system behaviour at a larger scale. Recent syntheses outline potential applications of network theory to ecological systems, but do not address the implications of physical structure for network dynamics. There is a specific need to examine how dendritic habitat structure, such as that found in stream, hedgerow and cave networks, influences ecological processes. Although dendritic networks are one type of ecological network, they are distinguished by two fundamental characteristics: (1) both the branches and the nodes serve as habitat, and (2) the specific spatial arrangement and hierarchical organization of these elements interacts with a species' movement behaviour to alter patterns of population distribution and abundance, and community interactions. Here, we summarize existing theory relating to ecological dynamics in dendritic networks, review empirical studies examining the population- and community-level consequences of these networks, and suggest future research integrating spatial pattern and processes in dendritic systems. 相似文献
15.
棉铃虫种群能量动态及其为害特征分析 总被引:4,自引:0,他引:4
根据棉铃虫种群数量密度、年龄结构、存活率及虫体含能量,系统地分析了8种不同类型棉田生态系统中棉铃虫种群生产力、摄入量及其为害特征.结果表明,棉铃虫种群的能量生产主要集中于第3代;其所引起棉花繁殖器官的被害量在第2、3、4代分别为11.83、16.65和9.52个·m-2.随着播种期的推后,2代棉铃虫种群生产力和摄入量减少,3、4代值增加.实行套作种植使2、4代值减少,而3代值增加.棉铃虫种群摄食利用效率随世代增加而减小,其净生态效率以第3代最高,第4代居中,第2代最小.由此进一步探讨了不同时空类型棉田棉铃虫各代管理的对策. 相似文献
16.
WALLACE ARTHUR MALCOLM FARROW 《Biological journal of the Linnean Society. Linnean Society of London》1987,32(3):271-279
If we are to progress out of our current state of uncertainty about the role of interspecific competition in community structure, it is essential that we can distinguish competition from other types of population interaction, and from lack of interaction, in particular case studies. To make such distinctions, it is necessary to quantify the effect of species on each other. One way to do this is to calculate interaction coefficients, and another (only readily applicable in experimental systems) is to plot graphs of N against time and to contrast monocultures with mixed cultures. We show (1) that these methods often appear to give contradictory results, and (2) that the problems are most pronounced when one species has a low equilibrium population size in mixed culture. To resolve the question of whether an interspecific interaction is taking place (and if so, what kind of interaction), it is necessary to apply tests of significance which overcome the problems of serial correlation inherent in all long-term population experiments. We illustrate the use of such tests in the analysis of the results from an experimental Drosophiia system. In the past, this kind of test has generally not been applied, and this raises the question of whether some of the 'classic cases of competition' in the experimental literature were really competition at all. 相似文献
17.
在联合国《生物多样性公约》生效30年和《生物多样性》创刊30周年之际, 我们通过问卷调查从281名中国研究人员收集到763个生物多样性相关的研究问题, 通过归纳与整理, 并参考英国生态学会提出的100个生态学基本问题, 从中筛选出30个核心问题。这些问题涉及7个方面: 演化与生态(6个问题)、种群(4个问题)、群落与多样性(7个问题)、生态系统与功能(3个问题)、人类影响与全球变化(4个问题)、方法与监测(4个问题)、生物多样性保护(2个问题)。前5个方面主要聚焦在物种形成、生物多样性维持等的关键过程与机制、生物多样性与生态功能关系、全球变化对生物多样性的影响机制等, 第6方面主要涉及生物监测与预测、数据共享等, 第7方面涉及多样性保护、自然与人类健康关系这两个与公众息息相关的重要话题。这30个问题的筛选难免存在偏颇, 希望能以此为契机, 促进我国生物多样性研究人员对本领域核心问题的深入思考与探讨。 相似文献
18.
Tim M. Blackburn Kevin J. Gaston Jeremy J.D. Greenwood & Richard D. Gregory 《Ecology letters》1998,1(1):47-55
In a companion paper, we started an examination of the anatomy of the interspecific relationship between local abundance and geographical range size in the British avifauna by analysing its spatial dynamics. Here, we use the same data to extend this study to a consideration of the temporal dynamics of the relationship. Most species of British breeding bird show a positive intraspecific abundance–range size relationship through time: i.e. in years when a species is locally more abundant it also occupies a higher proportion of census sites. However, the majority of such relationships are not statistically significant, and other relationships that are statistically significant are negative. Therefore, intraspecific abundance–range size relationships do not simply mirror the relationship across species. Where they do arise, positive relationships are more likely to be associated with positive intraspecific relationships between range size and maximum rather than minimum abundance. The interspecific abundance–range size relationship is remarkably consistent across years, and is always significantly positive. The relationships for woodland and farmland census sites show correlated variation, so that in years when the linear regression slope and coefficient of determination are high across species on farmland plots, they also tend to be high across species on woodland plots. Common species tend to be common on both farmland and woodland plots, and tend to be common in all years. Likewise, rare species tend to be rare in all habitats and years. This concordance means that the positive interspecific abundance–range size relationship can be viewed as occurring largely independently of intraspecific relationships. It follows from the above that developing an understanding of intraspecific abundance–range size relationships may be of only limited value in ascertaining the determinants of positive interspecific abundance–range size relationships. We conclude that for interspecific relationships, it will be important to know why some species are consistently common and others rare, whereas for intraspecific relationships it will be important to understand the dynamic links between local abundances across sites. 相似文献
19.
Morris DW 《Proceedings. Biological sciences / The Royal Society》2011,278(1717):2401-2411
The struggle for existence occurs through the vital rates of population growth. This basic fact demonstrates the tight connection between ecology and evolution that defines the emerging field of eco-evolutionary dynamics. An effective synthesis of the interdependencies between ecology and evolution is grounded in six principles. The mechanics of evolution specifies the origin and rules governing traits and evolutionary strategies. Traits and evolutionary strategies achieve their selective value through their functional relationships with fitness. Function depends on the underlying structure of variation and the temporal, spatial and organizational scales of evolution. An understanding of how changes in traits and strategies occur requires conjoining ecological and evolutionary dynamics. Adaptation merges these five pillars to achieve a comprehensive understanding of ecological and evolutionary change. I demonstrate the value of this world-view with reference to the theory and practice of habitat selection. The theory allows us to assess evolutionarily stable strategies and states of habitat selection, and to draw the adaptive landscapes for habitat-selecting species. The landscapes can then be used to forecast future evolution under a variety of climate change and other scenarios. 相似文献
20.
BRUCE D. PATTERSON 《Molecular ecology》2010,19(15):3019-3021
To use the ‘lessons of the Pleistocene’ to forecast the biotic effects of climate change, we must parse the effects of history and ecology in the Quaternary record. The preponderance of Northern Hemisphere studies of biotic responses to climate change provides a limited set of players and environmental circumstances with which to decouple these drivers. In this issue Lessa et al. (2010) examine population structure in 14 species of mice distributed across Patagonia and Tierra del Fuego in southern South America. In the Southern Cone, glacial ice was alpine, not polar; major habitats were (and are) oriented N–S, not E–W; and habitable land area actually increased, not decreased, at the height of the last glacial maximum (LGM). Despite these differences, there is evidence for poleward demographic expansion in 10 of the 14 species, and phylogeographic breaks in these are likewise stepped by latitude (and presumably history) rather than by biome. Nevertheless, high latitude endemism and the antiquity of these lineages point to an extended presence in the region that very likely predates the Pleistocene. 相似文献