首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultrasound-mediated DNA transfer for bacteria   总被引:2,自引:0,他引:2  
In environmental microbiology, the most commonly used methods of bacterial DNA transfer are conjugation and electroporation. However, conjugation requires physical contact and cell–pilus–cell interactions; electroporation requires low-ionic strength medium and high voltage. These limitations have hampered broad applications of bacterial DNA delivery. We have employed a standard low frequency 40 kHz ultrasound bath to successfully transfer plasmid pBBR1MCS2 into Pseudomonas putida UWC1, Escherichia coli DH5α and Pseudomonas fluorescens SBW25 with high efficiency. Under optimal conditions: ultrasound exposure time of 10 s, 50 mM CaCl2, temperature of 22°C, plasmid concentration of 0.8 ng/µl, P. putida UWC1 cell concentration of 2.5 × 109 CFU (colony forming unit)/ml and reaction volume of 500 µl, the efficiency of ultrasound DNA delivery (UDD) was 9.8 ± 2.3 × 10−6 transformants per cell, which was nine times more efficient than conjugation, and even four times greater than electroporation. We have also transferred pBBR1MCS2 into E. coli DH5α and P. fluorescens SBW25 with efficiencies of 1.16 ± 0.13 × 10−6 and 4.33 ± 0.78 × 10−6 transformants per cell, respectively. Low frequency UDD can be readily scaled up, allowing for the application of UDD not only in laboratory conditions but also on an industrial scale.  相似文献   

2.
Agrobacterium-mediated transformation in chickpea was developed using strain LBA4404 carrying nptII, uidA and cryIAc genes and transformants selected on Murashige and Skoog’s basal medium supplemented with benzyladenine, kinetin and kanamycin. Integration of transgenes was demonstrated using polymerase chain reaction and Southern blot hybridization of T0 plants. The expression of CryIAc delta endotoxin and GUS enzyme was shown by enzyme linked immunosorbent assay and histochemical assay respectively. The transgenic plants (T0) showed more tolerance to infection by Helicoverpa armigera compared to control plants. Various factors such as explant source, cultivar type, different preculture treatment period of explants, co-cultivation period, acetosyringone supplementation, Agrobacterium harboring different plasmids, vacuum infiltration and sonication treatment were tested to study the influence on transformation frequency. The results indicated that use of epicotyl as explant, cultivar ICCC37, Agrobacterium harboring plasmid pHS102 as vector, preculture of explant for 48 h, co-cultivation period of 2 days at 25°C and vacuum infiltration for 15 min produced the best transformation results. Sonication treatment of explants with Agrobacteria for 80 s was found to increase the frequency of transformation.  相似文献   

3.
Present report is the first direct evidence of azadirachtin production in androgenic haploid cultures of Azadirachta indica, a woody medicinal tree. Anther cultures at early-late-uninucleate stage of microspores were established on MS medium with BAP (5 µM), 2,4-D (1 µM) and NAA (1 µM) containing 12% sucrose. The calli, induced, were further multiplied on 2,4-D and Kinetin media. Shoots, differentiated on BAP (2.2 µM) + NAA (0.05 µM) medium, were elongated on MS + BAP (0.5 µM) and multiplied on MS + BAP (1 µM) + CH (250 mg/l). Thereafter, the shoots were rooted on ¼ MS + IBA (0.5 µM). Cytological analysis of the calli and regenerants have confirmed their haploid status with the chromosome number as 2n = x = 12. The haploid cell lines and leaves from in vitro grown plantlets were analyzed for azadirachtin by RP-HPLC and mass spectroscopy. Maximum azadirachtin (728.41 µg/g DW) was detected in calli supporting best shoot proliferation while least (49 µg/g DW) was observed in an undifferentiated line from maintenance medium. This study has brought us a step closer to develop genetically pure lines that could serve as new and attractive alternative ways of homogeneous controlled production of high value compounds, round the year, independent of geographical and climatic barrier.Key words: anther culture, Azadirachta indica, azadirachtin, haploid plants, RP-HPLC  相似文献   

