首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fasting readily induces hepatic steatosis. Hepatic steatosis is associated with hepatic insulin resistance. The purpose of the present study was to document the effects of 16 h of fasting in wild-type mice on insulin sensitivity in liver and skeletal muscle in relation to 1) tissue accumulation of triglycerides (TGs) and 2) changes in mRNA expression of metabolically relevant genes. Sixteen hours of fasting did not show an effect on hepatic insulin sensitivity in terms of glucose production in the presence of increased hepatic TG content. In muscle, however, fasting resulted in increased insulin sensitivity, with increased muscle glucose uptake without changes in muscle TG content. In liver, fasting resulted in increased mRNA expression of genes promoting gluconeogenesis and TG synthesis but in decreased mRNA expression of genes involved in glycogenolysis and fatty acid synthesis. In muscle, increased mRNA expression of genes promoting glucose uptake, as well as lipogenesis and beta-oxidation, was found. In conclusion, 16 h of fasting does not induce hepatic insulin resistance, although it causes liver steatosis, whereas muscle insulin sensitivity increases without changes in muscle TG content. Therefore, fasting induces differential changes in tissue-specific insulin sensitivity, and liver and muscle TG contents are unlikely to be involved in these changes.  相似文献   

2.
The accumulation of triglycerides (TG) in the liver, designated hepatic steatosis, is characteristically associated with obesity and insulin resistance, but it can also develop after fasting. Here, we show that fasting-induced hepatic steatosis is under genetic control in inbred mice. After a 24-h fast, C57BL/6J mice and SJL/J mice both lost more than 20% of body weight and ∼60% of total body TG. In C57BL/6J mice, TG accumulated in liver, producing frank steatosis. In striking contrast, SJL/J mice failed to accumulate any hepatic TG even though they lost nearly as much adipose tissue mass as the C57BL/6J mice. Mice from five other inbred strains developed fasting-induced steatosis like the C57BL/6J mice. Measurements of the uptake of free fatty acids (FA) in vivo and in vitro demonstrated that SJL/J mice were protected from steatosis because their heart and skeletal muscle took up and oxidized twice as much FA as compared with C57BL/6J mice. As a result of this muscle diversion, serum-free FA and ketone bodies rose much less after fasting in SJL/J mice as compared with C57BL/6J mice. When livers of SJL/J and C57BL/6J mice were perfused with similar concentrations of FA, the livers took up and esterified similar amounts. We conclude that SJL/J mice express one or more variant genes that lead to enhanced FA uptake and oxidation in muscle, thereby sparing the liver from FA overload in the fasting state.Liver and adipose tissue coordinate metabolic responses to oscillations in nutrient availability (1, 2). In the postprandial state, the liver secretes triglycerides (TG)4 into the blood in very low-density lipoproteins (VLDL). In adipose tissue, lipoprotein lipase hydrolyzes the TG, producing fatty acids (FA) and monoglycerides that enter fat cells for reesterification and storage as TG (1). The activity of adipose tissue lipoprotein lipase is enhanced by the postprandial rise in insulin. At the same time, insulin inhibits lipolysis of stored TG in fat cells, assuring that the TG will be retained in the cells (3).Under fasting conditions, insulin falls and the inhibitory effect of insulin on adipose tissue lipolysis is diminished. The released FA enters the blood and is used as an energy source in liver, heart, and skeletal muscle. In the liver, excess FA are either re-esterified into TG for intracellular storage or oxidized and secreted as ketone bodies, which become the main energy source for the brain. In skeletal muscle during fasting, FA are oxidized to CO2 (1, 2).We (46) and others (7) previously reported that livers of mice accumulate large amounts of TG after fasting for 6–24 h. In the current study, we screened 7 strains of inbred mice to study the genetic control of fasting-induced hepatic TG accumulation. Mice from 6 of 7 strains exhibited fasting-induced fatty liver. In the unique mouse strain (SJL/J), hepatic TG failed to accumulate after a 24-h fast even though the SJL/J mice lost amounts of body weight and adipose tissue that were similar to those of the other 6 strains. To trace the mechanism for the difference in hepatic TG accumulation, we conducted extensive comparisons of SJL/J mice and C57BL/6J mice. We provide evidence that mice from both strains release comparable amounts of FA from adipose tissue into blood after fasting. In the SJL/J mice, the bulk of these FA are taken up by muscle and oxidized. In C57BL/6J mice, FA uptake in muscle is comparatively low, and the excess FA are taken up by the liver where they are converted to TG. Thus, genetic control of muscle FA uptake determines the level of hepatic TG accumulation in fasted mice.  相似文献   

