首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein nitration and nitrosylation are essential post-translational modifications(PTMs)involved in many fundamental cellular processes. Recent studies have revealed that excessive levels of nitration and nitrosylation in some critical proteins are linked to numerous chronic diseases.Therefore, the identification of substrates that undergo such modifications in a site-specific manner is an important research topic in the community and will provide candidates for targeted therapy. In this study, we aimed to develop a computational tool for predicting nitration and nitrosylation sites in proteins. We first constructed four types of encoding features, including positional amino acid distributions, sequence contextual dependencies, physicochemical properties, and position-specificscoring features, to represent the modified residues. Based on these encoding features, we established a predictor called DeepNitro using deep learning methods for predicting protein nitration and nitrosylation. Using n-fold cross-validation, our evaluation shows great AUC values for DeepNitro, 0.65 for tyrosine nitration, 0.80 for tryptophan nitration, and 0.70 for cysteine nitrosylation, respectively,demonstrating the robustness and reliability of our tool. Also, when tested in the independent dataset, DeepNitro is substantially superior to other similar tools with a 7%à42% improvement in the prediction performance. Taken together, the application of deep learning method and novel encoding schemes, especially the position-specific scoring feature, greatly improves the accuracy of nitration and nitrosylation site prediction and may facilitate the prediction of other PTM sites. DeepNitro is implemented in JAVA and PHP and is freely available for academic research at http://deepnitro.renlab.org.  相似文献   

2.
N4-甲基胞嘧啶(N4-methylcytosine, 4mC)是一种重要的表观遗传修饰,在DNA的修复、表达和复制中发挥重要作用。准确鉴定4mC位点有助于深入研究其生物学功能和机制,由于4mC位点的实验鉴定即耗时又昂贵,特别是考虑到基因序列的快速积累,迫切需要补充有效的计算方法。因此,提供一个快速、准确的4mC位点在线预测平台十分必要。目前,还未见对构建必要的预测模型所需的不同特征的机器学习(machine learning, ML)方法进行全面的分析和评估。我们构建多组特征集,并且采用5种ML方法(如随机森林,支持向量机,集成学习等),提出一种称为“DNA4mcEL”的预测方法。在随机10折交叉验证测试下与现有的预测器相比,DNA4mcEL预测C. elegans、D. melanogaster、A. thaliana、E. coli、G. subterraneus、G. pickeringii 6个物种的精度均有提高。基于本方法的预测器DNA4mcEL在这项任务中显著优于现有的预测器。我们希望通过这个综合调查和建立更准确模型的策略,可以作为激发N4-甲基胞嘧啶预测计算方法未来发展的有用指南,加快新N4-甲基胞嘧啶的发现。DNA4mcEL的独立版本可以从https://github.com/kukuky00/DNA4mcEL.git免费获得。  相似文献   

3.
As a newly-identified protein post-translational modification, malonylation is involved in a variety of biological functions. Recognizing malonylation sites in substrates represents an initial but crucial step in elucidating the molecular mechanisms underlying protein malonylation. In this study, we constructed a deep learning (DL) network classifier based on long short-term memory (LSTM) with word embedding (LSTMWE) for the prediction of mammalian malonylation sites. LSTMWE performs better than traditional classifiers developed with common pre-defined feature encodings or a DL classifier based on LSTM with a one-hot vector. The performance of LSTMWE is sensitive to the size of the training set, but this limitation can be overcome by integration with a traditional machine learning (ML) classifier. Accordingly, an integrated approach called LEMP was developed, which includes LSTMWE and the random forest classifier with a novel encoding of enhanced amino acid content. LEMP performs not only better than the individual classifiers but also superior to the currently-available malonylation predictors. Additionally, it demonstrates a promising performance with a low false positive rate, which is highly useful in the prediction application. Overall, LEMP is a useful tool for easily identifying malonylation sites with high confidence. LEMP is available at http://www.bioinfogo.org/lemp.  相似文献   

