首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The SCF ubiquitin ligase complex consists of four components, Skp1, Cul1, ROC1/Rbx1, and a variable subunit F-box protein, which serves as a receptor for target proteins. The F-box proteins consist of an N-terminal ∼40 amino acid F-box domain that binds to Skp1 and the C-terminal substrate-binding domain. We have reported previously that Fbs1 and Fbs2 are N-linked glycoprotein-specific F-box proteins. In addition, other three F-box proteins, Fbg3, Fbg4, and Fbg5, show high homology to Fbs1 and Fbs2, but their functions remain largely unknown. Here we report that Skp1 assists in correct folding of exogenously expressed F-box proteins. Fbs2 as well as Fbg3, Fbg4, and Fbg5 proteins formed SCF complexes but did not bind to N-glycoproteins when exogenously expressed alone. However, co-expression of Fbs2 and Fbg5 with Skp1 facilitated their binding to glycoproteins that reacted with ConA. Furthermore, Skp1 increased the cellular concentrations of F-box proteins by preventing aggregate formation. These observations suggest that Skp1 plays an important role in stabilizing the conformation of these F-box proteins, which increases their expression levels and substrate-binding.  相似文献   

2.
Skp2 is the substrate recognition subunit of the multi-subunit ubiquitin ligase SCF(Skp2). It consists of an N-terminal F-box domain that binds to the Skp1 subunit and thereby tethers it to the SCF catalytic core, and an elongated C-terminal domain comprising ten Leucine-rich repeats (LRR) that binds the substrate. A small accessory protein, Cks1, is required for SCF(Skp2) to target certain substrates, including the Cyclin-dependent kinase inhibitor p27. Here we have used hydrogen/deuterium exchange monitored by mass spectrometry to investigate the mode of action of Cks1 on SCF(Skp2). We show that complex formation between Cks1 and Skp2 causes conformational changes in both proteins in regions distant from the respective binding sites. We find that Skp2 interacts with a localised region of Cks1 but the interaction causes a global change in the hydrogen exchange behaviour of Cks1. Also, whilst Cks1 binds to the most C-terminal LRRs of the elongated Skp2 molecule, the interaction induces conformational changes at the distant N-terminal LRRs, close to the F-box motif. Further, binding of Cks1 to Skp2 significantly stabilises the interaction between Skp2 and Skp1. The results reveal that the C-terminal substrate recognition region of Skp2 is coupled to the N-terminal Skp1-binding region and thereby to the SCF catalytic core; this result adds to the model proposed previously that, whilst the principal function of the F-box protein is to recruit the substrate, an additional function may be to help position the substrate in an optimal way within the SCF complex to enable efficient ubiquitin transfer.  相似文献   

3.
Poxviruses are notorious for encoding multiple proteins that regulate cellular signaling pathways, including the ubiquitin-proteasome system. Bioinformatics indicated that ectromelia virus, the causative agent of lethal mousepox, encoded four proteins, EVM002, EVM005, EVM154, and EVM165, containing putative F-box domains. In contrast to cellular F-box proteins, the ectromelia virus proteins contain C-terminal F-box domains in conjunction with N-terminal ankyrin repeats, a combination that has not been previously reported for cellular proteins. These observations suggested that the ectromelia virus F-box proteins interact with SCF (Skp1, cullin-1, and F-box) ubiquitin ligases. We focused our studies on EVM005, since this protein had only one ortholog in cowpox virus. Using mass spectrometry, we identified cullin-1 as a binding partner for EVM005, and this interaction was confirmed by overexpression of hemagglutinin (HA)-cullin-1. During infection, Flag-EVM005 and HA-cullin-1 colocalized to distinct cellular bodies. Significantly, EVM005 coprecipitated with endogenous Skp1, cullin-1, and Roc1 and associated with conjugated ubiquitin, suggesting that EVM005 interacted with the components of a functional ubiquitin ligase. Interaction of EVM005 with cullin-1 and Skp1 was abolished upon deletion of the F-box, indicating that the F-box played a crucial role in interaction with the SCF complex. Additionally, EVM002 and EVM154 interacted with Skp1 and conjugated ubiquitin, suggesting that ectromelia virus encodes multiple F-box-containing proteins that regulate the SCF complex. Our results indicate that ectromelia virus has evolved multiple proteins that interact with the SCF complex.  相似文献   