3.
4.
We have examined the nutritional and insulin regulation of the mRNA expression of transmembrane fatty acid (FA) transporters [FA transport protein-1 (FATP1) and CD36] together with the lipoprotein lipase (LPL), the cytosolic FA carrier FA binding protein (FABP3), and mitochondrial FA-CoA and -carnitine palmitoyl transferase carriers (CPT)1 and -2 in Atlantic salmon tissues and myocyte cell culture. Two weeks of fasting diminished FATP1, CD36, and LPL in adipose tissue, suggesting a reduction in FA uptake, while FABP3 increased in liver, probably enhancing the transport of FA to the mitochondria. Insulin injection decreased FATP1 and CD36 in white and red muscles, while both transporters were upregulated in the adipose tissue in agreement with the role of insulin-inhibiting muscle FA oxidation and stimulating adipose fat stores. Serum deprivation of 48 h in Atlantic salmon myotubes increased FATP1, FABP3, and CPT-2, while CPT-1 was diminished. In myotubes, insulin induced FATP1 expression but decreased CD36, FABP3, and LPL, suggesting that FATP1 could be more involved in the insulin-stimulated FA uptake. Insulin increased the FA uptake in myotubes mediated, at least in part, through the relocation of FATP1 protein to the plasma membrane. Overall, Atlantic salmon FA transporters are regulated by fasting and insulin on in vivo and in vitro models.  相似文献   

5.
6.
7.
Thiazolidinediones (TZDs) increase tissue insulin sensitivity in diabetes. Here, we hypothesize that, in adipose tissue, skeletal muscle, and heart, alterations in protein-mediated FA uptake are involved in the effect of TZDs. As a model, we used obese Zucker rats, orally treated for 16 days with 5 mg rosiglitazone (Rgz)/kg body mass/day. In adipose tissue from Rgz-treated rats, FA uptake capacity increased by 2.0-fold, coinciding with increased total contents of fatty acid translocase (FAT/CD36; 2.3-fold) and fatty acid transport protein 1 (1.7-fold) but not of plasmalemmal fatty acid binding protein, whereas only the plasmalemmal content of FAT/CD36 was changed (increase of 1.7-fold). The increase in FA uptake capacity of adipose tissue was associated with a decline in plasma FA and triacylglycerols (TAGs), suggesting that Rgz treatment enhanced plasma FA extraction by adipocytes. In obese hearts, Rgz treatment had no effect on the FA transport system, yet the total TAG content decreased, suggesting enhanced insulin sensitivity. Also, in skeletal muscle, the FA transport system was not changed. However, the TAG content remained unaltered in skeletal muscle, which coincided with increased cytoplasmic adipose-type FABP content, suggesting that increased extramyocellular TAGs mask the decline of intracellular TAG in muscle. In conclusion, our study implicates FAT/CD36 in the mechanism by which Rgz increases tissue insulin sensitivity.  相似文献   