4.
5.
6.
赖氨酸琥珀酰化是一种新型的翻译后修饰,在蛋白质调节和细胞功能控制中发挥重要作用,所以准确识别蛋白质中的琥珀酰化位点是有必要的。传统的实验耗费物力和财力。通过计算方法预测是近段时间以来提出的一种高效的预测方法。本研究中,我们开发了一种新的预测方法iSucc-PseAAC,它是通过使用多种分类算法结合不同的特征提取方法。最终发现,基于耦合序列(PseAAC)特征提取下,使用支持向量机分类效果是最好的,并结合集成学习解决了数据不平衡问题。与现有方法预测效果对比,iSucc-PseAAC在区分赖氨酸琥珀酰化位点方面,更具有意义和实用性。  相似文献   

7.
Zhang  Wen  Zhu  Xiaopeng  Fu  Yu  Tsuji  Junko  Weng  Zhiping 《BMC bioinformatics》2017,18(13):464-11

Background

Alternative splicing is the critical process in a single gene coding, which removes introns and joins exons, and splicing branchpoints are indicators for the alternative splicing. Wet experiments have identified a great number of human splicing branchpoints, but many branchpoints are still unknown. In order to guide wet experiments, we develop computational methods to predict human splicing branchpoints.

Results

Considering the fact that an intron may have multiple branchpoints, we transform the branchpoint prediction as the multi-label learning problem, and attempt to predict branchpoint sites from intron sequences. First, we investigate a variety of intron sequence-derived features, such as sparse profile, dinucleotide profile, position weight matrix profile, Markov motif profile and polypyrimidine tract profile. Second, we consider several multi-label learning methods: partial least squares regression, canonical correlation analysis and regularized canonical correlation analysis, and use them as the basic classification engines. Third, we propose two ensemble learning schemes which integrate different features and different classifiers to build ensemble learning systems for the branchpoint prediction. One is the genetic algorithm-based weighted average ensemble method; the other is the logistic regression-based ensemble method.

Conclusions

In the computational experiments, two ensemble learning methods outperform benchmark branchpoint prediction methods, and can produce high-accuracy results on the benchmark dataset.
  相似文献   

8.
Linear B-cell epitopes are critically important for immunological applications, such as vaccine design, immunodiagnostic test, and antibody production, as well as disease diagnosis and therapy. The accurate identification of linear B-cell epitopes remains challenging despite several decades of research. In this work, we have developed a novel predictor, Identification of Linear B-cell Epitope (iLBE), by integrating evolutionary and sequence-based features. The successive feature vectors were optimized by a Wilcoxon-rank sum test. Then the random forest (RF) algorithm using the optimal consecutive feature vectors was applied to predict linear B-cell epitopes. We combined the RF scores by the logistic regression to enhance the prediction accuracy. iLBE yielded an area under curve score of 0.809 on the training dataset and outperformed other prediction models on a comprehensive independent dataset. iLBE is a powerful computational tool to identify the linear B-cell epitopes and would help to develop penetrating diagnostic tests. A web application with curated datasets for iLBE is freely accessible at http://kurata14.bio.kyutech.ac.jp/iLBE/.  相似文献   

9.
Protein–DNA interactions play important roles in many biological processes. To understand the molecular mechanisms of protein–DNA interaction, it is necessary to identify the DNA-binding sites in DNA-binding proteins. In the last decade, computational approaches have been developed to predict protein–DNA-binding sites based solely on protein sequences. In this study, we developed a novel predictor based on support vector machine algorithm coupled with the maximum relevance minimum redundancy method followed by incremental feature selection. We incorporated not only features of physicochemical/biochemical properties, sequence conservation, residual disorder, secondary structure, solvent accessibility, but also five three-dimensional (3D) structural features calculated from PDB data to predict the protein–DNA interaction sites. Feature analysis showed that 3D structural features indeed contributed to the prediction of DNA-binding site and it was demonstrated that the prediction performance was better with 3D structural features than without them. It was also shown via analysis of features from each site that the features of DNA-binding site itself contribute the most to the prediction. Our prediction method may become a useful tool for identifying the DNA-binding sites and the feature analysis described in this paper may provide useful insights for in-depth investigations into the mechanisms of protein–DNA interaction.  相似文献   