4.
F-box proteins, components of the Skp1-Cullin1-F-box (SCF) protein E3 ubiquitin ligase complex, serve as the variable component responsible for substrate recognition and recruitment in SCF-mediated proteolysis. F-box proteins interact with Skp1 through the F-box motif and with ubiquitination substrates through C-terminal protein interaction domains. F-box proteins regulate plant development, various hormonal signal transduction processes, circadian rhythm, and cell cycle control. We isolated an F-box protein gene from wheat spikes at the onset of flowering. The Triticum aestivum cyclin F-box domain (TaCFBD) gene showed elevated expression levels during early inflorescence development and under cold stress treatment. TaCFBD green fluorescent protein signals were localized in the cytoplasm and plasma membrane. We used yeast two-hybrid screening to identify proteins that potentially interact with TaCFBD. Fructose bisphosphate aldolase, aspartic protease, VHS, glycine-rich RNA-binding protein, and the 26S proteasome non-ATPase regulatory subunit were positive candidate proteins. The bimolecular fluorescence complementation assay revealed the interaction of TaCFBD with partner proteins in the plasma membranes of tobacco cells. Our results suggest that the TaCFBD protein acts as an adaptor between target substrates and the SCF complex and provides substrate specificity to the SCF of ubiquitin ligase complexes.  相似文献   

5.
F-box proteins: the key to protein degradation   总被引:4,自引:0,他引:4  
Summary The eukaryotic protein degradation pathway involves the ubiquitin (Ub) modification of substrates targeted for degradation by the 26S proteasome. The addition of Ub, a process called ubiquitination, is mediated by enzymes including the E3 Ub ligases which transfer the Ub to targeted substrates. A major type of E3 Ub ligases, the SCF (Skp–Cullin–F-box) complex, is composed of four major components: Skp1, Cul1/Cdc53, Roc1/Rbx1/Hrt1, and an F-box protein. The F-box component of the SCF machineries is responsible for recognizing different substrates for ubiquitination. Interaction with components of the SCF complex is mediated through the F-box motif of the F-box protein while it associates with phosphorylated substrates through its second protein–protein interaction motif such as Trp–Asp (WD) repeats or leucine-rich repeats (LRRs). By targeting diverse substrates, F-box proteins exert controls over stability of proteins and regulate the mechanisms for a wide-range of cellular processes. Here we discuss the importance of F-box proteins by providing a general overview and examples of how F-box proteins function in various cellular settings such as tissue development, cell proliferation, and cell death, in the modeling organism Drosophila.  相似文献   

6.
The role of Skp1 as an adaptor protein that links Cullin-1 to F-box proteins in E3 Skp1/Cullin-1/F-box protein (SCF) ubiquitin ligases is well characterized. In the social amoeba Dictyostelium and probably many other unicellular eukaryotes, Skp1 is modified by a pentasaccharide attached to a hydroxyproline near its C terminus. This modification is important for oxygen-sensing during Dictyostelium development and is mediated by a HIF-α type prolyl 4-hydroxylase and five sequentially acting cytoplasmic glycosyltransferase activities. Gene disruption studies show that AgtA, the enzyme responsible for addition of the final two galactose residues, in α-linkages to the Skp1 core trisaccharide, is unexpectedly critical for oxygen-dependent terminal development. AgtA possesses a WD40 repeat domain C-terminal to its single catalytic domain and, by use of domain deletions, binding studies, and enzyme assays, we find that the WD40 repeats confer a salt-sensitive second-site binding interaction with Skp1 that mediates novel catalytic activation in addition to simple substrate recognition. In addition, AgtA binds similarly well to precursor isoforms of Skp1 by a salt-sensitive mechanism that competes with binding to an F-box protein and recognition by early modification enzymes, and the effect of binding is diminished when AgtA modifies Skp1. Genetic studies show that loss of AgtA is more severe when an earlier glycosylation step is blocked, and overexpressed AgtA is deleterious if catalytically inactivated. Together, the findings suggest that AgtA mediates non-enzymatic control of unmodified and substrate precursor forms of Skp1 by a binding mechanism that is normally relieved by switch-like activation of its glycosylation function.  相似文献   