4.
In vivo room temperature chlorophyll a fluorescence coupled with CO2 and O2 exchange was measured to determine photosynthetic limitation(s) for spring and winter wheat (Triticum aestivum L.) grown at cold-hardening temperatures (5°C/5°C, day/night). Plants of comparable physiological stage, but grown at nonhardening temperatures (20°C/16°C, day/night) were used in comparison. Winter wheat cultivars grown at 5°C had light-saturated rates of CO2 exchange and apparent photon yields for CO2 exchange and O2 evolution that were equal to or greater than those of winter cultivars grown at 20°C. In contrast, spring wheat cultivars grown at 5°C showed 35% lower apparent photon yields for CO2 exchange and 25% lower light-saturated rates of CO2 exchange compared to 20°C grown controls. The lower CO2 exchange capacity is not associated with a lower efficiency of photosystem II activity measured as either the apparent photon yield for O2 evolution, the ratio of variable to maximal fluorescence, or the level of reduced primary quinone electron acceptor maintained at steady-state photosynthesis, and is most likely associated with carbon metabolism. The lower CO2 exchange capacity of the spring cultivars developed following long-term exposure to low temperature and did not occur following over-night exposure of nonhardened plants to 5°C.  相似文献   

5.
An electroporation procedure for the plasmid-mediated genetic transformation of intact cells of Streptococcus cremoris and Streptococcus lactis was performed. Ten different strains were transformed. The method was simple and rapid and yielded transformant colonies in 14 to 24 h. The method was optimized for S. lactis LM0230, and transformation frequencies of between 1 × 104 and 5 × 105 transformants per μg of purified plasmid (pMU1328) were achieved routinely. The optimized procedure involved lysozyme treatment of cells. Transformation of LM0230 occurred at comparable frequencies with pLS1 (4.4 kilobase pair [kbp]), pMU1328 (7.4 kbp), and pAMβ1 (26.5 kbp). Plasmid DNA isolated from transformants had not undergone detectable deletions or rearrangements. Transformation was possible with plasmid DNA which was religated after restriction endonuclease digestion. Phage DNA-dependent transfection of S. lactis LM0230 and S. lactis C6 was also achieved.  相似文献   

6.
Isolated wheat microspore culture   总被引:10,自引:0,他引:10  
The use of doubled haploid plants in a wheat breeding program requires an efficient haploid production system. While the techniques for producing doubled haploids from anther culture are well established, those for isolated microspores are complicated and inefficient. Four methods of isolating microspores from anthers (blending, stirring, macerating, and floating) were compared. Isolated microspores were washed and cultured in liquid medium. The effects of pre-isolation mannitol conditioning, cell density, culture dilution, and sucrose centrifugation on microspore viability were evaluated. Isolation by blending gave the highest initial microspore viability (75%). Mannitol conditioning and purification by sucrose centrifugation had a detrimental effect on initial viability. An initial microspore density of 2 × 105 microspores per ml was necessary for continued microspore viability. One hundred and nine haploid or spontancously doubled haploid plants were regenerated from microspores isolated without mannitol conditioning using the blending method. Based on this research, blender isolation with an initial density of 2 × 105 microspores per ml is recommended for isolated microspore culture.Abbreviations LSmean least square mean - MES 2-N-morpholinoethane sulfonic acid - 2,4-d 2,4-dichlorophenoxyacetic acid - NAA -naphtaleneacetic acid  相似文献   

