首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Glycerol is the main compatible solute in yeast Saccharomyces cerevisiae. When faced with osmotic stress, for example during semi-solid state bread dough fermentation, yeast cells produce and accumulate glycerol in order to prevent dehydration by balancing the intracellular osmolarity with that of the environment. However, increased glycerol production also results in decreased CO2 production, which may reduce dough leavening. We investigated the effect of yeast glycerol production level on bread dough fermentation capacity of a commercial bakery strain and a laboratory strain. We find that Δgpd1 mutants that show decreased glycerol production show impaired dough fermentation. In contrast, overexpression of GPD1 in the laboratory strain results in increased fermentation rates in high-sugar dough and improved gas retention in the fermenting bread dough. Together, our results reveal the crucial role of glycerol production level by fermenting yeast cells in dough fermentation efficiency as well as gas retention in dough, thereby opening up new routes for the selection of improved commercial bakery yeasts.  相似文献   

2.
3.
The yeast Saccharomyces cerevisiae responds to osmotic stress, i.e., an increase in osmolarity of the growth medium, by enhanced production and intracellular accumulation of glycerol as a compatible solute. We have cloned a gene encoding the key enzyme of glycerol synthesis, the NADH-dependent cytosolic glycerol-3-phosphate dehydrogenase, and we named it GPD1. gpd1 delta mutants produced very little glycerol, and they were sensitive to osmotic stress. Thus, glycerol production is indeed essential for the growth of yeast cells during reduced water availability. hog1 delta mutants lacking a protein kinase involved in osmostress-induced signal transduction (the high-osmolarity glycerol response [HOG] pathway) failed to increase glycerol-3-phosphate dehydrogenase activity and mRNA levels when osmotic stress was imposed. Thus, expression of GPD1 is regulated through the HOG pathway. However, there may be Hog1-independent mechanisms mediating osmostress-induced glycerol accumulation, since a hog1 delta strain could still enhance its glycerol content, although less than the wild type. hog1 delta mutants are more sensitive to osmotic stress than isogenic gpd1 delta strains, and gpd1 delta hog1 delta double mutants are even more sensitive than either single mutant. Thus, the HOG pathway most probably has additional targets in the mechanism of adaptation to hypertonic medium.  相似文献   

4.
ASR1, a stress-induced tomato protein, protects yeast from osmotic stress   总被引:1,自引:0,他引:1  
Asr1 , a tomato gene induced by abiotic stress, belongs to a family, composed by at least three members, involved in adaptation to dry climates. To understand the mechanism by which proteins of this family seem to protect cells from water loss in plants, we expressed Asr1 in the heterologous expression system Saccharomyces cerevisiae under the control of a galactose-inducible promoter. In a mutant yeast strain deficient in one component of the stress-responsive high-osmolarity glycerol (HOG) pathway, namely the MAP kinase Hog 1, the synthesis of ASR1 protein restores growth under osmotic stress conditions such as 0.5  M NaCl and 1.2  M sorbitol. In contrast, the rescuing of this phenotype was less evident using a wild-type strain or the upstream MAP kinase kinase (Pbs2)-deficient strain. In both knock-out strains impaired in glycerol synthesis because of a dysfunctional HOG pathway, but not in wild-type, ASR1 led to the accumulation of endogenous glycerol in an osmotic stress-independent and unrestrained manner. These data suggest that ASR1 complements yeast HOG-deficient phenotypes by inducing downstream components of the HOG pathway. The results are discussed in terms of the function of ASR proteins in planta at the molecular and cellular level.  相似文献   

5.
Physiological capabilities and fermentation performance of Saccharomyces cerevisiae strains to be employed during industrial wine fermentations are critical for the quality of the final product. During the process of biomass propagation, yeast cells are dynamically exposed to a mixed and interrelated group of known stresses such as osmotic, oxidative, thermic, and/or starvation. These stressing conditions can dramatically affect the parameters of the fermentation process and the technological abilities of the yeast, e.g., the biomass yield and its fermentative capacity. Although a good knowledge exists of the behavior of S. cerevisiae under laboratory conditions, insufficient knowledge is available about yeast stress responses under the specific media and growth conditions during industrial processes. We performed growth experiments using bench-top fermentors and employed a molecular marker approach (changes in expression levels of five stress-related genes) to investigate how the cells respond to environmental changes during the process of yeast biomass production. The data show that in addition to the general stress response pathway, using the HSP12 gene as a marker, other specific stress response pathways were induced, as indicated by the changes detected in the mRNA levels of two stress-related genes, GPD1 and TRX2. These results suggest that the cells were affected by osmotic and oxidative stresses, demonstrating that these are the major causes of the stress response throughout the process of wine yeast biomass production.  相似文献   