7.
F-box proteins are critical components of the SCF ubiquitin-protein ligase complex and are involved in substrate recognition and recruitment for ubiquitination and consequent degradation by the proteasome. We have isolated cDNAs encoding a further 10 mammalian F-box proteins. Five of them (FBL3 to FBL7) share structural similarities with Skp2 and contain C-terminal leucine-rich repeats. The other 5 proteins have different putative protein-protein interaction motifs. Specifically, FBS and FBWD4 proteins contain Sec7 and WD40-repeat domains, respectively. The C-terminal region of FBA shares similarity with bacterial protein ApaG while FBG2 shows homology with the F-box protein NFB42. The marked differences in F-box gene expression in human tissues suggest their distinct role in ubiquitin-dependent protein degradation.  相似文献   

8.
The F-box protein family   总被引:8,自引:0,他引:8  
Kipreos ET  Pagano M 《Genome biology》2000,1(5):reviews3002.1-reviews30027
The F-box is a protein motif of approximately 50 amino acids that functions as a site of protein-protein interaction. F-box proteins were first characterized as components of SCF ubiquitin-ligase complexes (named after their main components, Skp I, Cullin, and an F-box protein), in which they bind substrates for ubiquitin-mediated proteolysis. The F-box motif links the F-box protein to other components of the SCF complex by binding the core SCF component Skp I. F-box proteins have more recently been discovered to function in non-SCF protein complexes in a variety of cellular functions. There are 11 F-box proteins in budding yeast, 326 predicted in Caenorhabditis elegans, 22 in Drosophila, and at least 38 in humans. F-box proteins often include additional carboxy-terminal motifs capable of protein-protein interaction; the most common secondary motifs in yeast and human F-box proteins are WD repeats and leucine-rich repeats, both of which have been found to bind phosphorylated substrates to the SCF complex. The majority of F-box proteins have other associated motifs, and the functions of most of these proteins have not yet been defined.  相似文献   

9.
Skp1p-cullin-F-box protein (SCF) complexes are ubiquitin-ligases composed of a core complex including Skp1p, Cdc53p, Hrt1p, the E2 enzyme Cdc34p, and one of multiple F-box proteins which are thought to provide substrate specificity to the complex. Here we show that the F-box protein Rcy1p is required for recycling of the v-SNARE Snc1p in Saccharomyces cerevisiae. Rcy1p localized to areas of polarized growth, and this polarized localization required its CAAX box and an intact actin cytoskeleton. Rcy1p interacted with Skp1p in vivo in an F-box-dependent manner, and both deletion of its F box and loss of Skp1p function impaired recycling. In contrast, cells deficient in Cdc53p, Hrt1p, or Cdc34p did not exhibit recycling defects. Unlike the case for F-box proteins that are known to participate in SCF complexes, degradation of Rcy1p required neither its F box nor functional 26S proteasomes or other SCF core subunits. Importantly, Skp1p was the only major partner that copurified with Rcy1p. Our results thus suggest that a complex composed of Rcy1p and Skp1p but not other SCF components may play a direct role in recycling of internalized proteins.  相似文献   

