首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The implications of shallow water impacts such as fishing and climate change on fish assemblages are generally considered in isolation from the distribution and abundance of these fish assemblages in adjacent deeper waters. We investigate the abundance and length of demersal fish assemblages across a section of tropical continental shelf at Ningaloo Reef, Western Australia, to identify fish and fish habitat relationships across steep gradients in depth and in different benthic habitat types. The assemblage composition of demersal fish were assessed from baited remote underwater stereo-video samples (n = 304) collected from 16 depth and habitat combinations. Samples were collected across a depth range poorly represented in the literature from the fringing reef lagoon (1-10 m depth), down the fore reef slope to the reef base (10-30 m depth) then across the adjacent continental shelf (30-110 m depth). Multivariate analyses showed that there were distinctive fish assemblages and different sized fish were associated with each habitat/depth category. Species richness, MaxN and diversity declined with depth, while average length and trophic level increased. The assemblage structure, diversity, size and trophic structure of demersal fishes changes from shallow inshore habitats to deeper water habitats. More habitat specialists (unique species per habitat/depth category) were associated with the reef slope and reef base than other habitats, but offshore sponge-dominated habitats and inshore coral-dominated reef also supported unique species. This suggests that marine protected areas in shallow coral-dominated reef habitats may not adequately protect those species whose depth distribution extends beyond shallow habitats, or other significant elements of demersal fish biodiversity. The ontogenetic habitat partitioning which is characteristic of many species, suggests that to maintain entire species life histories it is necessary to protect corridors of connected habitats through which fish can migrate.  相似文献   

2.
《Aquatic Botany》2007,87(1):31-37
The fish fauna of Thalassia testudinum (König) seagrass beds was studied at two sites in the Grand Cul-de-Sac Marin Bay (Guadeloupe, French West Indies). The first seagrass bed was located near a coral reef and the second was near coastal mangroves. Both habitats were sampled during day and night, using a purse-seine and a trap net. A total of 98 species belonging to 36 families were observed. Distance-based redundancy analyses revealed two site-specific assemblages of fishes. Diel assemblage shifts were more pronounced in the seagrass beds near coral reefs than in those near mangroves, due to the existence of nocturnal trophic incursions of coral reef fishes into seagrass beds. First-order carnivores dominated the trophic structure of the fish assemblages during both day and night. At night, Haemulidae, Holocentridae and Apogonidae took the place of Labridae, Chaetodontidae and Mullidae present by day near the reef. This switch did not occur near the coast where the exchanges between seagrass beds and mangrove appear to be less important than with the reef ecosystem. Thus, it appears that the adjacent seascape habitat setting affects the intensity in diel variability of the seagrass bed fish community.  相似文献   

3.
Few studies have considered how seagrass fish assemblages are influenced by surrounding habitats. This information is needed for a better understanding of the connectivity between tropical coastal ecosystems. To study the effects of surrounding habitats on the composition, diversity and densities of coral reef fish species on seagrass beds, underwater visual census surveys were carried out in two seagrass habitat types at various locations along the coast of Zanzibar (Tanzania) in the western Indian Ocean. Fish assemblages of seagrass beds in a marine embayment with large areas of mangroves (bay seagrasses) situated 9 km away from coral reefs were compared with those of seagrass beds situated on the continental shelf adjacent to coral reefs (reef seagrasses). No differences in total fish density, total species richness or total juvenile fish density and species richness were observed between the two seagrass habitat types. However, at species level, nine species showed significantly higher densities in bay seagrasses, while eight other species showed significantly higher densities in reef seagrasses. Another four species were exclusively observed in bay seagrasses. Since seagrass complexity could not be related to these differences, it is suggested that the arrangement of seagrass beds in the surrounding landscape (i.e. the arrangement on the continental shelf adjacent to the coral reef, or the arrangement in an embayment with mangroves situated away from reefs) has a possible effect on the occurrence of various reef-associated fish species on seagrass beds. Fish migration from or to the seagrass beds and recruitment and settlement patterns of larvae possibly explain these observations. Juvenile fish densities were similar in the two types of seagrass habitats indicating that seagrass beds adjacent to coral reefs also function as important juvenile habitats, even though they may be subject to higher levels of predation. On the contrary, the density and species richness of adult fish was significantly higher on reef seagrasses than on bay seagrasses, indicating that proximity to the coral reef increases density of adult fish on reef seagrasses, and/or that ontogenetic shifts to the reef may reduce adult density on bay seagrasses.  相似文献   