7.
Burke JJ 《Plant physiology》1990,93(2):652-656
The relationship between the thermal dependence of the reappearance of chlorophyll variable fluorescence following illumination and temperature dependence of the apparent Michaelis constant (Km) of NADH hydroxypyruvate reductase for NADH was investigated in cool and warm season plant species. Brancker SF-20 and SF-30 fluorometers were used to evaluate induced fluorescence transients from detached leaves of wheat (Triticum aestivum L. cv TAM-101), cotton (Gossypium hirsutum L. cv Paymaster 145), tomato (Lycopersicon esculentum cv Del Oro), bell pepper (Capsicum annuum L. cv California Wonder), and petunia (Petunia hybrida cv. Red Sail). Following an illumination period at 25°C, the reappearance of variable fluorescence during a dark incubation was determined at 5°C intervals from 15°C to 45°C. Variable fluorescence recovery was normally distributed with the maximum recovery observed at 20°C in wheat, 30°C in cotton, 20°C to 25°C in tomato, 30 to 35°C in bell pepper and 25°C in petunia. Comparison of the thermal response of fluorescence recovery with the temperature sensitivity of the apparent Km of hydroxypyruvate reductase for NADH showed that the range of temperatures providing fluorescence recovery corresponded with those temperatures providing the minimum apparent Km values (viz. the thermal kinetic window).  相似文献   

8.
An efficient method for genetic transformation of lactococci by electroporation is presented. Highly competent lactococci for electrotransformation were obtained by growing cells in media containing high concentrations of glycine and 0.5 M sucrose as the osmotic stabilizers. These cells could be stored at −85°C without loss of competence. With Lactococcus lactis subsp. cremoris BC101, a transformation frequency of 5.7 × 107 transformants per μg of pIL253 DNA was obtained, which represents 5% of the surviving cells. All the lactococcal strains tested could be transformed by the present method.  相似文献   

9.
A. Upshall  I. D. Mortimore 《Genetics》1984,108(1):107-121
A method is described for isolating mutants potentially defective in loci involved in mitotic chromosome segregation. Conditional lethal, heat-sensitive (42°) mutants were assayed at a subrestrictive temperature of 37° for an inflated production of colonies displaying phenotypes and behavior patterns of whole chromosome aneuploids. Of 14 mutants, three showed specificity for one disomic phenotype, whereas 11 generated colonies mosaic for different aneuploid phenotypes. This latter group is designated hfa ( high frequency of aneuploid). For ten of the 11 mutants temperature sensitivity and aneuploid production cosegregated, indicating a single mutation in each. These mutations were recessive and nonallelic. Analysis was concentrated on the hfaB3 mutation which is mapped to chromosome VI tightly linked to the methB and tsB loci. The disruptive influence of hfaB3 on mitosis at 37° was shown by (1) ploidy and whole chromosome-type segregation of markers in the breakdown sectors of phenotypically aneuploid colonies obtained from multiply marked homozygous hfaB3 disploids; (2) a high frequency of haploid and nondisjunctional diploid segregants among spontaneous yellow-spored parasexual recombinants taken from green-spored homozygous hfaB3 diploids. The mutation had no effect on meiotic chromosome segregation at 37°. The single interphase nucleus in germlings at 42°, coupled with changes in the mitotic index in temperature exchange experiments, showed hfaB3 to arrest the cell cycle in interphase at restrictive temperature. A conclusion drawn is that the hfaB gene product is required both for entry into mitosis and for normal chromosome segregation in dividing nuclei.  相似文献   

10.
The proposition is examined that measurements of chlorophyll fluorescence in vivo can be used to monitor cellular injury caused by environmental stresses rapidly and nondestructively and to determine the relative stress tolerances of different species. Stress responses of leaf tissue were measured by FR, the maximal rate of the induced rise in chlorophyll fluorescence. The time taken for FR to decrease by 50% in leaves at 0°C was used as a measure of chilling tolerance. This value was 4.3 hours for chilling-sensitive cucumber. In contrast, FR decreased very slowly in cucumber leaves at 10°C or in chilling-tolerant cabbage leaves at 0°C. Long-term changes in FR of barley, wheat, and rye leaves kept at 0°C were different in frost-hardened and unhardened material and in the latter appeared to be correlated to plant frost tolerance. To simulate damage caused by a thick ice cover, wheat leaves were placed at 0°C under N2. Kharkov wheat, a variety tolerant of ice encapsulation, showed a slower decrease in FR than Gatcher, a spring wheat. Relative heat tolerance was also indicated by the decrease in FR in heated leaves while changes in vivo resulting from photoinhibition, ultraviolet radiation, and photobleaching can also be measured.  相似文献   