10.
A novel class of ubiquitin ligases, termed the SCF complex, consists of invariable components, Skp1 and Cullin, and variable components called F-box proteins, which have a primary role in determining substrate specificity. We have isolated a cDNA encoding the mouse F-box protein Fwd2 (also known as MD6) as a possible constituent of an SCF-type ubiquitin ligase. Fwd2 cDNA contains 1890 bp with a 1362-bp open reading frame and encodes an approximately 51.5-kDa protein. Fwd2 is expressed predominantly in liver and, to a lesser extent, in the testis, lung, heart, and skeletal muscle. Immunofluorescence staining for Fwd2 protein shows a pattern with the cytoplasm. A coimmunoprecipitation assay has revealed the in vivo interaction between Skp1 and Fwd2 through the F-box domain. Fwd2 also interacts with Cul1 through Skp1, suggesting that Skp1, Cul1, and the F-box protein Fwd2 form an SCF complex (SCF(Fwd2)). We have also isolated and determined the nucleotide sequence and genomic organization of the gene that encodes mouse Fwd2. This gene spans approximately 17 kb and consists of six exons and five introns. Our results suggest that Fwd2 is an F-box protein that constitutes an SCF ubiquitin ligase complex and that it plays a critical role in the ubiquitin-dependent degradation of proteins expressed in the liver.  相似文献   

11.
12.
Expression and interaction analysis of Arabidopsis Skp1-related genes   总被引:7,自引:0,他引:7  
Specific protein degradation has been observed in several aspects of development and differentiation in many organisms. One example of such proteolysis is regulated by protein polyubiquitination that is promoted by the SCF complex consisting of Skp1, cullin, and an F-box protein. We examined the activities of the Arabidopsis Skp1-related proteins (ASKs). Among 19 annotated ASK genes, we isolated 16 of the corresponding cDNAs (ASK1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19), and examined their gene products for interactions with 24 representatives of F-box proteins carrying various classes of the C-terminal domains using the yeast two-hybrid system. As a result, we found diverse binding specificities: ASK1, ASK2, ASK11 and ASK12 interacted well with COI1, FKF1, UFO-like protein, LRR-containing F-box proteins, and other F-box proteins with unknown C-terminal motifs. We also observed specific interaction between F-box proteins and ASK3, ASK9, ASK13, ASK14, ASK16 and ASK18. In contrast, we detected no interaction between any of the 12 ASK proteins and F-box proteins containing CRFA, CRFB or CRFC domains. Both histochemical and RT-PCR analysis of eight ASK genes expression revealed unique expression patterns for the respective genes.  相似文献   

13.
SCF ubiquitin protein ligases and phosphorylation-dependent proteolysis   总被引:13,自引:0,他引:13  
Many key activators and inhibitors of cell division are targeted for degradation by a recently described family of E3 ubiquitin protein ligases termed Skp1-Cdc53-F-box protein (SCF) complexes. SCF complexes physically link substrate proteins to the E2 ubiquitin-conjugating enzyme Cdc34, which catalyses substrate ubiquitination, leading to subsequent degradation by the 26S proteasome. SCF complexes contain a variable subunit called an F-box protein that confers substrate specificity on an invariant core complex composed of the subunits Cdc34, Skp1 and Cdc53. Here, we review the substrates and pathways regulated by the yeast F-box proteins Cdc4, Grr1 and Met30. The concepts of SCF ubiquitin ligase function are illustrated by analysis of the degradation pathway for the G1 cyclin Cln2. Through mass spectrometric analysis of Cdc53 associated proteins, we have identified three novel F-box proteins that appear to participate in SCF-like complexes. As many F-box proteins can be found in sequence databases, it appears that a host of cellular pathways will be regulated by SCF-dependent proteolysis.  相似文献   