6.
Molecular and physiological details of osmoadaptation in yeast Saccharomyces cerevisiae are well characterized. It is well known that a cell, upon osmotic shock, delays its growth, produces a compatible solute like glycerol in yeast to maintain the osmotic equilibrium. Many genes are regulated by the hyperosmolarity glycerol (HOG) singling pathway, some of which in turn control the carbon flux in the glycolytic pathway for glycerol synthesis and reduced growth. The whole process of survival of cells under hyperosmotic stress is controlled at multiple levels in signaling and metabolic pathways. To better understand the multi-level regulations in yeast to osmotic shock, a mathematical model is formulated which integrates the growth and the osmoadaptation process. The model included the HOG pathway which consists of Sho1 and Sln1 signaling branches, gene regulation, metabolism and cell growth on glucose and ethanol. Experiments were performed to characterize the effect of various concentrations of salt on the wild-type and mutant strains. The model was able to successfully predict the experimental observations for both the wild-type and mutant strains. Further, the model was used to analyze the effects of various regulatory mechanisms prevalent in the signaling and metabolic pathways which are essential in achieving optimum growth in a saline medium. The analysis demonstrated the relevance of the combined effects of regulation at several points in the signaling and metabolic pathways including activation of GPD1 and GPD2, inhibition of PYK and PDC1, closure of the Fps1 channel, volume effect on the glucose uptake rate, downregulation of ethanol synthesis and upregulation of ALD6 for acetate synthesis. The analysis demonstrated that these combined effects orchestrated the phenomena of adaptation to osmotic stress in yeast.  相似文献   

7.
The Arabidopsis thaliana ARAKIN (ATMEKK1) gene shows strong homology to members of the (MAP) mitogen-activated protein kinase family, and was previously shown to functionally complement a mating defect in Saccharomyces cerevisiae at the level of the MEKK kinase ste11. The yeast STE11 is an integral component of two MAP kinase cascades: the mating pheromone pathway and the HOG (high osmolarity glycerol response) pathway. The HOG signal transduction pathway is activated by osmotic stress and causes increased glycerol synthesis. Here, we first demonstrate that ATMEKK1 encodes a protein with kinase activity, examine its properties in yeast MAP kinase cascades, then examine its expression under stress in A. thaliana. Yeast cells expressing the A. thaliana ATMEKK1 survive and grow under high salt (NaCl) stress, conditions that kill wild-type cells. Enhanced glycerol production, observed in non-stressed cells expressing ATMEKK1 is the probable cause of yeast survival. Downstream components of the HOG response pathway, HOG1 and PBS2, are required for ATMEKK1-mediated yeast survival. Because ATMEKK1 functionally complements the sho1/ssk2/ssk22 triple mutant, it appears to function at the level of the MEKK kinase step of the HOG response pathway. In A. thaliana, ATMEKK1 expression is rapidly (within 5 min) induced by osmotic (NaCl) stress. This is the same time frame for osmoticum-induced effects on the electrical properties of A. thaliana cells, both an immediate response and adaptation. Therefore, we propose that the A. thaliana ATMEKK1 may be a part of the signal transduction pathway involved in osmotic stress.  相似文献   

8.
9.
10.
The Saccharomyces cerevisiae HOG pathway controls responses to osmotic shock such as production of the osmolyte glycerol. Here we show that the HOG pathway can be stimulated by addition of glycerol. This stimulation was strongly diminished in cells expressing an unregulated Fps1p glycerol channel, presumably because glycerol rapidly equilibrated across the plasma membrane. Ethanol, which passes the plasma membrane readily and causes water stress by disturbing the hydration of biomolecules, did not activate the HOG pathway. These observations suggest that stimulation of the HOG pathway is mediated by a turgor change and not by water stress per se.  相似文献   

11.
12.
13.
Physiological capabilities and fermentation performance of Saccharomyces cerevisiae strains to be employed during industrial wine fermentations are critical for the quality of the final product. During the process of biomass propagation, yeast cells are dynamically exposed to a mixed and interrelated group of known stresses such as osmotic, oxidative, thermic, and/or starvation. These stressing conditions can dramatically affect the parameters of the fermentation process and the technological abilities of the yeast, e.g., the biomass yield and its fermentative capacity. Although a good knowledge exists of the behavior of S. cerevisiae under laboratory conditions, insufficient knowledge is available about yeast stress responses under the specific media and growth conditions during industrial processes. We performed growth experiments using bench-top fermentors and employed a molecular marker approach (changes in expression levels of five stress-related genes) to investigate how the cells respond to environmental changes during the process of yeast biomass production. The data show that in addition to the general stress response pathway, using the HSP12 gene as a marker, other specific stress response pathways were induced, as indicated by the changes detected in the mRNA levels of two stress-related genes, GPD1 and TRX2. These results suggest that the cells were affected by osmotic and oxidative stresses, demonstrating that these are the major causes of the stress response throughout the process of wine yeast biomass production.  相似文献   

