首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HDM2 binds to the p53 tumour suppressor and targets it for proteosomal degradation. Presently in clinical trials, the small molecule Nutlin-3A competitively binds to HDM2 and abrogates its repressive function. Using a novel in vitro selection methodology, we simulated the emergence of resistance by evolving HDM2 mutants capable of binding p53 in the presence of Nutlin concentrations that inhibit the wild-type HDM2-p53 interaction. The in vitro phenotypes were recapitulated in ex vivo assays measuring both p53 transactivation function and the direct p53-HDM2 interaction in the presence of Nutlin. Mutations conferring drug resistance were not confined to the N-terminal p53/Nutlin–binding domain, and were additionally seen in the acidic, zinc finger and RING domains. Mechanistic insights gleaned from this broad spectrum of mutations will aid in future drug design and further our understanding of the complex p53-HDM2 interaction.  相似文献   

2.
As key negative regulator of the p53 tumour suppressor, Mdm2 is an attractive therapeutic target. Small molecules such as Nutlin have been developed to antagonise Mdm2, resulting in p53-dependent death of tumour cells. We have recently described a mutation in Mdm2 (M62A), which precludes binding of Nutlin, but not p53. This Nutlin-resistant variant is not, however, refractory to binding and inhibition by stapled peptide antagonists targeting the same region of Mdm2. A detailed understanding of how stapled peptides are recalcitrant to Mdm2 mutations conferring Nutlin-resistance will aid in the further development of potent Mdm2 antagonists. Here, we report the 2.00 Å crystal structure of a stapled peptide antagonist bound to Nutlin resistant Mdm2. The stapled peptide relies on an extended network of interactions along the hydrophobic binding cleft of Mdm2 for high affinity binding. Additionally, as seen in other stapled peptide structures, the hydrocarbon staple itself contributes to binding through favourable interactions with Mdm2. The structure highlights the intrinsic plasticity present in both Mdm2 and the hydrocarbon staple moiety, and can be used to guide future iterations of both small molecules and stapled peptides for improved antagonists of Mdm2.  相似文献   

3.
HDM2 and HDMX are two homologs essential for controlling p53 tumor suppressor activity under normal conditions. Both proteins bind different sites on the p53 N‐terminus, and while HDM2 has E3 ubiquitin ligase activity towards p53, HDMX does not. Nevertheless, HDMX is required for p53 polyubiquitination and degradation, but the underlying molecular mechanism remains unclear. Alone, HDMX and HDM2 interact via their respective C‐terminal RING domains but here we show that the presence of p53 induces an N‐terminal interface under normal cellular conditions. This results in an increase in HDM2‐mediated p53 polyubiquitination and degradation. The HDM2 inhibitor Nutlin‐3 binds the N‐terminal p53 binding pocket and is sufficient to induce the HDM2‐HDMX interaction, suggesting that the mechanism depends on allosteric changes that control the multiprotein complex formation. These results demonstrate an allosteric interchange between three different proteins (HDMX‐HDM2‐p53) and help to explain the molecular mechanisms of HDM2‐inhibitory drugs.  相似文献   

4.
The p53 tumor suppressor plays a key role in maintaining genomic stability and protection against malignant transformation. MDM2 and MDMX are both p53-binding proteins that regulate p53 stability and activity. Recent development of the MDM2 inhibitor Nutlin 3 has greatly facilitated functional analysis of MDM2-p53 binding. We found that although MDMX is homologous to MDM2 and binds to the same region on p53 N terminus, Nutlin does not disrupt p53-MDMX interaction. The ability of Nutlin to activate p53 is compromised in tumor cells overexpressing MDMX. Combination of Nutlin with MDMX siRNA resulted in synergistic activation of p53 and growth arrest. These results suggest that MDMX is also a valid target for p53 activation in tumor cells. Development of novel compounds that are MDMX-specific or optimized for dual-inhibition of MDM2 and MDMX are necessary to achieve full activation of p53 in tumor cells.  相似文献   

5.
MDM2 (HDM2) is a ubiquitin ligase that can target the p53 tumor suppressor protein for degradation. The RING domain is essential for the E3 activity of MDM2, and we show here that the extreme C-terminal tail of MDM2 is also critical for efficient E3 activity. Loss of E3 function in MDM2 mutants deleted of the C-terminal tail correlated with a failure of these mutants to oligomerize with MDM2, or with the related protein MDMX (HDMX). However, MDM2 containing point mutations within the C-terminus that inactivated E3 function retained the ability to oligomerize with the wild-type MDM2 RING domain and MDMX, and our results indicate that oligomers containing both wild-type MDM2 and a C-terminal mutant protein retain E3 function both in auto-degradation and degradation of p53. Interestingly, the E3 activity of C-terminal point mutants of MDM2 can also be supported by interaction with wild-type MDMX, suggesting that MDMX can directly contribute to E3 function.  相似文献   

6.
7.