10.
BQ Li  KY Feng  L Chen  T Huang  YD Cai 《PloS one》2012,7(8):e43927
Prediction of protein-protein interaction (PPI) sites is one of the most challenging problems in computational biology. Although great progress has been made by employing various machine learning approaches with numerous characteristic features, the problem is still far from being solved. In this study, we developed a novel predictor based on Random Forest (RF) algorithm with the Minimum Redundancy Maximal Relevance (mRMR) method followed by incremental feature selection (IFS). We incorporated features of physicochemical/biochemical properties, sequence conservation, residual disorder, secondary structure and solvent accessibility. We also included five 3D structural features to predict protein-protein interaction sites and achieved an overall accuracy of 0.672997 and MCC of 0.347977. Feature analysis showed that 3D structural features such as Depth Index (DPX) and surface curvature (SC) contributed most to the prediction of protein-protein interaction sites. It was also shown via site-specific feature analysis that the features of individual residues from PPI sites contribute most to the determination of protein-protein interaction sites. It is anticipated that our prediction method will become a useful tool for identifying PPI sites, and that the feature analysis described in this paper will provide useful insights into the mechanisms of interaction.  相似文献   

11.
The integration of multiple predictors promises higher prediction accuracy than the accuracy that can be obtained with a single predictor. The challenge is how to select the best predictor at any given moment. Traditionally, multiple predictors are run in parallel and the one that generates the best result is selected for prediction. In this paper, we propose a novel approach for predictor integration based on the learning of historical predictions. Compared with the traditional approach, it does not require running all the predictors simultaneously. Instead, it uses classification algorithms such as k-Nearest Neighbor (k-NN) and Bayesian classification and dimension reduction technique such as Principal Component Analysis (PCA) to forecast the best predictor for the workload under study based on the learning of historical predictions. Then only the forecasted best predictor is run for prediction. Our experimental results show that it achieved 20.18% higher best predictor forecasting accuracy than the cumulative MSE based predictor selection approach used in the popular Network Weather Service system. In addition, it outperformed the observed most accurate single predictor in the pool for 44.23% of the performance traces.
Renato J. FigueiredoEmail:
  相似文献   

12.
Predicting bioproduction titers from microbial hosts has been challenging due to complex interactions between microbial regulatory networks, stress responses, and suboptimal cultivation conditions. This study integrated knowledge mining, feature extraction, genome-scale modeling (GSM), and machine learning (ML) to develop a model for predicting Yarrowia lipolytica chemical titers (i.e., organic acids, terpenoids, etc.). First, Y. lipolytica production data, including cultivation conditions, genetic engineering strategies, and product information, was manually collected from literature (~100 papers) and stored as either numerical (e.g., substrate concentrations) or categorical (e.g., bioreactor modes) variables. For each case recorded, central pathway fluxes were estimated using GSMs and flux balance analysis (FBA) to provide metabolic features. Second, a ML ensemble learner was trained to predict strain production titers. Accurate predictions on the test data were obtained for instances with production titers >1 g/L (R2 = 0.87). However, the model had reduced predictability for low performance strains (0.01–1 g/L, R2 = 0.29) potentially due to biosynthesis bottlenecks not captured in the features. Feature ranking indicated that the FBA fluxes, the number of enzyme steps, the substrate inputs, and thermodynamic barriers (i.e., Gibbs free energy of reaction) were the most influential factors. Third, the model was evaluated on other oleaginous yeasts and indicated there were conserved features for some hosts that can be potentially exploited by transfer learning. The platform was also designed to assist computational strain design tools (such as OptKnock) to screen genetic targets for improved microbial production in light of experimental conditions.  相似文献   

