首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA interacting enzymes recognize their target sequences embedded in variable flanking sequence context. The influence of flanking sequences on enzymatic activities of DNA methyltransferases (DNMTs) can be systematically studied with “deep enzymology” approaches using pools of double-stranded DNA substrates, which contain target sites in random flanking sequence context. After incubation with DNMTs and bisulfite conversion, the methylation states and flanking sequences of individual DNA molecules are determined by NGS. Deep enzymology studies with different human and mouse DNMTs revealed strong influences of flanking sequences on their CpG and non-CpG methylation activity and the structures of DNMT-DNA complexes. Differences in flanking sequence preferences of DNMT3A and DNMT3B were shown to be related to the prominent role of DNMT3B in the methylation of human SATII repeat elements. Mutational studies in DNMT3B discovered alternative interaction networks between the enzyme and the DNA leading to a partial equalization of the effects of different flanking sequences. Structural studies in DNMT1 revealed striking correlations between enzymatic activities and flanking sequence dependent conformational changes upon DNA binding. Correlation of the biochemical data with cellular methylation patterns demonstrated that flanking sequence preferences are an important parameter that influences genomic DNA methylation patterns together with other mechanisms targeting DNMTs to genomic sites.  相似文献   

2.
DNA methylation is a key regulator of gene expression and changes in DNA methylation occur early in tumorigenesis. Mutations in the de novo DNA methyltransferase gene, DNMT3A, frequently occur in adult acute myeloid leukemia patients with poor prognoses. Most of the mutations occur within the dimer or tetramer interface, including Arg-882. We have identified that the most prevalent mutation, R882H, and three additional mutants along the tetramer interface disrupt tetramerization. The processive methylation of multiple CpG sites is disrupted when tetramerization is eliminated. Our results provide a possible mechanism that accounts for how DNMT3A mutations may contribute to oncogenesis and its progression.  相似文献   

3.
Mutations in the TREX1 gene cause Aicardi-Goutières syndrome (AGS) and are linked to the autoimmune disease systemic lupus erythematosus. The TREX1 protein is a dimeric 3' DNA exonuclease that degrades DNA to prevent inappropriate immune activation. One of the most common TREX1 mutations, R114H, causes AGS as a homozygous and compound heterozygous mutation and is found as a heterozygous mutation in systemic lupus erythematosus. The TREX1 proteins containing R114H and the insertion mutations aspartate at position 201 (D201ins) and alanine at position 124 (A124ins), found in compound heterozygous AGS with R114H, were prepared and the DNA degradation activities were tested. The homodimer TREX1(R114H/R114H) exhibits a 23-fold reduced single-stranded DNA (ssDNA) exonuclease activity relative to TREX1(WT). The TREX1(D201ins/D201ins) and TREX1(A124ins/A124ins) exhibit more than 10,000-fold reduced ssDNA degradation activities. However, the TREX1(R114H/D201ins) and TREX1(R114H/A124ins) compound heterodimers exhibit activities 10-fold greater than the TREX1(R114H/R114H) homodimer during ssDNA and double-stranded DNA (dsDNA) degradation. These higher levels of activities measured in the TREX1(R114H/D201ins) and TREX1(R114H/A124ins) compound heterodimers are attributed to Arg-114 residues of TREX1(D201ins) and TREX1(A124ins) positioned at the dimer interface contributing to the active sites of the opposing TREX1(R114H) protomer. This interpretation is further supported by exonuclease activities measured for TREX1 enzymes containing R114A and R114K mutations. These biochemical data provide direct evidence for TREX1 residues in one protomer contributing to DNA degradation catalyzed in the opposing protomer and help to explain the dimeric TREX1 structure required for full catalytic competency.  相似文献   

4.
The DNTM3A and DNMT3B de novo DNA methyltransferases (DNMTs) are responsible for setting genomic DNA methylation patterns, a key layer of epigenetic information. Here, using an in vivo episomal methylation assay and extensive bisulfite methylation sequencing, we show that human DNMT3A and DNMT3B possess significant and distinct flanking sequence preferences for target CpG sites. Selection for high or low efficiency sites is mediated by the base composition at the −2 and +2 positions flanking the CpG site for DNMT3A, and at the −1 and +1 positions for DNMT3B. This intrinsic preference reproducibly leads to the formation of specific de novo methylation patterns characterized by up to 34-fold variations in the efficiency of DNA methylation at individual sites. Furthermore, analysis of the distribution of signature methylation hotspot and coldspot motifs suggests that DNMT flanking sequence preference has contributed to shaping the composition of CpG islands in the human genome. Our results also show that the DNMT3L stimulatory factor modulates the formation of de novo methylation patterns in two ways. First, DNMT3L selectively focuses the DNA methylation machinery on properly chromatinized DNA templates. Second, DNMT3L attenuates the impact of the intrinsic DNMT flanking sequence preference by providing a much greater boost to the methylation of poorly methylated sites, thus promoting the formation of broader and more uniform methylation patterns. This study offers insights into the manner by which DNA methylation patterns are deposited and reveals a new level of interplay between members of the de novo DNMT family.  相似文献   