4.
If the primary goal of artificial reef construction is the creation of additional reef habitat that is comparable to adjacent natural rocky-reef, then performance should be evaluated using simultaneous comparisons with adjacent natural habitats. Using baited remote underwater video (BRUV) fish assemblages on purpose-built estuarine artificial reefs and adjacent natural rocky-reef and sand-flat were assessed 18 months post-deployment in three south-east Australian estuaries. Fish abundance, species richness and diversity were found to be greater on the artificial reefs than on either naturally occurring reef or sand-flat in all estuaries. Comparisons within each estuary identified significant differences in the species composition between the artificial and natural rocky-reefs. The artificial reef assemblage was dominated by sparid species including Acanthopagrus australis and Rhabdosargus sarba. The preference for a range of habitats by theses sparid species is evident by their detection on sand-flat, natural rocky reef and artificial reef habitats. The fish assemblage identified on the artificial reefs remained distinct from the adjacent rocky-reef, comprising a range of species drawn from naturally occurring rocky-reef and sand-flat. In addition, some mid-water schooling species including Trachurus novaezelandiae and Pseudocaranx georgianus were only identified on the artificial reef community; presumably as result of the reef''s isolated location in open-water. We concluded that estuarine artificial reef assemblages are likely to differ significantly from adjacent rocky-reef, potentially as a result of physical factors such as reef isolation, coupled with species specific behavioural traits such as the ability of some species to traverse large sand flats in order to locate reef structure, and feeding preferences. Artificial reefs should not be viewed as direct surrogates for natural reef. The assemblages are likely to remain distinct from naturally occurring habitat comprised of species that reside on a range of adjacent natural habitats.  相似文献   

5.
We tested the hypothesis for several Caribbean reef fish species that there is no difference in nursery function among mangrove, seagrass and shallow reef habitat as measured by: (a) patterns of juvenile and adult density, (b) assemblage composition, and (c) relative predation rates. Results indicated that although some mangrove and seagrass sites showed characteristics of nursery habitats, this pattern was weak. While almost half of our mangrove and seagrass sites appeared to hold higher proportions of juvenile fish (all species pooled) than did reef sites, this pattern was significant in only two cases. In addition, only four of the six most abundant and commercially important species (Haemulon flavolineatum, Haemulon sciurus, Lutjanus apodus, Lutjanus mahogoni, Scarus iserti, and Sparisoma aurofrenatum) showed patterns of higher proportions of juvenile fish in mangrove and/or seagrass habitat(s) relative to coral reefs, and were limited to four of nine sites. Faunal similarity between reef and either mangrove or seagrass habitats was low, suggesting little, if any exchange between them. Finally, although relative risk of predation was lower in mangrove/seagrass than in reef habitats, variance in rates was substantial suggesting that not all mangrove/seagrass habitats function equivalently. Specifically, relative risk varied between morning and afternoon, and between sites of similar habitat, yet varied little, in some cases, between habitats (mangrove/seagrass vs. coral reefs). Consequently, our results caution against generalizations that all mangrove and seagrass habitats have nursery function.  相似文献   

6.
Fish Assemblages in Different Shallow Water Habitats of the Venice Lagoon   总被引:2,自引:0,他引:2  
The small-sized fish assemblages of the Venice Lagoon were investigated and compared among five shallow subtidal habitats (seagrass beds, sparsely vegetated habitats, unvegetated sand bottoms, mudflats and saltmarsh creeks) in the Northern lagoon basin. Sampling was carried out seasonally (Spring, Summer and Autumn of 2002) in 4–7 stations for each habitat type, by means of a fine-mesh, small beach seine. Two-way analysis of variance was applied to assess the differences in species richness, fish diversity, density and standing stock amongst habitats, whereas fish assemblage composition was investigated by using multivariate analyses (MDS, ANOSIM, SIMPER). The analyses indicated that seagrass beds and saltmarsh creeks are relevant shallow habitats in structuring the small-sized fish assemblages of the Venice Lagoon, supporting specialized and recognizable fish assemblages. Those in seagrass beds, in particular, were characterized by higher species richness and standing stock with respect to all the others. The structuring role of these habitats was discussed in terms of both habitat complexity and degree of confinement. In contrast, sandy bottoms, mudflats and sparsely vegetated habitats were identified as “transition” habitats, with highly variable fish assemblages, influenced by the contribution of the adjacent habitats, and acting probably as both ‘buffer zones’ between the other habitats and migration routes for many fish species in the lagoon.  相似文献   

