首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Mycobacterium tuberculosis (MTb) infects approximately 2 billion people world-wide resulting in almost 2 million deaths per year. Determining biomarkers that distinguish different stages of tuberculosis (TB) infection and disease will provide tools for more effective diagnosis and ultimately aid in the development of new vaccine candidates. The current diagnostic kits utilising production of IFN-γ in response to TB antigens can detect MTb infection but are unable to distinguish between infection and disease. The aim of this study was to assess if the use of a longer term assay and the analysis of multiple cytokines would enhance diagnosis of active TB in a TB-endemic population.

Methods

We compared production of multiple cytokines (TNF-α, IFN-γ, IL-10, IL-12(p40), IL-13, IL-17 and IL-18) following long-term (7 days) stimulation of whole-blood with TB antigens (ESAT-6/CFP-10 (EC), PPD or TB10.4) from TB cases (n = 36) and their Mycobacterium-infected (TST+; n = 20) or uninfected (TST−; n = 19) household contacts (HHC).

Results and Conclusions

We found that TNF-α production following EC stimulation and TNF-α and IL-12(p40) following TB10.4 stimulation were significantly higher from TB cases compared to TST+ HHC, while production of IFN-γ and IL-13 were significantly higher from TST+ compared to TST- HHC following PPD or EC stimulation. Combined analysis of TNF-α, IL-12(p40) and IL-17 following TB10.4 stimulation resulted in 85% correct classification into TB cases or TST+ HHC. 74% correct classification into TST+ or TST− HHC was achieved with IFN-γ alone following TB10.4 stimulation (69% following EC) and little enhancement was seen with additional cytokines. We also saw a tendency for TB cases infected with M. africanum to have increased TNF-α and IL-10 production compared to those infected with M. tuberculosis. Our results provide further insight into the pathogenesis of tuberculosis and may enhance the specificity of the currently available diagnostic tests, particularly for diagnosis of active TB.  相似文献   

2.

Background

There is a need for reliable markers to diagnose active and latent tuberculosis (TB). The interferon gamma release assays (IGRAs) are compared to the tuberculin skin test (TST) more specific, but cannot discriminate between recent or remote TB infection. Here the Flow-cytometric Assay for Specific Cell-mediated Immune-response in Activated whole blood (FASCIA), which quantifies expanded T-lymphoblasts by flow-cytometric analysis after long-term antigen stimulation of whole blood, is combined with cytokine/chemokine analysis in the supernatant by multiplex technology for diagnosis of Mycobacterium tuberculosis (Mtb) infection.

Methods and Findings

Consecutive patients with suspected TB (n = 85), with microbiologically verified active pulmonary TB (n = 33), extra pulmonary TB (n = 21), clinical TB (n = 11), presumed latent TB infection (LTBI) (n = 23), patients negative for TB (n = 8) and 21 healthy controls were studied. Blood samples were analyzed with FASCIA and multiplex technology to determine and correlate proliferative responses and the value of 14 cytokines for diagnosis of Mtb infection: IFN- γ, IL-2, TNF-α, IP-10, IL-12, IL-6, IL-4, IL-5, IL-13, IL-17, MIP-1β, GM-CSF, IFN-α2 and IL-10. Cytokine levels for IFN-γ, IP-10, MIP-1β, IL-2, TNF-α, IL-6, IL-10, IL-13 and GM-CSF were significantly higher after stimulation with the Mtb specific antigens ESAT-6 and CFP-10 in patients with active TB compared to healthy controls (p<0.05) and correlated with proliferative responses. IP-10 was positive in all patients with verified TB, if using a combination of ESAT-6 and CFP-10 and was the only marker significantly more sensitive in detecting active TB then IFN-γ (p = 0.012). Cytokine responses in patients with active TB were more frequent and detected at higher levels than in patients with LTBI.

Conclusions

IP-10 seems to be an important marker for diagnosis of active and latent TB. Patients with active TB and LTBI responded with similar cytokine profiles against TB antigens but proliferative and cytokine responses were generally higher in patients with active TB.  相似文献   

3.

Background

Th1 and Th17 responses are known to play an important role in immunity to pulmonary tuberculosis (PTB), although little is known about their role in extrapulmonary forms of tuberculosis (TB).

Methods

To identify the role of Th1, Th17, and Th22 cells in multi-focal TB lymphadenitis (TBL), we examined mycobacteria–specific immune responses in the whole blood of individuals with PTB (n = 20) and compared them with those with TBL (n = 25).