11.
Transgenic plants of an Indian isolate of Lemna minor have been developed for the first time using Agrobacterium tumefaciens and hard nodular cell masses ‘nodular calli’ developed on the BAP - pretreated daughter frond explants in B5 medium containing sucrose (1.0 %) with 2,4-D (5.0 μM) and 2-iP (50.0 μM) or 2,4-D (50.0 μM) and TDZ (5.0 μM) under light conditions. These calli were co-cultured with A. tumefaciens strain EHA105 harboring a binary vector that contained genes for β-glucuronidase with intron and neomycin phosphortransferase. Transformed cells selected on kanamycin selection medium were regenerated into fronds whose transgenic nature was confirmed by histochemical assay for GUS activity, PCR analysis and Southern hybridization. The frequency of transformation obtained was 3.8 % and a period of 11–13 weeks was required from initiation of cultures from explants to fully grown transgenic fronds. The pretreatment of daughter fronds with BAP, use of non-ionic surfactant, presence of acetosyringone in co-cultivation medium, co-culture duration of 3 d and 16 h photoperiod during culture were found crucial for callus induction, frond regeneration and transformation of L. minor. This transformation system can be used for the production of pharmaceutically important protein and in bioremediation.  相似文献   

12.
Trione EJ 《Plant physiology》1966,41(2):277-281
A spring wheat (Triticum aestivum) and an obligate winter wheat (Triticum compactum) variety were each grown for 5 weeks in controlled environments at 2° and 25°. The threshold for flower induction in the winter wheat was 4 to 5 weeks at 2°, whereas the spring wheat had no low temperature requirement for flowering. Changes in the levels of carbohydrate and nitrogen fractions in the wheat leaves were determined during their growth in the cold and warm environments. There was an enhanced accumulation of the 5 carbohydrate fractions in both wheat varieties grown at 2° compared to 25°. Highly significant differences in the levels of sucrose, oligosaccharides, and starch were found between the spring and winter varieties grown at 2°. The winter wheat seedlings grown at 2° accumulated much more of these carbohydrates than the corresponding spring wheat. The carbohydrate patterns in both varieties grown at 25° were nearly identical except for the final 2 weeks of growth.

The level of nitrogenous substances in the tissues grown at 2° was much higher than in the corresponding tissues grown at 25°. The only significant difference between the spring and winter varieties was in the soluble protein fraction. This fraction rose nearly 3-fold in the winter variety grown at 2°, whereas it remained nearly constant in the similarly grown spring wheat. Most of the changing chemical patterns observed in relation to the vernalization treatment appear to be metabolic alterations associated with low temperature rather than alterations directly related with the vernalization response.

  相似文献   

13.
The response of maize (Zea mays L.) protoplasts to high temperature stress was investigated. After isolation and electroporation, protoplasts were preincubated for 12 hours at 26°C then incubated for 6 hours at elevated temperatures. The pattern of polypeptides synthesized by these protoplasts during the last hour was monitored by in vivo labeling with 35S-methionine. Incubation at 40° and 42°C resulted in the synthesis of polypeptides not detectable at 26°C. Introduction of a chimeric maize heat shock protein 70 promoter-chloramphenicol acetyltransferase coding region gene into protoplasts via electroporation resulted in the temperature-dependent induction of chloramphenicol acetyltransferase activity with maximal activity at 40°C. In the same protoplasts, a second chimeric gene, in which the firefly luciferase coding region was under the control of the 35S promoter from cauliflower mosaic virus, did not show an increase in expression after incubation at higher temperatures. Maize protoplasts provide a system to study molecular responses to high temperature stress.  相似文献   