7.
Understanding the interconnectivity of organisms among different habitats is a key requirement for generating effective management plans in coastal ecosystems, particularly when determining component habitat structures in marine protected areas. To elucidate the patterns of habitat use by fishes among coral, seagrass, and mangrove habitats, and between natural and transplanted mangroves, visual censuses were conducted semiannually at two sites in the Philippines during September and March 2010–2012. In total, 265 species and 15,930 individuals were recorded. Species richness and abundance of fishes were significantly higher in coral reefs (234 species, 12,306 individuals) than in seagrass (38 species, 1,198 individuals) and mangrove (47 species, 2,426 individuals) habitats. Similarity tests revealed a highly significant difference among the three habitats. Fishes exhibited two different strategies for habitat use, inhabiting either a single (85.6% of recorded species) or several habitats (14.4%). Some fish that utilized multiple habitats, such as Lutjanus monostigma and Parupeneus barberinus, showed possible ontogenetic habitat shifts from mangroves and/or seagrass habitats to coral reefs. Moreover, over 20% of commercial fish species used multiple habitats, highlighting the importance of including different habitat types within marine protected areas to achieve efficient and effective resource management. Neither species richness nor abundance of fishes significantly differed between natural and transplanted mangroves. In addition, 14 fish species were recorded in a 20-year-old transplanted mangrove area, and over 90% of these species used multiple habitats, further demonstrating the key role of transplanted mangroves as a reef fish habitat in this region.  相似文献   

8.
Environmental cues like sound, magnetic field, oceanic currents, water chemistry or habitat structure are believed to play an important role in the orientation of reef fish towards their settlement habitat. Some species of coral reef fish are known to use seagrass beds and mangroves as juvenile habitats. Once oceanic larvae of these fish have located a coral reef from the open ocean, they still have to find embayments or lagoons harbouring these juvenile habitats. The sensory mechanisms that are used for this are still unknown. In the present study, experiments were conducted to investigate if recruits of the French grunt (Haemulon flavolineatum) respond to habitat differences in water type, as mangrove/seagrass water may differ in biotic and abiotic compounds from coral reef water. Our results show that post-larvae of a reef fish that is highly associated with mangroves and seagrass beds during its juvenile life stage, choose significantly more often for water from mangroves and seagrass beds than for water from the coral reef. These results provide a more detailed insight in the mechanisms that play a role in the detection of these juvenile habitats.  相似文献   

9.
Increased habitat complexity is supposed to promote increased diversity, abundance and biomass. This study tested the effect of the macroalgal cover on temperate reef fishes by mimicking macroalgae on artificial reefs in NW Sicily (Mediterranean Sea). Macroalgal cover affected reef fishes in different ways and independently of intrinsic temporal trends. The fish assemblages of manipulated and control artificial reef units differed in the relative abundances of the associated species, but little in species composition. In line with studies in seagrass habitats, fishes were most abundant in reefs covered by artificial macroalgae. Three species (Boops boops, Serranus scriba and Symphodus ocellatus) exhibited consistently greater abundance on vegetated reef units than on control reef units. The total number of species and the abundance of three particular species (S. scriba, S. ocellatus and Thalassoma pavo) displayed temporal trends which were independent on short and large temporal scales. Only fish total biomass and one species (Spicara flexuosa) displayed strong effects of interaction among the experimental factors. Mechanisms to explain these findings are discussed from observational evidence on habitat use and interactions among multiple species. This study highlights that manipulative experiments involving repeated sampling of fish in artificial habitats appear to be a valid approach to study fish-habitat relationships in fluctuating environments. It is also concluded that macroalgae mimics may serve as a tool for restoring lost marine vegetated habitats when current human-induced conditions prevent the recovery of pristine macroalgal stands.  相似文献   