8.
Glycogen content of white and red skeletal muscles, cardiac muscle, and liver was investigated in conditions where changes in plasma levels of non‐esterified fatty acids (NEFA) occur. The experiments were performed in fed and 12 and 48 h‐fasted rats. The animals were also submitted to swimming for 10 and 30 min. Glycogen content was also investigated in both pharmacologically induced low plasma NEFA levels fasted rats and pharmacologically induced high plasma NEFA levels fed rats. The participation of Akt and glycogen synthase kinase‐3 (GSK‐3) in the changes observed was investigated. Plasma levels of NEFA, glucose, and insulin were determined in all conditions. Fasting increased plasma NEFA levels and reduced glycogen content in the liver and skeletal muscles. However, an increase of glycogen content was observed in the heart under this condition. Akt and GSK‐3 phosphorylation was reduced during fasting in the liver and skeletal muscles but it remained unchanged in the heart. Our results suggest that in conditions of increased plasma NEFA levels, changes in insulin‐stimulated phosphorylation of Akt and GSK‐3 and glycogen content vary differently in liver, skeletal muscles, and heart. Akt and GSK‐3 phosphorylation and glycogen content are decreased in liver and skeletal muscles, but in the heart it remain unchanged (Akt and GSK‐3 phosphorylation) or increased (glycogen content) due to consistent increase of plasma NEFA levels. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Strategies to amplify whole-body glucose disposal are key therapies to treat type 2 diabetes. Mice that over-express glucose transporter 4 (Glut4) in skeletal muscle, heart, and adipose tissue (G4Tg) exhibit increased fasting glucose disposal and thus lowered blood glucose. Intriguingly, G4Tg mice also exhibit improved insulin-stimulated suppression of endogenous glucose production even though Glut4 is not present in the liver. It is unclear, however, if hepatic gluco-regulation is altered in G4Tg mice in the basal, non-insulin-stimulated state. The current studies were performed to examine fasting hepatic glucose metabolism in G4Tg mice and to determine whether gluco-regulatory adaptations exist in the non-insulin-stimulated condition. To test this question, phloridzin-glucose clamps were used to match blood glucose and pancreatic hormone levels while tracer dilution techniques were used to measure glucose flux. These techniques were performed in chronically-catheterized, conscious, and un-stressed 5h-fasted G4Tg and wild-type (WT) littermates. Results show reduced blood glucose, hepatic glycogen content, and hepatic glucokinase (GK) activity/expression as well as higher endogenous glucose production, glucose disposal, arterial glucagon, and hepatic glucose-6-phosphatase (G6Pase) activity/expression in G4Tg mice versus WT controls. Clamping blood glucose for 90 min at ∼115 mg/dLin G4Tg and WT mice normalized nearly all variables. Notably, however, net hepatic glycogen synthetic rates were disproportionately elevated compared to changes in blood glucose. In conclusion, these studies demonstrate that basal improvements in glucose tolerance due to increased uptake in extra-hepatic sites provoke important gluco-regulatory adaptations in the liver. Although changes in blood glucose underlie the majority of these adaptations, net hepatic glycogen synthesis is sensitized. These data emphasize that anti-diabetic therapies that target skeletal muscle, heart, and/or adipose tissue likely positively impact the liver.  相似文献   

10.
In order to elucidate the regulatory mechanism of blood glucose concentrations specific to chickens, carbohydrate metabolism in the liver, muscle and kidney and metabolite concentrations in the blood were investigated in chickens with acute and persistent hypoglycemia. Acute and persistent hypoglycemia were experimentally induced by a single injection of insulin (8 U/kg BW) or by continuous infusion of insulin (22.5 U/kg BW/day) for 4 days. Non-esterified fatty acid (NEFA) concentration in plasma and D-3-hydroxybutyrate (3HB) concentrations in liver and muscle increased in the acute hypoglycemia. Plasma NEFA concentration and 3HB concentration in the blood and liver were not changed at day 3 of persistent hypoglycemia, while 3HB concentration in the muscle was decreased. Phosphofructokinase (PFK) activity in the liver tended to increase but PFK and pyruvate kinase (PK) activities were unchanged in acute hypoglycemia. In persistent hypoglycemia, increase of hepatic PFK activity at day 1 in which it was reversed at day 3, and a small increase of muscle PK activity were observed, while PK and phosphoenolpyruvate carboxykinase (PEPCK) activities in the liver and kidney were not significantly changed. These results show that in the persistent hypoglycemic chickens, hepatic glycolysis transiently increases, which is followed by a small decrease, while glycolysis in muscles and gluconeogenesis in the liver and kidney are not significantly changed.  相似文献   