14.
Fusion proteins with an alpha-hemolysin (HlyA) C-terminal signal sequence are known to be secreted by the HlyB-HlyD-TolC translocator in Escherichia coli. We aimed to establish an efficient Hly secretory expression system by random mutagenesis of hlyB and hlyD. The fusion protein of subtilisin E and the HlyA signal sequence (HlyA218) was used as a marker protein for evaluating secretion efficiency. Through screening of more than 1.5 × 104 E. coli JM109 transformants, whose hlyB and hlyD genes had been mutagenized by error-prone PCR, we succeeded in isolating two mutants that had 27- and 15-fold-higher levels of subtilisin E secretion activity than the wild type did at 23°C. These mutants also exhibited increased activity levels for secretion of a single-chain antibody-HlyA218 fusion protein at 23 and 30°C but unexpectedly not at 37°C, suggesting that this improvement seems to be dependent on low temperature. One mutant (AE104) was found to have seven point mutations in both HlyB and HlyD, and an L448F substitution in HlyB was responsible for the improved secretion activity. Another mutant (AE129) underwent a single amino acid substitution (G654S) in HlyB. Secretion of c-Myc-HlyA218 was detected only in the L448F mutant (AE104F) at 23°C, whereas no secretion was observed in the wild type at any temperature. Furthermore, for the PTEN-HlyA218 fusion protein, AE104F showed a 10-fold-higher level of secretion activity than the wild type did at 37°C. This result indicates that the improved secretion activity of AE104F is not always dependent on low temperature.  相似文献   

15.

Background

To make a radiobiological comparison, for high risk prostate cancer (T3a, PSA > 20 ng/ml or Gleason > 7) of two radiotherapy treatment techniques. One technique consists of a treatment in three phases of the pelvic nodes, vesicles and prostate using a conventional fractionation scheme of 2 Gy/fraction (SIMRT). The other technique consists of a treatment in two phases that gives simultaneously different dose levels in each phase, 2 Gy/fraction, 2.25 Gy/fraction and 2.5 Gy/fraction to the pelvic nodes, vesicles and prostate, respectively (SIBIMRT).

Materials and methods

The equivalent dose at fractionation of 2 Gy (EQD2), calculated using the linear quadratic model with α/βprostate = 1.5 Gy, was the same for both treatment strategies. For comparison the parameters employed were D95, mean dose and Tumour Control Probabilities for prostate PTV and D15, D25, D35, D50, mean dose and Normal Tissue Complication Probabilities for the rectum and bladder, with physical doses converted to EQD2. Parameters were obtained for α/βprostate = 1.5, 3 and 10 Gy and for α/βoar = 1, 2, 3, 4, 6 and 8.

Results

For prostate PTV, both treatment strategies are equivalent for α/βprostate = 1.5 Gy but for higher α/βprostate, EQD2 and TCP, decrease for the SIBIMRT technique. For the rectum and bladder when α/βoar ≤ 2 Gy, EQD2 and NTCP are lower for the SIMRT technique or equal in both techniques. For α/βoar ≥ 2–3 Gy, EQD2 and NTCP increase for the SIMRT treatment.