10.
Ecosystems are linked by the movement of organisms across habitat boundaries and the arrangement of habitat patches can affect species abundance and composition. In tropical seascapes many coral reef fishes settle in adjacent habitats and undergo ontogenetic habitat shifts to coral reefs as they grow. Few studies have attempted to measure at what distances from nursery habitats these fish migrations (connectivity) cease to exist and how the abundance, biomass and proportion of nursery species change on coral reefs along distance gradients away from nursery areas. The present study examines seascape spatial arrangement, including distances between habitats, and its consequences on connectivity within a tropical seascape in Mozambique using a seascape ecology approach. Fish and habitat surveys were undertaken in 2016/2017 and a thematic habitat map was created in ArcGIS, where cover and distances between habitat patches were calculated. Distance to mangroves and seagrasses were significant predictors for abundance and biomass of most nursery species. The proportions of nursery species were highest in the south of the archipelago, where mangroves were present and decreased with distance to nurseries (mangroves and seagrasses). Some nursery species were absent on reef sites farthest from nursery habitats, at 80 km from mangroves and at 12 km from seagrass habitats. The proportion of nursery/non-nursery snapper and parrotfish species, as well as abundance and biomass of seagrass nursery species abruptly declined at 8 km from seagrass habitats, indicating a threshold distance at which migrations may cease. Additionally, reefs isolated by large stretches of sand and deep water had very low abundances of several nursery species despite being within moderate distances from nursery habitats. This highlights the importance of considering the matrix (sand and deep water) as barriers for fish migration.  相似文献   

11.
Mangroves and seagrass beds have long been perceived as important nurseries for many fish species. While there is growing evidence from the Western Atlantic that mangrove habitats are intricately connected to coral reefs through ontogenetic fish migrations, there is an ongoing debate of the value of these coastal ecosystems in the Indo-Pacific. The present study used natural tags, viz. otolith stable carbon and oxygen isotopes, to investigate for the first time the degree to which multiple tropical juvenile habitats subsidize coral reef fish populations in the Indo Pacific (Tanzania). Otoliths of three reef fish species (Lethrinus harak, L. lentjan and Lutjanus fulviflamma) were collected in mangrove, seagrass and coral reef habitats and analyzed for stable isotope ratios in the juvenile and adult otolith zones. δ13C signatures were significantly depleted in the juvenile compared to the adult zones, indicative of different habitat use through ontogeny. Maximum likelihood analysis identified that 82% of adult reef L. harak had resided in either mangrove (29%) or seagrass (53%) or reef (18%) habitats as juveniles. Of adult L. fulviflamma caught from offshore reefs, 99% had passed through mangroves habitats as juveniles. In contrast, L. lentjan adults originated predominantly from coral reefs (65–72%) as opposed to inshore vegetated habitats (28–35%). This study presents conclusive evidence for a nursery role of Indo-Pacific mangrove habitats for reef fish populations. It shows that intertidal habitats that are only temporarily available can form an important juvenile habitat for some species, and that reef fish populations are often replenished by multiple coastal habitats. Maintaining connectivity between inshore vegetated habitats and coral reefs, and conserving habitat mosaics rather than single nursery habitats, is a major priority for the sustainability of various Indo Pacific fish populations.  相似文献   

12.
As the number of marine protected areas (MPAs) increases globally, so does the need to assess if MPAs are meeting their management goals. Integral to this assessment is usually a long-term biological monitoring program, which can be difficult to develop for large and remote areas that have little available fine-scale habitat and biological data. This is the situation for many MPAs within the newly declared Australian Commonwealth Marine Reserve (CMR) network which covers approximately 3.1 million km2 of continental shelf, slope, and abyssal habitat, much of which is remote and difficult to access. A detailed inventory of the species, types of assemblages present and their spatial distribution within individual MPAs is required prior to developing monitoring programs to measure the impact of management strategies. Here we use a spatially-balanced survey design and non-extractive baited video observations to quantitatively document the fish assemblages within the continental shelf area (a multiple use zone, IUCN VI) of the Flinders Marine Reserve, within the Southeast marine region. We identified distinct demersal fish assemblages, quantified assemblage relationships with environmental gradients (primarily depth and habitat type), and described their spatial distribution across a variety of reef and sediment habitats. Baited videos recorded a range of species from multiple trophic levels, including species of commercial and recreational interest. The majority of species, whilst found commonly along the southern or south-eastern coasts of Australia, are endemic to Australia, highlighting the global significance of this region. Species richness was greater on habitats containing some reef and declined with increasing depth. The trophic breath of species in assemblages was also greater in shallow waters. We discuss the utility of our approach for establishing inventories when little prior knowledge is available and how such an approach may inform future monitoring efforts within the CMR network.  相似文献   