13.
Hot spot residues of proteins are fundamental interface residues that help proteins perform their functions. Detecting hot spots by experimental methods is costly and time‐consuming. Sequential and structural information has been widely used in the computational prediction of hot spots. However, structural information is not always available. In this article, we investigated the problem of identifying hot spots using only physicochemical characteristics extracted from amino acid sequences. We first extracted 132 relatively independent physicochemical features from a set of the 544 properties in AAindex1, an amino acid index database. Each feature was utilized to train a classification model with a novel encoding schema for hot spot prediction by the IBk algorithm, an extension of the K‐nearest neighbor algorithm. The combinations of the individual classifiers were explored and the classifiers that appeared frequently in the top performing combinations were selected. The hot spot predictor was built based on an ensemble of these classifiers and to work in a voting manner. Experimental results demonstrated that our method effectively exploited the feature space and allowed flexible weights of features for different queries. On the commonly used hot spot benchmark sets, our method significantly outperformed other machine learning algorithms and state‐of‐the‐art hot spot predictors. The program is available at http://sfb.kaust.edu.sa/pages/software.aspx . Proteins 2013; 81:1351–1362 © 2013 Wiley Periodicals, Inc.  相似文献   

14.
15.
16.
Afridi TH  Khan A  Lee YS 《Amino acids》2012,42(4):1443-1454
Mitochondria are all-important organelles of eukaryotic cells since they are involved in processes associated with cellular mortality and human diseases. Therefore, trustworthy techniques are highly required for the identification of new mitochondrial proteins. We propose Mito-GSAAC system for prediction of mitochondrial proteins. The aim of this work is to investigate an effective feature extraction strategy and to develop an ensemble approach that can better exploit the advantages of this feature extraction strategy for mitochondria classification. We investigate four kinds of protein representations for prediction of mitochondrial proteins: amino acid composition, dipeptide composition, pseudo amino acid composition, and split amino acid composition (SAAC). Individual classifiers such as support vector machine (SVM), k-nearest neighbor, multilayer perceptron, random forest, AdaBoost, and bagging are first trained. An ensemble classifier is then built using genetic programming (GP) for evolving a complex but effective decision space from the individual decision spaces of the trained classifiers. The highest prediction performance for Jackknife test is 92.62% using GP-based ensemble classifier on SAAC features, which is the highest accuracy, reported so far on the Mitochondria dataset being used. While on the Malaria Parasite Mitochondria dataset, the highest accuracy is obtained by SVM using SAAC and it is further enhanced to 93.21% using GP-based ensemble. It is observed that SAAC has better discrimination power for mitochondria prediction over the rest of the feature extraction strategies. Thus, the improved prediction performance is largely due to the better capability of SAAC for discriminating between mitochondria and non-mitochondria proteins at the N and C terminus and the effective combination capability of GP. Mito-GSAAC can be accessed at . It is expected that the novel approach and the accompanied predictor will have a major impact to Molecular Cell Biology, Proteomics, Bioinformatics, System Biology, and Drug Development.  相似文献   

17.
An increasing number of genes have been experimentally confirmed in recent years as causative genes to various human diseases. The newly available knowledge can be exploited by machine learning methods to discover additional unknown genes that are likely to be associated with diseases. In particular, positive unlabeled learning (PU learning) methods, which require only a positive training set P (confirmed disease genes) and an unlabeled set U (the unknown candidate genes) instead of a negative training set N, have been shown to be effective in uncovering new disease genes in the current scenario. Using only a single source of data for prediction can be susceptible to bias due to incompleteness and noise in the genomic data and a single machine learning predictor prone to bias caused by inherent limitations of individual methods. In this paper, we propose an effective PU learning framework that integrates multiple biological data sources and an ensemble of powerful machine learning classifiers for disease gene identification. Our proposed method integrates data from multiple biological sources for training PU learning classifiers. A novel ensemble-based PU learning method EPU is then used to integrate multiple PU learning classifiers to achieve accurate and robust disease gene predictions. Our evaluation experiments across six disease groups showed that EPU achieved significantly better results compared with various state-of-the-art prediction methods as well as ensemble learning classifiers. Through integrating multiple biological data sources for training and the outputs of an ensemble of PU learning classifiers for prediction, we are able to minimize the potential bias and errors in individual data sources and machine learning algorithms to achieve more accurate and robust disease gene predictions. In the future, our EPU method provides an effective framework to integrate the additional biological and computational resources for better disease gene predictions.  相似文献   

18.