11.
NR5A2 is a nuclear receptor which regulates the expression of genes involved in cholesterol metabolism, pluripotency maintenance and cell differentiation. It has been recently shown that DLPC, a NR5A2 ligand, prevents liver steatosis and improves insulin sensitivity in mouse models of insulin resistance, an effect that has been associated with changes in glucose and fatty acids metabolism in liver. Because skeletal muscle is a major tissue in clearing glucose from blood, we studied the effect of the activation of NR5A2 on muscle metabolism by using cultures of C2C12, a mouse-derived cell line widely used as a model of skeletal muscle. Treatment of C2C12 with DLPC resulted in increased levels of expression of GLUT4 and also of several genes related to glycolysis and glycogen metabolism. These changes were accompanied by an increased glucose uptake. In addition, the activation of NR5A2 produced a reduction in the oxidation of fatty acids, an effect which disappeared in low-glucose conditions. Our results suggest that NR5A2, mostly by enhancing glucose uptake, switches muscle cells into a state of glucose preference. The increased use of glucose by muscle might constitute another mechanism by which NR5A2 improves blood glucose levels and restores insulin sensitivity.  相似文献   

12.
Fatty acid binding protein 4 in human skeletal muscle   总被引:5,自引:0,他引:5  
The mechanisms that regulate intramyocellular triglycerol (IMTG) storage and mobilization are largely unknown. However, during the last decades several intracellular fatty acid binding proteins (FABPs) have been identified. FABP3 is the dominating FABP in skeletal muscle. Expression of additional FABPs is suggested from findings in FABP3-null mutated mice. In the present study, our aims were to investigate if FABP4 is expressed within skeletal muscle fibers and if FABP3 and FABP4 are more abundant in skeletal muscle fibers in endurance-trained than in control subjects. We show that FABP4 protein is expressed within the skeletal muscle fibers and that FABP4 mRNA and protein are more abundant in the endurance trained subjects. Still, FABP4 is markedly less expressed than FABP3, which is the generally accepted dominating FABP in skeletal muscle tissue.  相似文献   

13.
Regulation of cholesterol metabolism in cultured cells and in the liver is dependent on actions of the LDL receptor. However, nonhepatic tissues have multiple pathways of cholesterol uptake. One possible pathway is mediated by LPL, an enzyme that primarily hydrolyzes plasma triglyceride into fatty acids. In this study, LDL uptake and tissue cholesterol levels in heart and skeletal muscle of wild-type and transgenic mice with alterations in LPL expression were assessed. Overexpression of a myocyte-anchored form of LPL in heart muscle led to increased uptake of LDL and greater heart cholesterol levels. Loss of LDL receptors did not alter LDL uptake into heart or skeletal muscle. To induce LDL receptors, mice were treated with simvastatin. Statin treatment increased LDL receptor expression and LDL uptake by liver and skeletal muscle but not heart muscle. Plasma creatinine phosphokinase as well as muscle mitochondria, cholesterol, and lipid droplet levels were increased in statin-treated mice overexpressing LPL in skeletal muscle. Thus, pathways affecting cholesterol balance in heart and skeletal muscle differ.  相似文献   