Conclusions

A comparison between two radiotherapy techniques is presented. The SIBIMRT technique reduces EQD2 and NTCP for α/βoar from 2 to 8 Gy.  相似文献   

16.
Lo KH  Pauls KP 《Plant physiology》1992,99(2):468-472
The influence of donor plant growth conditions on microspore embryogenesis in rapeseed (Brassica napus) was studied for plants grown at 23/18°C (16/8 hours) under continuous light, 23/18°C (16/8 hours) with a light/dark (16/8 hours) cycle, 15/12°C (16/8 hours) under continuous light and 15/12°C (16/8 hours) with a light/dark (16/8 hours) cycle. Significantly higher embryo yields were obtained from microspore cultures initiated from donor plants grown at 15/12°C instead of 23/18°C. Flow cytometric measurements of the microspores isolated from 2.5- to 5.0-millimeter buds showed that the microspores isolated from low-temperature-grown plants had significantly lower log 90-degree light scatter to forward angle light scatter and log 90-degree light scatter to time of flight ratios than those isolated from high-temperature-grown plants, suggesting that the former are more translucent than the latter. Thus, the effect of donor plant growth temperature on microspore embryogenesis may be mediated by a change in the physiology of the microspore cell, which results in the reduction of its cytoplasmic granularity and/or exine density.  相似文献   

17.
In previous papers of this series the temperature-dependent Raman spectra of poly(dA)·poly(dT) and poly(dA–dT)·poly(dA–dT) were used to characterize structurally the melting and premelting transitions in DNAs containing consecutive A·T and alternating A·T/T·A base pairs. Here, we describe procedures for obtaining thermodynamic parameters from the Raman data. The method exploits base-specific and backbone-specific Raman markers to determine separate thermodynamic contributions of A, T and deoxyribosyl-phosphate moieties to premelting and melting transitions. Key findings include the following: (i) Both poly(dA)·poly(dT) and poly(dA–dT)· poly(dA–dT) exhibit robust premelting transitions, due predominantly to backbone conformational changes. (ii) The significant van’t Hoff premelting enthalpies of poly(dA)·poly(dT) [ΔHvHpm = 18.0 ± 1.6 kcal·mol–1 (kilocalories per mole cooperative unit)] and poly(dA–dT)·poly(dA–dT) (ΔHvHpm = 13.4 ± 2.5 kcal·mol–1) differ by an amount (~4.6 kcal·mol–1) estimated as the contribution from three-centered inter-base hydrogen bonding in (dA)n·(dT)n tracts. (iii) The overall stacking free energy of poly(dA)· poly(dT) [–6.88 kcal·molbp–1 (kilocalories per mole base pair)] is greater than that of poly(dA–dT)· poly(dA–dT) (–6.31 kcal·molbp–1). (iv) The difference between stacking free energies of A and T is significant in poly(dA)·poly(dT) (ΔΔGst = 0.8 ± 0.3 kcal· molbp–1), but marginal in poly(dA–dT)·poly(dA–dT) (ΔΔGst = 0.3 ± 0.3 kcal·molbp–1). (v) In poly(dA)· poly(dT), the van’t Hoff parameters for melting of A (ΔHvHA = 407 ± 23 kcal·mol–1, ΔSvHA = 1166 ± 67 cal·°K–1·mol–1, ΔGvH(25°C)A = 60.0 ± 3.2 kcal·mol–1) are clearly distinguished from those of T (ΔHvHT = 185 ± 38 kcal·mol–1, ΔSvHT = 516 ± 109 cal·°K–1·mol–1, ΔGvH(25°C)T = 27.1 ± 5.5 kcal·mol–1). (vi) Similar relative differences are observed in poly(dA–dT)· poly(dA–dT) (ΔHvHA = 333 ± 54 kcal·mol–1, ΔSvHA = 961 ± 157 cal·°K–1·mol–1, ΔGvH(25°C)A = 45.0 ± 7.6 kcal· mol–1; ΔHvHT = 213 ± 30 kcal·mol–1, ΔSvHT = 617 ± 86 cal·°K–1·mol–1, ΔGvH(25°C)T = 29.3 ± 4.9 kcal·mol–1). The methodology employed here distinguishes thermodynamic contributions of base stacking, base pairing and backbone conformational ordering in the molecular mechanism of double-helical B DNA formation.  相似文献   