13.
Few studies have validated the use of artificial seagrass to study processes structuring faunal assemblages by comparison with natural seagrass. One metric (fish recruitment) for evaluating the use of artificial seagrass was used in the present study. Settlement and recruitment of juvenile fish was estimated in natural, Zostera capricorni Aschers, and artificial seagrass in Botany Bay, NSW, over 6 consecutive days. Tarwhine, Rhabdosargus sarba, dominated the catch from both habitats, and there was no significant difference in abundance of recruits among the habitats. This was at least partly caused by large spatial and temporal variation in abundance. Daily abundances of R. sarba recruits suggested movement between seagrass beds, but could not be confirmed without tagging individual fish. Rhabdosargus sarba settlers were less abundant than recruits, but were also patchily distributed amongst natural and artificial seagrass beds. Most other species were also found in similar abundance in the two habitats, except stripey, Microcanthus strigatus, which was more abundant in artificial seagrass. Overall, fish assemblages in natural and artificial seagrass were similar. Artificial seagrass may therefore be useful for monitoring settlement and recruitment of juvenile fishes to disturbed habitats, to predict the success of habitat remediation. However, if artificial seagrass is used to model processes occurring in natural seagrass, it is necessary to consider species-specific responses to the artificial habitat.  相似文献   

14.
马鞍列岛多种生境中鱼类群聚的昼夜变化   总被引:4,自引:0,他引:4  
汪振华  王凯  章守宇 《生态学报》2011,31(22):6912-6925
为了解岛礁水域鱼类群聚的昼夜变化特征,以便更全面地设计采样方法和掌握采样的时间尺度,于2009年9月对马鞍列岛7种生境进行了共计24网次的刺网昼夜采样,结合排序和聚类方法,从种类组成、相对生物量和丰度、种类丰富度、多样性和相似性等方面对研究海域鱼类群聚特征的昼夜变化作了探讨.在采获的55种鱼类中,昼夜出现的分别为41和46种,数量差别不大,但其昼夜组成却随栖息水层的变化而不同,底层鱼类更趋向于夜间在硬相生境集群活动;近底层鱼类的昼夜集群随生境变化而变化,在同一生境中既有偏向白天也有趋向夜间的;中上层鱼类更多地出现在白天的人工生境(AH).AH白天的丰度渔获率显著大于晚上,而天然生境(NH)昼夜差别不大;生物量渔获率无论NH还是AH皆无显著昼夜差异.具体到种类,仅有小黄鱼Larimichthys polyactis和赤鼻棱鳗Thryssa kammalensis等少数种类的数量在AH有显著的昼夜差别,其他多数种类虽然昼夜的出现率大多有别,但渔获率昼夜差异皆不明显.多样性差异更多的表现在不同生境之间,而同一生境的昼夜差异往往不甚显著.各个生境中鱼类的昼夜种类交替现象非常明显,形成了以褐菖(鲐)Sebastiscus marmoratus和鳗鲇Plotosus anguillaris为代表的夜间优势类群为主的硬相生境群聚格局、以丝背细鳞鲀Stephanolepis cirrhifer和细刺鱼Microcanthus strigatus为代表的白天优势类群为主的硬相生境群聚格局以及缺乏底层优势类群、以石首鱼科鱼类为代表的近底层鱼类为绝对优势类群的软相生境群聚格局.因此,采用被动性渔具在近岸典型生境进行鱼类等相关生物调查时,应使采样时间覆盖昼夜两个时段,且至少保证24h.  相似文献   