14.
15.
Fatty acid-binding protein and its relation to fatty acid oxidation   总被引:12,自引:0,他引:12  
A relation between fatty acid oxidation capacity and cytosolic FABP content was found in heart and various muscles of the rat. Other tissues do not show such a relation, since they are involved in more or other pathways of fatty acid metabolism. At postnatal development FABP content and fatty acid oxidation capacity rise concomitantly in heart and quadriceps muscle in contrast to in liver and kidney. A dietary fat content of 40 en. % increased only the FABP content of liver and adipose tissue. Peroxisomal proliferators increased fatty acid oxidation in both liver and kidney, but only the FABP content of liver, and had no effect on heart and skeletal muscle. The FABP content of muscle did not show adaptation to various conditions. Only it increased in fast-twitch muscles upon chronic electrostimulation and endurance training.  相似文献   

16.
Mice homozygous for the human GRACILE syndrome mutation (Bcs1lc.A232G) display decreased respiratory chain complex III activity, liver dysfunction, hypoglycemia, rapid loss of white adipose tissue and early death. To assess the underlying mechanism of the lipodystrophy in homozygous mice (Bcs1lp.S78G), these and wild-type control mice were subjected to a short 4-hour fast. The homozygotes had low baseline blood glucose values, but a similar decrease in response to fasting as in wild-type mice, resulting in hypoglycemia in the majority. Despite the already depleted glycogen and increased triacylglycerol content in the mutant livers, the mice responded to fasting by further depletion and increase, respectively. Increased plasma free fatty acids (FAs) upon fasting suggested normal capacity for mobilization of lipids from white adipose tissue into circulation. Strikingly, however, serum glycerol concentration was not increased concomitantly with free FAs, suggesting its rapid uptake into the liver and utilization for fuel or gluconeogenesis in the mutants. The mutant hepatocyte mitochondria were capable of responding to fasting by appropriate morphological changes, as analyzed by electron microscopy, and by increasing respiration. Mutants showed increased hepatic gene expression of major metabolic controllers typically associated with fasting response (Ppargc1a, Fgf21, Cd36) already in the fed state, suggesting a chronic starvation-like metabolic condition. Despite this, the mutant mice responded largely normally to fasting by increasing hepatic respiration and switching to FA utilization, indicating that the mechanisms driving these adaptations are not compromised by the CIII dysfunction.Summary statementBcs1l mutant mice with severe CIII deficiency, energy deprivation and post-weaning lipolysis respond to fasting similarly to wild-type mice, suggesting largely normal systemic lipid mobilization and utilization mechanisms.  相似文献   

17.
The effect of pyruvate dehydrogenase kinase-4 (PDK4) deficiency on glucose homeostasis was studied in mice fed a high-fat diet. Expression of PDK4 was greatly increased in skeletal muscle and diaphragm but not liver and kidney of wild-type mice fed the high-fat diet. Wild-type and PDK4(-/-) mice consumed similar amounts of the diet and became equally obese. Insulin resistance developed in both groups. Nevertheless, fasting blood glucose levels were lower, glucose tolerance was slightly improved, and insulin sensitivity was slightly greater in the PDK4(-/-) mice compared with wild-type mice. When the mice were killed in the fed state, the actual activity of the pyruvate dehydrogenase complex (PDC) was higher in the skeletal muscle and diaphragm but not in the liver and kidney of PDK4(-/-) mice compared with wild-type mice. When the mice were killed after overnight fasting, the actual PDC activity was higher only in the kidney of PDK4(-/-) mice compared with wild-type mice. The concentrations of gluconeogenic substrates were lower in the blood of PDK4(-/-) mice compared with wild-type mice, consistent with reduced formation in peripheral tissues. Diaphragms isolated from PDK4(-/-) mice oxidized glucose faster and fatty acids slower than diaphragms from wild-type mice. Fatty acid oxidation inhibited glucose oxidation by diaphragms from wild-type but not PDK4(-/-) mice. NEFA, ketone bodies, and branched-chain amino acids were elevated more in PDK4(-/-) mice, consistent with slower rates of oxidation. These findings show that PDK4 deficiency lowers blood glucose and slightly improves glucose tolerance and insulin sensitivity in mice with diet-induced obesity.  相似文献   