5.
《Journal of molecular biology》2019,431(24):5063-5074
The PWWP domain of DNMT3 DNA methyltransferases binds to histone H3 tails containing methylated K36, and this activity is important for heterochromatic targeting. Here, we show that the PWWP domain of mouse DNMT3A binds to H3K36me2 and H3K36me3 with a slight preference for H3K36me2. PWWP domains have also been reported to bind to DNA, and the close proximity of H3K36 and nucleosomal DNA suggests a combined binding to H3K36me2/3 and DNA. We show here that the DNMT3A PWWP domain binds to DNA with a weak preference for AT-rich sequences and that the designed charge reversal R362E mutation disrupts DNA binding. The K295E mutation, as well as K295I recently identified in paraganglioma, a rare neuroendocrine neoplasm, disrupts both DNA and H3K36me2/3 binding, which is in agreement with the proximity of K295 to residues involved in K36me2/3 methyllysine binding. Nucleosome pulldown experiments show that DNA binding and H3K36me2/3 binding are important for the interaction of the DNMT3A PWWP domain with nucleosomes. Localization studies of transiently transfected fluorescently-tagged wild-type and PWWP-mutated full-length DNMT3A indicate that both interactions contribute to the subnuclear localization of DNMT3A in mouse cells. In summary, our data demonstrate that the combined binding of the DNMT3A PWWP domain to the H3 tail containing K36me2/3 and to the nucleosomal or linker DNA is important for its chromatin interaction and subnuclear targeting of DNMT3A in living cells.  相似文献   

6.
Lin J  Yao DM  Qian J  Chen Q  Qian W  Li Y  Yang J  Wang CZ  Chai HY  Qian Z  Xiao GF  Xu WR 《PloS one》2011,6(10):e26906
Somatic mutations of DNMT3A gene have recently been reported in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). We examined the entire coding sequences of DNMT3A gene by high-resolution melting analysis and sequencing in Chinese patients with myeloid malignancies. R882 mutations were found in 12/182 AML and in 4/51 MDS, but not in either 79 chronic myeloid leukemia (CML), or 57 myeloproliferative neoplasms (MPNs), or 4 chronic monomyelocytic leukemia. No other DNMT3A mutations were detected in all patients. R882 mutations were associated with old age and more frequently present in monoblastic leukemia (M4 and M5, 7/52) compared to other subtypes (5/130). Furthermore, 14/16 (86.6%) R882 mutations were observed in patients with normal karyotypes. The overall survival of mutated MDS patients was shorter than those without mutation (median 9 and 25 months, respectively). We conclude that DNMT3A R882 mutations are recurrent molecular aberrations in AML and MDS, and may be an adverse prognostic event in MDS.  相似文献   

7.
8.
The DNMT3A DNA methyltransferase and MECP2 methylation reader are highly expressed in neurons. Both proteins interact via their DNMT3A-ADD and MECP2-TRD domains, and the MECP2 interaction regulates the activity and subnuclear localization of DNMT3A. Here, we mapped the interface of both domains using peptide SPOT array binding, protein pull-down, equilibrium peptide binding assays, and structural analyses. The region D529-D531 on the surface of the ADD domain was identified as interaction point with the TRD domain. This includes important residues of the histone H3 N-terminal tail binding site to the ADD domain, explaining why TRD and H3 binding to the ADD domain is competitive. On the TRD domain, residues 214–228 containing K219 and K223 were found to be essential for the ADD interaction. This part represents a folded patch within the otherwise largely disordered TRD domain. A crystal structure analysis of ADD revealed that the identified H3/TDR lysine binding pocket is occupied by an arginine residue from a crystallographic neighbor in the ADD apoprotein structure. Finally, we show that mutations in the interface of ADD and TRD domains disrupt the cellular interaction of both proteins in NIH3T3 cells. In summary, our data show that the H3 peptide binding cleft of the ADD domain also mediates the interaction with the MECP2-TRD domain suggesting that this binding site may have a broader role also in the interaction of DNMT3A with other proteins leading to complex regulation options by competitive and PTM specific binding.  相似文献   