15.
The distribution and abundance of reef fishes in relation to habitat structure were studied within Bar Reef Marine Sanctuary (BRMS) and on an adjacent reef, disturbed by destructive fishing techniques, in north-western Sri Lanka, by visually censusing 135 species groups using fifty metre belt-transects. Two types of continental shelf patch-reefs are found in the study area: coral reefs and sandstone reefs, which are divided into distinct habitats, four for the coral reef (shallow reef flat, shallow patch reef, deep reef flat and Porites domes) and two for the sandstone reef (structured sandstone-reef and flat sandstone-reef). Fish assemblages varied in structure between reef types and among habitats within reef types. Functional aspects of habitat structure and composition, such as available food and shelter, seemed to be important factors influencing distribution patterns. The strongest separation in the organisation of fish assemblages in BRMS was between reef types: 19% of all species were confined to the coral-reef patches while 22% were restricted to the sandstone reef patches and 59% were represented on both reef types. In terms of distribution among habitats, 21% of all species were restricted to one habitat while only 1.5% were present in all. The highest density of fish was in the coral reef habitats while highest species diversity was found in the most structurally complex habitat: the structured sandstone-reef. This habitat also had the highest proportion of species with restricted distribution. Planktivores were the most abundant trophic group in BRMS, and the species composition of the group varied among habitats. The comparison of the disturbed reef with BRMS suggested that habitat alteration caused by destructive fishing methods has strongly influenced the fish community. Within the fished area the structure of the fish assemblages was more heterogeneous, fish abundance was lower by an order of magnitude and species numbers were lower than in BRMS.  相似文献   

16.
Shallow-water vegetated estuarine habitats, notably seagrass, mangrove and saltmarsh, are known to be important habitats for many species of small or juvenile fish in temperate Australia. However, the movement of fish between these habitats is poorly understood, and yet critical to the management of the estuarine fisheries resource. We installed a series of buoyant pop nets in adjacent stands of seagrass, mangrove and saltmarsh in order to determine how relative abundance of fishes varied through lunar cycles. Nets were released in all habitats at the peak of the monthly spring tide for 12 months, and in the seagrass habitat at the peak of the neap tide also. The assemblage of fish in each habitat differed during the spring tides. The seagrass assemblage differed between spring and neap tide, with the neap tide assemblage showing greater abundances of fish, particularly those species which visited the adjacent habitats when inundated during spring tides. The result supports the hypothesis that fish move from the seagrass to the adjacent mangrove and saltmarsh during spring tides, taking advantage of high abundances of zooplankton, and use seagrass as a refuge during lower tides. The restoration and preservation of mangrove and saltmarsh utility as fish habitat may in some situations be linked to the proximity of available seagrass.  相似文献   

17.
Anthropogenic impacts at isolated and inaccessible reefs are often minimal, offering rare opportunities to observe fish assemblages in a relatively undisturbed state. The remote Rowley Shoals are regarded as one of the healthiest reef systems in the Indian Ocean with demonstrated resilience to natural disturbance, no permanent human population nearby, low visitation rates, and large protected areas where fishing prohibitions are enforced. We used baited remote underwater video systems (BRUVS) to quantify fish assemblages and the relative abundance of regionally fished species within the lagoon, on the slope and in the mesophotic habitat at the Rowley Shoals at three times spanning 14 years and compared abundances of regionally fished species and the length distributions of predatory species to other isolated reefs in the northeast Indian Ocean. Fish assemblage composition and the relative abundance of regionally fished species were remarkably stable through time. We recorded high abundances of regionally fished species relative to other isolated reefs, including globally threatened humphead Maori wrasse (Cheilinus undulatus) and bumphead parrotfish (Bolbometopon muricatum). Length distributions of fish differed among habitats at the Rowley Shoals, suggesting differences in ontogenetic shifts among species. The Cocos (Keeling) Islands typically had larger‐bodied predatory species than at the Rowley Shoals. Differences in geomorphology, lagoonal habitats, and fishing history likely contribute to the differences among remote reefs. Rowley Shoals is a rare example of a reef system demonstrating ecological stability in reef fish assemblages during a time of unprecedented degradation of coral reefs.  相似文献   