Background

Lymphomas frequently retain wild-type (wt) p53 function but overexpress HDM2, thereby compromising p53 activity. Therefore, lymphoma is a suitable model for studying the therapeutic value of disrupting the HDM2-p53 interaction by small-molecule inhibitors (SMIs). HDM2 have been developed and are under various stages of preclinical and clinical investigation. Previously, we examined the anti-lymphoma activity of MI-319, the laboratory grade of a new class of HDM2 SMI, the spiro-oxindole, in follicular lymphoma. Since then, MI-219, the clinical grade has become readily available. This study further examines the preclinical effects and mechanisms of MI-219 in a panel of human lymphoma cell lines as well as a cohort of patient-derived B-lymphcytes for its potential clinical use.

Results

Preclinical assessment of MI-219 was evaluated by means of an in vitro and ex vivo approach and compared to Nutlin-3, the gold standard. Characterization of p53 activity and stability were assessed by quantitative PCR, Western blot, and immunoprecipitation. Biological outcome was measured using Trypan blue exclusion assay, Annexin V/PI, PARP and caspase-3 cleavage. Surprisingly, the overall biological effects of Nutlin-3 were more delayed (48 h) while MI-219 triggered an earlier response (12-24 h), predominantly in the form of apoptotic cell death. Using a cell free autoubiquitination assay, neither agent interfered with HDM2 E3 ligase function. MI-219 was more effective in upregulating wt-p53 stabilization compared to Nutlin-3. MI-219, but not Nutlin-3, enhanced the autoubiquitination and degradation of HDM2.

Conclusions

Our data reveals unexpected differences between MI-219 and the well-studied Nutlin-3 in lymphoma cell lines and patient samples. We suggest a novel mechanism for MI-219 that alters the functional activity of HDM2 through enhanced autoubiquitination and degradation. Additionally, this mechanism appears to correspond to biological outcome. Our results provide evidence that different classes of HDM2 SMIs elicit molecular events that extend beyond HDM2-p53 dissociation which may be of biological and potentially therapeutic importance.  相似文献   

8.
We report the first synthesis of the C-terminally spermine-conjugated stapled peptide-based inhibitors of the p53-Mdm2 interaction. Subsequent biological, biophysical and cellular uptake assays with the spermine-conjugated stapled peptides revealed that spermine conjugation minimally affects biological activity while significantly increases peptide helicity and cellular uptake without apparent cytotoxicity.  相似文献   

9.
In this work we investigate, by means of a computational stochastic model, how tumor cells with wild-type p53 gene respond to the drug Nutlin, an agent that interferes with the Mdm2-mediated p53 regulation. In particular, we show how the stochastic gene-switching controlled by p53 can explain experimental dose-response curves, i.e., the observed inter-cell variability of the cell viability under Nutlin action. The proposed model describes in some detail the regulation network of p53, including the negative feedback loop mediated by Mdm2 and the positive loop mediated by PTEN, as well as the reversible inhibition of Mdm2 caused by Nutlin binding. The fate of the individual cell is assumed to be decided by the rising of nuclear-phosphorylated p53 over a certain threshold. We also performed in silico experiments to evaluate the dose-response curve after a single drug dose delivered in mice, or after its fractionated administration. Our results suggest that dose-splitting may be ineffective at low doses and effective at high doses. This complex behavior can be due to the interplay among the existence of a threshold on the p53 level for its cell activity, the nonlinearity of the relationship between the bolus dose and the peak of active p53, and the relatively fast elimination of the drug.  相似文献   

10.
HDM2 is a p53-specific E3 ubiquitin ligase. Its overexpression leads to excessive inactivation of tumor protein p53, diminishing its tumor suppressor function. HDM2 also affects the cell cycle, apoptosis and tumorigenesis through interacting with other molecules, including several ribosomal proteins. To identify novel HDM2 regulators, we performed a yeast two-hybrid screening using HDM2 as bait. Among the candidates, ribosomal protein L26 (RPL26) was characterized as a novel HDM2-interactor. The interaction between HDM2 and RPL26 was further validated by in vivo and in vitro assays. RPL26 modulates the HDM2–p53 interaction by forming a ternary complex among RPL26, HDM2 and p53, which stabilize p53 through inhibiting the ubiquitin ligase activity of HDM2. The ribosomal stress caused by a low dose of Act D enhances RPL26–HDM2 interaction and activates p53. Overexpression of RPL26 results in activating of p53, inhibits cell proliferation and induces a p53-dependent cell cycle arrest. These results provide a novel regulatory mechanism of RPL26 to activate p53 by inhibiting HDM2.  相似文献   

11.
12.
Translationally Controlled Tumour Protein (TCTP), a highly conserved protein present in all eukaryotic organisms, has a number of intracellular and extracellular functions including an anti-apoptotic role. TCTP was recently shown to interact with both p53 and HDM2, inhibiting auto-ubiquitination of the latter and thereby promoting p53 degradation. In this study, we further investigated the interaction between TCTP and HDM2, mapping the reciprocal binding sites of TCTP and HDM2. TCTP primarily interacts with the N-terminal, p53-binding region of HDM2 through its highly basic domain 2. Furthermore, we discovered that Nutlin-3, a small molecule known to promote apoptosis and cell cycle arrest by blocking binding between HDM2 and p53, has a similar inhibitory effect on the interaction of HDM2 and TCTP. This result may provide an additional explanation of how Nutlin-derived compounds currently in clinical trials function to promote apoptosis in cancer cells.  相似文献   