Background

Hot spot residues are functional sites in protein interaction interfaces. The identification of hot spot residues is time-consuming and laborious using experimental methods. In order to address the issue, many computational methods have been developed to predict hot spot residues. Moreover, most prediction methods are based on structural features, sequence characteristics, and/or other protein features.

Results

This paper proposed an ensemble learning method to predict hot spot residues that only uses sequence features and the relative accessible surface area of amino acid sequences. In this work, a novel feature selection technique was developed, an auto-correlation function combined with a sliding window technique was applied to obtain the characteristics of amino acid residues in protein sequence, and an ensemble classifier with SVM and KNN base classifiers was built to achieve the best classification performance.

Conclusion

The experimental results showed that our model yields the highest F1 score of 0.92 and an MCC value of 0.87 on ASEdb dataset. Compared with other machine learning methods, our model achieves a big improvement in hot spot prediction.
  相似文献   

19.
The evolution of omics and computational competency has accelerated discoveries of the underlying biological processes in an unprecedented way. High throughput methodologies, such as flow cytometry, can reveal deeper insights into cell processes, thereby allowing opportunities for scientific discoveries related to health and diseases. However, working with cytometry data often imposes complex computational challenges due to high-dimensionality, large size, and nonlinearity of the data structure. In addition, cytometry data frequently exhibit diverse patterns across biomarkers and suffer from substantial class imbalances which can further complicate the problem. The existing methods of cytometry data analysis either predict cell population or perform feature selection. Through this study, we propose a “wisdom of the crowd” approach to simultaneously predict rare cell populations and perform feature selection by integrating a pool of modern machine learning (ML) algorithms. Given that our approach integrates superior performing ML models across different normalization techniques based on entropy and rank, our method can detect diverse patterns existing across the model features. Furthermore, the method identifies a dynamic biomarker structure that divides the features into persistently selected, unselected, and fluctuating assemblies indicating the role of each biomarker in rare cell prediction, which can subsequently aid in studies of disease progression.  相似文献   

20.
Naveed M  Khan A  Khan AU 《Amino acids》2012,42(5):1809-1823
G protein-coupled receptors (GPCRs) are transmembrane proteins, which transduce signals from extracellular ligands to intracellular G protein. Automatic classification of GPCRs can provide important information for the development of novel drugs in pharmaceutical industry. In this paper, we propose an evolutionary approach, GPCR-MPredictor, which combines individual classifiers for predicting GPCRs. GPCR-MPredictor is a web predictor that can efficiently predict GPCRs at five levels. The first level determines whether a protein sequence is a GPCR or a non-GPCR. If the predicted sequence is a GPCR, then it is further classified into family, subfamily, sub-subfamily, and subtype levels. In this work, our aim is to analyze the discriminative power of different feature extraction and classification strategies in case of GPCRs prediction and then to use an evolutionary ensemble approach for enhanced prediction performance. Features are extracted using amino acid composition, pseudo amino acid composition, and dipeptide composition of protein sequences. Different classification approaches, such as k-nearest neighbor (KNN), support vector machine (SVM), probabilistic neural networks (PNN), J48, Adaboost, and Naives Bayes, have been used to classify GPCRs. The proposed hierarchical GA-based ensemble classifier exploits the prediction results of SVM, KNN, PNN, and J48 at each level. The GA-based ensemble yields an accuracy of 99.75, 92.45, 87.80, 83.57, and 96.17% at the five levels, on the first dataset. We further perform predictions on a dataset consisting of 8,000 GPCRs at the family, subfamily, and sub-subfamily level, and on two other datasets of 365 and 167 GPCRs at the second and fourth levels, respectively. In comparison with the existing methods, the results demonstrate the effectiveness of our proposed GPCR-MPredictor in classifying GPCRs families. It is accessible at .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号