9.
On the basis of amino acid sequence alignments and structural data of related enzymes, we have performed a mutational analysis of 14 amino acid residues in the catalytic domain of the murine Dnmt3a DNA-(cytosine C5)-methyltransferase. The target residues are located within the ten conserved amino acid sequence motifs characteristic for cytosine-C5 methyltransferases and in the putative DNA recognition domain of the enzyme (TRD). Mutant proteins were purified and tested for their catalytic properties and their abilities to bind DNA and AdoMet. We prepared a structural model of Dnmt3a to interpret our results. We demonstrate that Phe50 (motif I) and Glu74 (motif II) are important for AdoMet binding and catalysis. D96A (motif III) showed reduced AdoMet binding but increased activity under conditions of saturation with S-adenosyl-L-methionine (AdoMet), indicating that the contact of Asp96 to AdoMet is not required for catalysis. R130A (following motif IV), R241A and R246A (in the TRD), R292A, and R297A (both located in front of motif X) showed reduced DNA binding. R130A displayed a strong reduction in catalytic activity and a complete change in flanking sequence preferences, indicating that Arg130 has an important role in the DNA interaction of Dnmt3a. R292A also displayed reduced activity and changes in the flanking sequence preferences, indicating a potential role in DNA contacts farther away from the CG target site. N167A (motif VI) and R202A (motif VIII) have normal AdoMet and DNA binding but reduced catalytic activity. While Asn167 might contribute to the positioning of residues from motif VI, according to structural data Arg202 has a role in catalysis of cytosine-C5 methyltransferases. The R295A variant was catalytically inactive most likely because of destabilization of the hinge sub-domain of the protein.  相似文献   

10.
11.
The ubiquitin-like, containing PHD and RING finger domains protein 1 (UHRF1) is essential for maintenance DNA methylation by DNA methyltransferase 1 (DNMT1). UHRF1 has been shown to recruit DNMT1 to replicated DNA by the ability of its SET and RING-associated (SRA) domain to bind to hemimethylated DNA. Here, we demonstrate that UHRF1 also increases the activity of DNMT1 by almost 5-fold. This stimulation is mediated by a direct interaction of both proteins through the SRA domain of UHRF1 and the replication focus targeting sequence domain of DNMT1, and it does not require DNA binding by the SRA domain. Disruption of the interaction between DNMT1 and UHRF1 by replacement of key residues in the replication focus targeting sequence domain led to a strong reduction of DNMT1 stimulation. Additionally, the interaction with UHRF1 increased the specificity of DNMT1 for methylation of hemimethylated CpG sites. These findings show that apart from the targeting of DNMT1 to the replicated DNA UHRF1 increases the activity and specificity of DNMT1, thus exerting a multifaceted influence on the maintenance of DNA methylation.  相似文献   

12.
Two distinct classes of acetylcholinesterase exist in near equal amounts in the electric organ of Torpedo californica. A globular 5.6 S form is a dimer which possesses a hydrophobic region. The second form is present as elongated species that sediment at 17 and 13 S and contain structural subunits disulfide-linked to the catalytic subunits. Removal of the structural subunits by mild proteolysis yields a tetramer of catalytic subunits which sediments at 11 S. To compare the primary structures of the catalytic subunits of the 5.6 S and 11 S forms of acetylcholinesterase, amino acid sequences from the active sites and from the amino-terminal regions have been elucidated. Active site serines were labeled with [3H]isopropyl fluorophosphate. After digestion with trypsin, the resultant peptides were resolved by elution from a size-exclusion column followed by reverse-phase high performance liquid chromatography. Each active site tryptic peptide contained 24 residues and identical sequences were found in this peptide for the 5.6 S and 11 S forms of the enzyme. The sequence flanking the active site serine revealed extensive homology with the published sequence of human serum cholinesterase as well as a lesser degree of homology with other known serine proteases and esterases. The sequences of the amino-terminal region also appear to be identical for both enzyme forms although we note variation in the ratio of Glu and Gln at position 5. The amino-terminal sequence exhibits only partial homology with the published sequence of human serum cholinesterase.  相似文献   