14.
15.
F-box proteins are the substrate-recognition components of the Skp1-Cul1-F box protein (SCF) E3 ubiquitin ligases. Here we report a structural relationship between Fbxo7, a component of the SCF(Fbxo7) E3 ligase, and the proteasome inhibitor PI31. SCF(Fbxo7) is known to catalyze the ubiquitination of hepatoma-up-regulated protein (HURP) and the inhibitor of apoptosis (IAP) protein but also functions as an activator of cyclin D-Cdk6 complexes. We identify PI31 as an Fbxo7.Skp1 binding partner and show that this interaction requires an N-terminal domain present in both proteins that we term the FP (Fbxo7/PI31) domain. The crystal structure of the PI31 FP domain reveals a novel alpha/beta-fold. Biophysical and mutational analyses are used to map regions of the PI31 FP domain mediating homodimerization and required for heterodimerization with Fbxo7.Skp1. Equivalent mutations in Fbxo7 ablate interaction with PI31 and also block Fbxo7 homodimerization. Knockdown of Fbxo7 does not affect PI31 levels arguing against PI31 being a substrate for SCF(Fbxo7). We present a model for FP domain-mediated dimerization of SCF(Fbxo7) and PI31.  相似文献   

16.
The SCF complex containing Skp1, Cul1, and the F-box protein FWD1 (the mouse homologue of Drosophila Slimb and Xenopus beta-TrCP) functions as the ubiquitin ligase for IkappaBalpha. FWD1 associates with Skp1 through the F-box domain and also recognizes the conserved DSGXXS motif of IkappaBalpha. The structural requirements for the interactions of FWD1 with IkappaBalpha and with Skp1 have now been investigated further. The D31A mutation (but not the G33A mutation) in the DSGXXS motif of IkappaBalpha abolished the binding of IkappaBalpha to FWD1 and its subsequent ubiquitination without affecting the phosphorylation of IkappaBalpha. The IkappaBalpha mutant D31E still exhibited binding to FWD1 and underwent ubiquitination. These results suggest that, in addition to site-specific phosphorylation at Ser(32) and Ser(36), an acidic amino acid at position 31 is required for FWD1-mediated ubiquitination of IkappaBalpha. Deletion analysis of Skp1 revealed that residues 61-143 of this protein are required for binding to FWD1. On the other hand, the highly conserved residues Pro(149), Ile(160), and Leu(164) in the F-box domain of FWD1 were dispensable for binding to Skp1. Together, these data delineate the structural requirements for the interactions among IkappaBalpha, FWD1, and Skp1 that underlie substrate recognition by the SCF ubiquitin ligase complex.  相似文献   

17.
The SCF complex is a type of ubiquitin-protein ligase (E3) that consists of invariable components, including Skp1, Cdc53/Cul1, and Rbx1, as well as variable components known as F-box proteins. Using a yeast two-hybrid system, we isolated six proteins that interact with Schizosaccharomyces pombe Skp1. Among them, Pof10 is a novel F-box protein consisting of 662 amino acids, harboring the F-box domain required for the binding to Skp1 and followed by four WD40 repeats. Overexpression of Pof10 in fission yeast resulted in loss of viability with marked morphological changes that are similar to those in pop1 mutant yeast. Coexpression of Skp1 with Pof10 prevented the lethality, suggesting that the lethality from Pof10 overexpression results from the sequestration of Skp1 from other F-box proteins including Pop1. Whereas most F-box proteins show rapid turnover, Pof10 has a remarkably long half-life in vivo and has been shown to be localized predominantly in cytoplasm. These results suggest that the stable F-box protein Pof10 might target abundant cytoplasmic proteins for degradation in fission yeast.  相似文献   