18.
Trichloroethylene (TCE) was removed from soils by using a wheat rhizosphere established by coating seeds with a recombinant, TCE-degrading Pseudomonas fluorescens strain that expresses the tomA+ (toluene o-monooxygenase) genes from Burkholderia cepacia PR123(TOM23C). A transposon integration vector was used to insert tomA+ into the chromosome of P. fluorescens 2-79, producing a stable strain that expressed constitutively the monooxygenase at a level of 1.1 nmol/min · mg of protein (initial TCE concentration, 10 μM, assuming that all of the TCE was in the liquid) for more than 280 cell generations (36 days). We also constructed a salicylate-inducible P. fluorescens strain that degraded TCE at an initial rate of 2.6 nmol/min · mg of protein in the presence of 10 μM TCE [cf. B. cepacia G4 PR123(TOM23C), which degraded TCE at an initial rate of 2.5 nmol/min · mg of protein]. A constitutive strain, P. fluorescens 2-79TOM, grew (maximum specific growth rate, 0.78 h−1) and colonized wheat (3 × 106 CFU/cm of root) as well as wild-type P. fluorescens 2-79 (maximum specific growth rate, 0.77 h−1; level of colonization, 4 × 106 CFU/cm of root). Rhizoremediation of TCE was demonstrated by using microcosms containing the constitutive monooxygenase-expressing microorganism, soil, and wheat. These closed microcosms degraded an average of 63% of the initial TCE in 4 days (20.6 nmol of TCE/day · plant), compared to the 9% of the initial TCE removed by negative controls consisting of microcosms containing wild-type P. fluorescens 2-79-inoculated wheat, uninoculated wheat, or sterile soil.  相似文献   

19.
Transgenic doubled haploid rapeseed (Brassica napus L. cvs. Global and PF704) plants were obtained from microspore-derived embryo (MDE) hypocotyls using the microprojectile bombardment. The binary vector pCAMBIA3301 containing the gus and bar genes under control of CaMV 35S promoter was used for bombardment experiments. Transformed plantlets were selected and continuously maintained on selective medium containing 10 mg l−1 phosphinothricin (PPT) and transgenic plants were obtained by selecting transformed secondary embryos. The presence, copy numbers and expression of the transgenes were confirmed by PCR, Southern blot, RT-PCR and histochemical GUS analyses. In progeny test, three out of four primary transformants for bar gene produced homozygous lines. The ploidy level of transformed plants was confirmed by flow cytometery analysis before colchicine treatment. All of the regenerated plants were haploid except one that was spontaneous diploid. High frequency of transgenic doubled haploid rapeseeds (about 15.55% for bar gene and 11.11% for gus gene) were considerably produced after colchicines treatment of the haploid plantlets. This result show a remarkable increase in production of transgenic doubled haploid rapeseed plants compared to previous studies.  相似文献   

20.
Paphiopedilum dianthum and P. micranthum are two endangered orchid species, with high ornamental and conservation values. They are sympatric species, but their leaf anatomical traits and flowering period have significant differences. However, it is unclear whether the differences in leaf structure of the two species will affect their adaptabilities to temperature. Here, we investigated the leaf photosynthetic, anatomical, and flowering traits of these two species at three sites with different temperatures (Kunming, 16.7 ± 0.2 °C; Puer, 17.7 ± 0.2 °C; Menglun, 23.3 ± 0.2 °C) in southwest China. Compared with those at Puer and Kunming, the values of light-saturated photosynthetic rate (Pmax), stomatal conductance (gs), leaf thickness (LT), and stomatal density (SD) in both species were lower at Menglun. The values of Pmax, gs, LT, adaxial cuticle thickness (CTad) and SD in P. dianthum were higher than those of P. micranthum at the three sites. Compared with P. dianthum, there were no flowering plants of P. micranthum at Menglun. These results indicated that both species were less resistance to high temperature, and P. dianthum had a stronger adaptability to high-temperature than P. micranthum. Our findings can provide valuable information for the conservation and cultivation of Paphiopedilum species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号