13.
Mutations in TREX1 have been linked to a spectrum of human autoimmune diseases including Aicardi-Goutières syndrome (AGS), familial chilblain lupus (FCL), systemic lupus erythematosus, and retinal vasculopathy and cerebral leukodystrophy. A common feature in these conditions is the frequent detection of antibodies to double-stranded DNA (dsDNA). TREX1 participates in a cell death process implicating this major 3' --> 5' exonuclease in genomic DNA degradation to minimize potential immune activation by persistent self DNA. The TREX1 D200N and D18N dominant heterozygous mutations were identified in AGS and FCL, respectively. TREX1 enzymes containing the D200N and D18N mutations were compared using nicked dsDNA and single-stranded DNA (ssDNA) degradation assays. The TREX1WT/D200N and TREX1WT/D18N heterodimers are completely deficient at degrading dsDNA and degrade ssDNA at an expected approximately 2-fold lower rate than TREX1WT enzyme. Further, the D200N- and D18N-containing TREX1 homo- and heterodimers inhibit the dsDNA degradation activity of TREX1WT enzyme, providing a likely explanation for the dominant phenotype of these TREX1 mutant alleles in AGS and FCL. By comparison, the TREX1 R114H homozygous mutation causes AGS and is found as a heterozygous mutation in systemic lupus erythematosus. The TREX1R114H/R114H homodimer has dysfunctional dsDNA and ssDNA degradation activities and does not detectibly inhibit the TREX1WT enzyme, whereas the TREX1WT/R114H heterodimer has a functional dsDNA degradation activity, supporting the recessive genetics of TREX1 R114H in AGS. The dysfunctional dsDNA degradation activities of these disease-related TREX1 mutants could account for persistent dsDNA from dying cells leading to an aberrant immune response in these clinically related disorders.  相似文献   

14.
Kallmann syndrome (KS) associates congenital hypogonadism due to gonadotropin-releasing hormone (GnRH) deficiency and anosmia. The genetics of KS involves various modes of transmission, including oligogenic inheritance. Here, we report that Nrp1(sema/sema) mutant mice that lack a functional semaphorin-binding domain in neuropilin-1, an obligatory coreceptor of semaphorin-3A, have a KS-like phenotype. Pathohistological analysis of these mice indeed showed abnormal development of the peripheral olfactory system and defective embryonic migration of the neuroendocrine GnRH cells to the basal forebrain, which results in increased mortality of newborn mice and reduced fertility in adults. We thus screened 386 KS patients for the presence of mutations in SEMA3A (by Sanger sequencing of all 17 coding exons and flanking splice sites) and identified nonsynonymous mutations in 24 patients, specifically, a frameshifting small deletion (D538fsX31) and seven different missense mutations (R66W, N153S, I400V, V435I, T688A, R730Q, R733H). All the mutations were found in heterozygous state. Seven mutations resulted in impaired secretion of semaphorin-3A by transfected COS-7 cells (D538fsX31, R66W, V435I) or reduced signaling activity of the secreted protein in the GN11 cell line derived from embryonic GnRH cells (N153S, I400V, T688A, R733H), which strongly suggests that these mutations have a pathogenic effect. Notably, mutations in other KS genes had already been identified, in heterozygous state, in five of these patients. Our findings indicate that semaphorin-3A signaling insufficiency contributes to the pathogenesis of KS and further substantiate the oligogenic pattern of inheritance in this developmental disorder.  相似文献   

15.
Mammalian DNA methyltransferases methylate cytosine residues within CG dinucleotides. By statistical analysis of published data of the Human Epigenome Project we have determined flanking sequences of up to +/-four base-pairs surrounding the central CG site that are characteristic of high (5'-CTTGCGCAAG-3') and low (5'-TGTTCGGTGG-3') levels of methylation in human genomic DNA. We have investigated the influence of flanking sequence on the catalytic activity of the Dnmt3a and Dnmt3b de novo DNA methyltransferases using a set of synthetic oligonucleotide substrates that covers all possible +/-1 flanks in quantitative terms. Methylation kinetics experiments revealed a >13-fold difference between the preferred (RCGY) and disfavored +/-1 flanking base-pairs (YCGR). In addition, AT-rich flanks are preferred over GC-rich ones. These experimental preferences coincide with the genomic methylation patterns. Therefore, we have expanded our experimental analysis and found a >500-fold difference in the methylation rates of the consensus sequences for high and low levels of methylation in the genome. This result demonstrates a very pronounced flanking sequence preference of Dnmt3a and Dnmt3b. It suggests that the methylation pattern of human DNA is due, in part, to the flanking sequence preferences of the de novo DNA MTases and that flanking sequence preferences could be involved in the origin of CG islands. Furthermore, similar flanking sequence preferences have been found for the stimulation of the immune system by unmethylated CGs, suggesting a co-evolution of DNA MTases and the immune system.  相似文献   