18.
Fatty acid binding proteins (FABPs) are abundantly present in tissues that actively metabolize fatty acids (FA). While their precise physiological function is not known, FABPs have been shown to play a role in the uptake and/or utilization of FA within the cell. FA metabolism is markedly altered during the host response to infection and inflammation. Previous studies have demonstrated that endotoxin or bacterial lipopolysaccharide (LPS) enhances hepatic FA synthesis and re-esterification while inhibiting FA oxidation in liver, heart and muscle. Now, we have examined the in vivo effects of LPS and cytokines on FABPs in liver (L-FABP), heart and muscle (H-FABP). Syrian hamsters were injected with LPS, tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) and the mRNA and protein content for L-FABP and H-FABP were analyzed. 16 h after administration, LPS (100 microg/100 g body weight) produced a 72% decrease in L-FABP mRNA levels in liver and this effect was sustained for 24 h. LPS also produced a 41% decrease in the protein content of L-FABP in liver after 24 h of treatment. TNF-alpha and IL-1beta decreased L-FABP mRNA levels in liver by 30 and 45%, respectively. LPS decreased H-FABP mRNA levels in skeletal muscle by 60% and in heart by 65%. LPS also produced a 49% decrease in H-FABP protein content in muscle. Neither TNF-alpha nor IL-1beta had any significant effect on H-FABP mRNA expression in heart and muscle. Taken together, these results indicate that LPS decreases FABP mRNA and protein levels in liver, heart and muscle, tissues that normally utilize FA as their primary fuel, whereas the inhibitory effect of cytokines is limited to the liver. The LPS-induced decrease in L-FABP and H-FABP may be an additional mechanism contributing to the decrease in FA oxidation that is associated with the host response to infection and inflammation.  相似文献   

19.
Glucose and fatty acid metabolism (oxidation versus esterification) has been measured in hepatocytes isolated from 24 h starved peroxisome proliferator-activated receptor-alpha (PPARalpha) null and wild-type mice. In PPARalpha null mice, the development of hypoglycemia during starvation was due to a reduced capacity for hepatic gluconeogenesis secondary to a 70% lower rate of fatty acid oxidation. This was not due to inappropriate expression of the hepatic CPT I gene, which was similar in both genotypes, but to impaired mitochondrial hydroxymethylglutaryl-CoA synthase gene expression in the PPARalpha null mouse liver. We also demonstrate that hepatic steatosis of fasting PPARalpha null mice was not due to enhanced triglyceride synthesis.  相似文献   

20.
Fatty acid binding protein-4 (FABP4) and FABP5 are two closely related FA binding proteins expressed primarily in adipose tissue and/or macrophages. The small-molecule FABP4 inhibitor BMS309403 was previously reported to improve insulin sensitivity in leptin-deficient Lep(ob)/Lep(ob) (ob/ob) mice. However, this compound was not extensively characterized in the more physiologically relevant animal model of mice with diet-induced obesity (DIO). Here, we report the discovery and characterization of a novel series of FABP4/5 dual inhibitors represented by Compounds 1-3. Compared with BMS309403, the compounds had significant in vitro potency toward both FABP4 and FABP5. In cell-based assays, Compounds 2 and 3 were more potent than BMS309403 to inhibit lipolysis in 3T3-L1 adipocytes and in primary human adipocytes. They also inhibited MCP-1 release from THP-1 macrophages as well as from primary human macrophages. When chronically administered to DIO mice, BMS309403 and Compound 3 reduced plasma triglyceride and free FA levels. Compound 3 reduced plasma free FAs at a lower dose level than BMS309403. However, no significant change was observed in insulin, glucose, or glucose tolerance. Our results indicate that the FABP4/5 inhibitors ameliorate dyslipidemia but not insulin resistance in DIO mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号