18.
The multiprotein von Hippel-Lindau (VHL) tumor suppressor and Skp1-Cul1-F-box protein (SCF) complexes belong to families of structurally related E3 ubiquitin ligases. In the VHL ubiquitin ligase, the VHL protein serves as the substrate recognition subunit, which is linked by the adaptor protein Elongin C to a heterodimeric Cul2/Rbx1 module that activates ubiquitylation of target proteins by the E2 ubiquitin-conjugating enzyme Ubc5. In SCF ubiquitin ligases, F-box proteins serve as substrate recognition subunits, which are linked by the Elongin C-like adaptor protein Skp1 to a Cul1/Rbx1 module that activates ubiquitylation of target proteins, in most cases by the E2 Cdc34. In this report, we investigate the functions of the Elongin C and Skp1 proteins in reconstitution of VHL and SCF ubiquitin ligases. We identify Elongin C and Skp1 structural elements responsible for selective interaction with their cognate Cullin/Rbx1 modules. In addition, using altered specificity Elongin C and F-box protein mutants, we investigate models for the mechanism underlying E2 selection by VHL and SCF ubiquitin ligases. Our findings provide evidence that E2 selection by VHL and SCF ubiquitin ligases is determined not solely by the Cullin/Rbx1 module, the target protein, or the integrity of the substrate recognition subunit but by yet to be elucidated features of these macromolecular complexes.  相似文献   

19.
Gibberella zeae is an ascomyceteous fungus that causes serious diseases in cereal crops. Severe epidemics require strains that are virulent and that can reproduce sexually. We characterized an insertional mutant (designated ZH436) with a pleiotropic defect in both traits, and identified a novel F-box protein gene encoding FBP1 (F-box protein 1) that is similar to fungal F-box proteins including Saccharomyces cerevisiae Grr1, a well-characterized component of the Skp1-Cullin-F-box protein (SCF(Grr1)) E3 ligase complex required for protein degradation. FBP1 also can bind both S. cerevisiae Skp1 protein, the other component of the SCF(Grr1) complex, and its G. zeae sequence homologue SKP1. Two putative protein interacting domains in FBP1 are essential for in vivo function. FBP1 and ScGRR1 are not so interchangeable between S. cerevisiae and G. zeae, but FBP1 can partially complement several defects of a yeast grr1 deletion mutant. Functional analyses confirmed that FBP1 is required for several phenotypes including both sexual development and virulence in G. zeae; the phenotype of DeltaFBP1 strains is different from those of null mutants for F-box proteins in other filamentous fungi as well as from S. cerevisiae grr1Delta strains. Thus, FBP1 is a versatile F-box protein that presumably participates in the formation of the SCF(FBP1) complex that probably controls the ubiquitin-mediated degradation of proteins involved in sexual reproduction and virulence important for disease development by G. zeae.  相似文献   

20.
The ubiquitin system of intracellular protein degradation controls the abundance of many critical regulatory proteins. Specificity in the ubiquitin system is determined largely at the level of substrate recognition, a step that is mediated by E3 ubiquitin ligases. Analysis of the mechanisms of phosphorylation directed proteolysis in cell cycle regulation has uncovered a new class of E3 ubiquitin ligases called SCF complexes, which are composed of the subunits Skp1, Rbx1, Cdc53 and any one of a large number of different F-box proteins. The substrate specificity of SCF complexes is determined by the interchangeable F-box protein subunit, which recruits a specific set of substrates for ubiquitination to the core complex composed of Skp1, Rbx1, Cdc53 and the E2 enzyme Cdc34. F-box proteins have a bipartite structure--the shared F-box motif links F-box proteins to Skp1 and the core complex, whereas divergent protein-protein interaction motifs selectively bind their cognate substrates. To date all known SCF substrates are recognised in a strictly phosphorylation dependent manner, thus linking intracellular signalling networks to the ubiquitin system. The plethora of different F-box proteins in databases suggests that many pathways will be governed by SCF-dependent proteolysis. Indeed, genetic analysis has uncovered roles for F-box proteins in a variety of signalling pathways, ranging from nutrient sensing in yeast to conserved developmental pathways in plants and animals. Moreover, structural analysis has revealed ancestral relationships between SCF complexes and two other E3 ubiquitin ligases, suggesting that the combinatorial use of substrate specific adaptor proteins has evolved to allow the regulation of many cellular processes. Here, we review the known signalling pathways that are regulated by SCF complexes and highlight current issues in phosphorylation dependent protein degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号