16.
17.
DNMT3A/3L heterotetramers contain two active centers binding CpG sites at 12 bp distance, however their interaction with DNA not containing this feature is unclear. Using randomized substrates, we observed preferential co-methylation of CpG sites with 6, 9 and 12 bp spacing by DNMT3A and DNMT3A/3L. Co-methylation was favored by AT bases between the 12 bp spaced CpG sites consistent with their increased bending flexibility. SFM analyses of DNMT3A/3L complexes bound to CpG sites with 12 bp spacing revealed either single heterotetramers inducing 40° DNA bending as observed in the X-ray structure, or two heterotetramers bound side-by-side to the DNA yielding 80° bending. SFM data of DNMT3A/3L bound to CpG sites spaced by 6 and 9 bp revealed binding of two heterotetramers and 100° DNA bending. Modeling showed that for 6 bp distance between CpG sites, two DNMT3A/3L heterotetramers could bind side-by-side on the DNA similarly as for 12 bp distance, but with each CpG bound by a different heterotetramer. For 9 bp spacing our model invokes a tetramer swap of the bound DNA. These additional DNA interaction modes explain how DNMT3A and DNMT3A/3L overcome their structural preference for CpG sites with 12 bp spacing during the methylation of natural DNA.  相似文献   

18.
Brosius JL  Colman RF 《Biochemistry》2002,41(7):2217-2226
Tetrameric adenylosuccinate lyase (ASL) of Bacillus subtilis catalyzes the cleavage of adenylosuccinate to form AMP and fumarate. We previously reported that two distinct subunits contribute residues to each active site, including the His68 and His89 from one and His141 from a second subunit [Brosius, J. L., and Colman, R. F. (2000) Biochemistry 39, 13336-13343]. Glu(275) is 2.8 A from His141 in the ASL crystal structure, and Lys268 is also in the active site region; Glu275 and Lys268 come from a third, distinct subunit. Using site-directed mutagenesis, we have replaced Lys268 by Arg, Gln, Glu, and Ala, with specific activities of the purified mutant enzymes being 0.055, 0.00069, 0.00028, and 0.0, respectively, compared to 1.56 units/mg for wild-type (WT) enzyme. Glu275 was substituted by Gln, Asp, Ala, and Arg; none of these homogeneous mutant enzymes has detectable activity. Circular dichroism and light scattering reveal that neither the secondary structure nor the oligomeric state of the Lys268 mutant enzymes has been perturbed. Native gel electrophoresis and circular dichroism indicate that the Glu275 mutant enzymes are tetramers, but their conformation is altered slightly. For K268R, the K(m)s for all substrates are similar to WT enzyme. Binding studies using [2-3H]-adenylosuccinate reveal that none of the Glu275 mutant enzymes, nor inactive K268A, can bind substrate. We propose that Lys268 participates in binding substrate and that Glu275 is essential for catalysis because of its interaction with His141. Incubation of H89Q with K268Q or E275Q leads to restoration of up to 16% WT activity, while incubation of H141Q with K268Q or E275Q results in 6% WT activity. These complementation studies provide the first functional evidence that a third subunit contributes residues to each intersubunit active site of ASL. Thus, adenylosuccinate lyase has four active sites per enzyme tetramer, each of which is formed from regions of three subunits.  相似文献   

19.
20.
DNMT1 is recruited by PCNA and UHRF1 to maintain DNA methylation after replication. UHRF1 recognizes hemimethylated DNA substrates via the SRA domain, but also repressive H3K9me3 histone marks with its TTD. With systematic mutagenesis and functional assays, we could show that chromatin binding further involved UHRF1 PHD binding to unmodified H3R2. These complementation assays clearly demonstrated that the ubiquitin ligase activity of the UHRF1 RING domain is required for maintenance DNA methylation. Mass spectrometry of UHRF1-deficient cells revealed H3K18 as a novel ubiquitination target of UHRF1 in mammalian cells. With bioinformatics and mutational analyses, we identified a ubiquitin interacting motif (UIM) in the N-terminal regulatory domain of DNMT1 that binds to ubiquitinated H3 tails and is essential for DNA methylation in vivo. H3 ubiquitination and subsequent DNA methylation required UHRF1 PHD binding to H3R2. These results show the manifold regulatory mechanisms controlling DNMT1 activity that require the reading and writing of epigenetic marks by UHRF1 and illustrate the multifaceted interplay between DNA and histone modifications. The identification and functional characterization of the DNMT1 UIM suggests a novel regulatory principle and we speculate that histone H2AK119 ubiquitination might also lead to UIM-dependent recruitment of DNMT1 and DNA methylation beyond classic maintenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号