13.
Tumors that express wild-type P53 provide a target for therapies designed to reactivate P53 function. This is supported by the potent activation of P53 in tumor cells by Nutlin, a cis-imidazoline that inhibits the Hdm2-P53 interaction. The efficacy of Hdm2.P53 antagonists could be compromised if they do not antagonize Hdmx, an Hdm2 homolog that inhibits P53 transactivation. We evaluated the role of Hdmx expression in sensitivity to Nutlin in a range of cancer cell lines. Nutlin reduced Hdmx levels in normal cells and some cancer cell lines, whereas other cancer cells were refractory to such down-regulation. Strikingly, Nutlin did not disrupt Hdmx.P53 complexes, and in cell lines where no Hdmx degradation occurred, Nutlin failed to induce apoptosis. shRNA-mediated reduction of Hdmx sensitized cells to apoptosis, but caspase-3 was neither required nor sufficient for Hdmx degradation or apoptosis. Our data imply that Hdmx is an important determinant of the outcome of P53 activation. Thus, targeting Hdmx may be a therapeutic strategy that complements drugs such as Nutlin.  相似文献   

14.
The HDM2-p53 loop is crucial for monitoring p53 level and human pathologies. Therefore, identification of novel molecules involved in this regulatory loop is necessary for understanding the dynamic regulation of p53 and treatment of human diseases. Here, we characterized that the ribosomal protein L6 binds to and suppresses the E3 ubiquitin ligase activity of HDM2, and subsequently attenuates HDM2-mediated p53 polyubiquitination and degradation. The enhanced p53 activity further slows down cell cycle progression and leads to cell growth inhibition. Conversely, the level of p53 is dramatically decreased upon the depletion of RPL6, indicating that RPL6 is essential for p53 stabilization. We also found that RPL6 translocalizes from the nucleolus to nucleoplasm under ribosomal stress, which facilitates its binding with HDM2. The interaction of RPL6 and HDM2 drives HDM2-mediated RPL6 polyubiquitination and proteasomal degradation. Longer treatment of actinomycin D increases RPL6 ubiquitination and destabilizes RPL6, and thereby putatively attenuates p53 response until the level of L6 subsides. Therefore, RPL6 and HDM2 form an autoregulatory feedback loop to monitor the level of p53 in response to ribosomal stress. Together, our study identifies the crucial function of RPL6 in regulating HDM2-p53 pathway, which highlights the importance of RPL6 in human genetic diseases and cancers.  相似文献   

15.
Tumor suppressor p53 is one of the most frequently mutated genes in cancer, with almost 50% of all types of cancer expressing a mutant form of p53. p53 transactivates the expression of its primary negative regulator, HDM2. HDM2 is a ubiquitin ligase, which initiates the proteasomal degradation of p53 following ubiquitination. Proteasome inhibitors, by targeting the ubiquitin proteasome pathway inhibit the degradation of the majority of cellular proteins including wild-type p53. In contrast, in this study we found that the protein expression of mutant p53 was suppressed following treatment with established or novel proteasome inhibitors. Furthermore, for the first time we demonstrated that Arsenic trioxide, which was previously shown to suppress mutant p53 protein level, exhibits proteasome inhibitory activity. Proteasome inhibitor-mediated suppression of mutant p53 was partially rescued by the knockdown of HDM2, suggesting that the stabilization of HDM2 by proteasome inhibitors might be responsible for mutant p53 suppression to some extent. This study suggests that suppression of mutant p53 is a general property of proteasome inhibitors and it provides additional rationale to use proteasome inhibitors for the treatment of tumors with mutant p53.  相似文献   

16.
17.
The gene encoding p53 mediates a major tumor suppression pathway that is frequently altered in human cancers. p53 function is kept at a low level during normal cell growth and is activated in response to various cellular stresses. The MDM2 oncoprotein plays a key role in negatively regulating p53 activity by either direct repression of p53 transactivation activity in the nucleus or promotion of p53 degradation in the cytoplasm. DNA damage and oncogenic insults, the two best-characterized p53-dependent checkpoint pathways, both activate p53 through inhibition of MDM2. Here we report that the human homologue of MDM2, HDM2, binds to ribosomal protein L11. L11 binds a central region in HDM2 that is distinct from the ARF binding site. We show that the functional consequence of L11-HDM2 association, like that with ARF, results in the prevention of HDM2-mediated p53 ubiquitination and degradation, subsequently restoring p53-mediated transactivation, accumulating p21 protein levels, and inducing a p53-dependent cell cycle arrest by canceling the inhibitory function of HDM2. Interference with ribosomal biogenesis by a low concentration of actinomycin D is associated with an increased L11-HDM2 interaction and subsequent p53 stabilization. We suggest that L11 functions as a negative regulator of HDM2 and that there might exist in vivo an L11-HDM2-p53 pathway for monitoring ribosomal integrity.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号