18.
Fish assemblage patterns in the littoral zone of a European reservoir   总被引:1,自引:0,他引:1  
1. Although reservoirs are common aquatic habitats in Europe, there is little quantitative information on the spatial organisation of fish assemblages inhabiting their littoral zones. Consequently, we characterised fish assemblage structure in the littoral zone of a reservoir (Lake Pareloup) in SW France during late spring, summer and early autumn (the growing season).
2. We measured the relative abundance of fish weekly, from mid-May to mid-October, using point abundance sampling by electrofishing. We identified temporal patterns in assemblage structure using hierarchical cluster analysis, and then characterised the spatial distribution of 17 defined ecospecies using a Kohonen self-organising map (SOM, an unsupervised Artificial Neural Network).
3. Our analyses revealed three distinct faunal structures within the littoral zone. From mid-May to mid-July, adults and young-of-the-year (0+) occupied separate habitats, with most 0+ fish in vegetated habitats and adults in open water. From mid-July to late August, some 0+ co-occurred with adults, but most 0+ fishes remained in vegetated areas. Finally, from late August to mid-October, most fish (both 0+ and adults) left the vegetation for unvegetated littoral habitats, the exception being fish species known to be dependent on macrophytes.
4. Contrary to patterns for adult fishes, the 0+ fish assemblage was dynamic. These dynamics were driven by ontogenetic species-specific habitat changes. Consequently, there was little evidence of stable assemblages or strong assemblage–habitat relationships that would be expected of an 'interactive' assemblage. It is likely that the patterns observed are a result of species-specific response to habitat availability in the lake.  相似文献   

19.
Seascape-scale trophic links for fish on inshore coral reefs   总被引:2,自引:0,他引:2  
It is increasingly accepted that coastal habitats such as inshore coral reefs do not function in isolation but rather as part of a larger habitat network. In the Caribbean, trophic subsidies from habitats adjacent to coral reefs support the diet of reef fishes, but it is not known whether similar trophic links occur on reefs in the Indo-Pacific. Here, we test whether reef fishes in inshore coral, mangrove, and seagrass habitats are supported by trophic links. We used carbon stable isotopes and mathematical mixing models to determine the minimum proportion of resources from mangrove or seagrass habitats in the diet of five fish species from coral reefs at varying distances (0–2,200 m) from these habitats in Moreton Bay, Queensland, eastern Australia. Of the fish species that are more abundant on reefs near to mangroves, Lutjanus russelli and Acanthopagrus australis showed no minimum use of diet sources from mangrove habitat. Siganus fuscescens utilized a minimum of 25–44 % mangrove sources and this contribution increased with the proximity of reefs to mangroves (R 2 = 0.91). Seagrass or reef flat sources contributed a minimum of 14–78 % to the diet of Diagramma labiosum, a species found in higher abundance on reefs near seagrass beds, but variation in diet among reefs was unrelated to seascape structure. Seagrass or reef flat sources also contributed a minimum of 8–55 % to a fish species found only on reefs (Pseudolabrus guentheri), indicating that detrital subsidies from these habitats may subsidize fish diet on reefs. These results suggest that carbon sources from multiple habitats contribute to the functioning of inshore coral reef ecosystems and that trophic connectivity between reefs and mangroves may enhance production of a functionally important herbivore.  相似文献   

20.
Identification of critical life-stage habitats is key to successful conservation efforts. Juveniles of some species show great flexibility in habitat use while other species rely heavily on a restricted number of juvenile habitats for protection and food. Considering the rapid degradation of coastal marine habitats worldwide, it is important to evaluate which species are more susceptible to loss of juvenile nursery habitats and how this differs across large biogeographic regions. Here we used a meta-analysis approach to investigate habitat use by juvenile reef fish species in tropical coastal ecosystems across the globe. Densities of juvenile fish species were compared among mangrove, seagrass and coral reef habitats. In the Caribbean, the majority of species showed significantly higher juvenile densities in mangroves as compared to seagrass beds and coral reefs, while for the Indo-Pacific region seagrass beds harbored the highest overall densities. Further analysis indicated that differences in tidal amplitude, irrespective of biogeographic region, appeared to be the major driver for this phenomenon. In addition, juvenile reef fish use of mangroves increased with increasing water salinity. In the Caribbean, species of specific families (e.g. Lutjanidae, Haemulidae) showed a higher reliance on mangroves or seagrass beds as juvenile habitats than other species, whereas in the Indo-Pacific family-specific trends of juvenile habitat utilization were less apparent. The findings of this study highlight the importance of incorporating region-specific tidal inundation regimes into marine spatial conservation planning and ecosystem based management. Furthermore, the significant role of water salinity and tidal access as drivers of mangrove fish habitat use implies that changes in seawater level and rainfall due to climate change may have important effects on how juvenile reef fish use nearshore seascapes in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号