14.
Exposure of yeast cells to increases in extracellular osmolarity activates the HOG1 mitogen-activated protein (MAP) kinase cascade, which is composed of three tiers of protein kinases: (i) the SSK2, SSK22, and STE11 MAP kinase kinase kinases (MAPKKKs), (ii) the PBS2 MAPKK, and (iii) the HOG1 MAP kinase. Activation of the MAP kinase cascade is mediated by two upstream mechanisms. The SLN1-YPD1-SSK1 two-component osmosensor activates the SSK2 and SSK22 MAPKKKs by direct interaction of the SSK1 response regulator with these MAPKKKs. The second mechanism of HOG1 MAP kinase activation is independent of the two-component osmosensor and involves the SHO1 transmembrane protein and the STE11 MAPKKK. Only PBS2 and HOG1 are common to the two mechanisms. We conducted an exhaustive mutant screening to identify additional elements required for activation of STE11 by osmotic stress. We found that strains with mutations in the STE50 gene, in combination with ssk2Δ ssk22Δ mutations, were unable to induce HOG1 phosphorylation after osmotic stress. Both two-hybrid analyses and coprecipitation assays demonstrated that the N-terminal domain of STE50 binds strongly to the N-terminal domain of STE11. The binding of STE50 to STE11 is constitutive and is not affected by osmotic stress. Furthermore, the two proteins relocalize similarly after osmotic shock. It was concluded that STE50 fulfills an essential role in the activation of the high-osmolarity glycerol response pathway by acting as an integral subunit of the STE11 MAPKKK.  相似文献   

15.
Leavening ability of baker's yeast exposed to hyperosmotic media   总被引:2,自引:0,他引:2  
To develop a simple and rapid method for enhancing the leavening ability of baker's yeast, we examined the fermentation ability of baker's yeast exposed to hyperosmotic media. When baker's yeast cells were incubated at 25 degrees C for 1 h in a hyperosmotic medium containing 0.5% yeast extract, 0.5% peptone and 20% sucrose, the cells showed a higher fermentation ability in the subsequent fermentation test than those untreated. The increased ratios were from 40 to 60% depending on the strains used. Glucose and fructose showed a similar effect to that of sucrose, but sorbitol was less effective. A high correlation between the intracellular glycerol content and fermentation ability after the osmotic treatment suggested that glycerol accumulated during the hyperosmotic treatment was used in the subsequent fermentation as a substrate, lessened the lag time, and consequently enhanced the fermentation ability. Various baker's yeasts also showed a high leavening ability in dough after the hyperosmotic treatment.  相似文献   

16.
Genome sequencing analyses revealed that Aspergillus nidulans has orthologous genes to all those of the high-osmolarity glycerol (HOG) response mitogen-activated protein kinase (MAPK) pathway of Saccharomyces cerevisiae. A. nidulans mutant strains lacking sskA, sskB, pbsB, or hogA, encoding proteins orthologous to the yeast Ssk1p response regulator, Ssk2p/Ssk22p MAPKKKs, Pbs2p MAPKK and Hog1p MAPK, respectively, showed growth inhibition under high osmolarity, and HogA MAPK in these mutants was not phosphorylated under osmotic or oxidative stress. Thus, activation of the A. nidulans HOG (AnHOG) pathway depends solely on the two-component signalling system, and MAPKK activation mechanisms in the AnHOG pathway differ from those in the yeast HOG pathway, where Pbs2p is activated by two branches, Sln1p and Sho1p. Expression of pbsB complemented the high-osmolarity sensitivity of yeast pbs2Delta, and the complementation depended on Ssk2p/Ssk22p, but not on Sho1p. Pbs2p requires its Pro-rich motif for binding to the Src-homology3 (SH3) domain of Sho1p, but PbsB lacks a typical Pro-rich motif. However, a PbsB mutant (PbsB(Pro)) with the yeast Pro-rich motif was activated by the Sho1p branch in yeast. In contrast, HogA in sskADelta expressing PbsB(Pro) was not phosphorylated under osmotic stress, suggesting that A. nidulans ShoA, orthologous to yeast Sho1p, is not involved in osmoresponsive activation of the AnHOG pathway. We also found that besides HogA, PbsB can activate another Hog1p MAPK orthologue, MpkC, in A. nidulans, although mpkC is dispensable in osmoadaptation. In this study, we discuss the differences between the AnHOG and the yeast HOG pathways.  相似文献   

17.
AIMS: To compare the fermentative capacity of wild and domesticated isolates of the genus Saccharomyces. METHODS AND RESULTS: The fermentative capacity of yeasts from a variety of wild and domesticated sources was tested in synthetic dough media that mimic major bread dough types. Domesticated yeast strains were found to have better maltose-utilizing capacity than wild yeast strains. The capacity to ferment sugars under high osmotic stress was randomly distributed amongst wild and baking strains of Saccharomyces. CONCLUSION: The domestication of bakers' yeast has enhanced the ability of yeasts to ferment maltose, without a similar impact on the fermentative capacity under high osmotic conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: This study, combined with molecular studies of both wild and domesticated yeast, showed that domestication of bakers' yeast has resulted in improved maltose utilization, apparently via the duplication and mutation of the MAL genes.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号