Results

Elevated frequencies of CD4+ T cells expressing IFN- γ, TNF-α, and IL-2 were present in individuals with TBL compared with those with PTB at baseline and in response to ESAT-6 and CFP-10. Similarly, increased frequencies of CD4+ T cells expressing IL-17A, IL-17F, and IFN-γ were also present in individuals with TBL at baseline and following ESAT-6 and CFP-10 stimulation although no significant difference in frequency of Th22 cells was observed. Finally, frequencies of Th1 (but not Th17) cells exhibited a significantly negative correlation with natural regulatory T cell frequencies at baseline.

Conclusions

Multi-focal TB lymphadenitis is therefore characterized by elevated frequencies of Th1 and Th17 cells, indicating that Th1 and Th17 responses in TB disease are probably correlates of disease severity rather than of protective immunity.  相似文献   

4.

Background

M. tuberculosis and helminth infection each affects one third of the world population. Helminth infections down regulate cell mediated immune responses and this may contribute to lower efficacy of BCG vaccination and higher prevalence of tuberculosis.

Objective

To determine the effect of maternal helminth infection on maternal and neonatal immune function and immunity to TB.

Methods

In this cross sectional study, eighty five pregnant women were screened for parasitic and latent TB infections using Kato-Katz and QFT-GIT tests, respectively. IFN-γ and IL-4 ELISpot on Cord blood Mononuclear Cells, and total IgE and TB specific IgG ELISA on cord blood plasma was performed to investigate the possible effect of maternal helminth and/or latent TB co-infection on maternal and neonatal immune function and immunity to TB.

Result

The prevalence of helminth infections in pregnant women was 27% (n = 23), with Schistosoma mansoni the most common helminth species observed (20% of women were infected). Among the total of 85 study participants 25.8% were QFT-GIT positive and 17% had an indeterminate result. The mean total IgE value of cord blood was significantly higher in helminth positive than negative women (0.76 vs 0.47, p = 0.042). Cross placental transfer of TB specific IgG was significantly higher in helminth positive (21.9±7.9) than negative (12.3±5.1), p = 0.002) Latent TB Infection positive participants. The IFN-γ response of CBMCs to ESAT-6/CFP-10 cocktail (50 vs 116, p = 0.018) and PPD (58 vs 123, p = 0.02) was significantly lower in helminth positive than negative participants. There was no significant difference in IL-4 response of CBMCs between helminth negative and positive participants.

Conclusions

Maternal helminth infection had a significant association with the IFN-γ response of CBMCs, total IgE and cross placental transfer of TB specific IgG. Therefore, further studies should be conducted to determine the effect of these factors on neonatal immune response to BCG vaccination.  相似文献   

5.

Background

Early secretory antigenic target 6 (ESAT-6) and culture filtrate protein 10 (CFP-10) are Mycobacterium tuberculosis (Mtb)–specific antigens that are secreted by actively metabolising bacteria and contribute to the virulence of the bacteria. Their ability to induce Treg and Th2 responses, particularly during the first two weeks of treatment, has not been comprehensively examined to date. The purpose of this work was to characterise Th1, Th2 and Treg responses to rESAT-6-CFP10 fusion protein in TB patients before and during the intensive phase of treatment and in healthy M.bovis BCG vaccinated donors.

Methods

Forty-six newly diagnosed, HIV-negative, smear-positive pulmonary TB patients and 20 healthy donors were recruited in the UK and Ghana. Their peripheral blood mononuclear cells (PBMC) were used in ex vivo ELISPOT and in vitro cultures to identify immunological parameters of interest.

Results

The study confirmed that protective immune responses to rESAT-6-CFP10 are impaired in active TB but improved during treatment: circulating antigen-specific IL-4-producing T-cells were increased in untreated TB but declined by two weeks of treatment while the circulating antigen-specific IFN-γ producing T cells which showed a transient rise at one week of treatment, persisted at baseline levels at two months of treatment. In vitro T cell proliferation and IFN-γ production were reduced, while IL-4 and CD4+FoxP3+CD25hi cell expression were increased in response to rESAT-6-CFP10 fusion protein in untreated TB. These responses were reversed during early treatment of TB.

Conclusions

These observations support further investigations into the possible utility of these parameters as markers of active disease and favourable treatment outcomes.  相似文献   

6.

Objectives

To explore the change and its significance of cytokines in patients with pulmonary tuberculosis complicated with COPD.

Methods

The immune function of 152 cases of pulmonary tuberculosis with COPD was detected to compare with 150 cases of patients with pulmonary tuberculosis, 157 cases of patients with COPD and 50 cases of healthy volunteers who were in the hospital during the same period. T lymphocyte cell population in peripheral blood was detected by flow cytometry. The serum levels of sIL-2R, IL-6, IFN-γ, TNF-α were measured using ELISA.

Results

The percentage of CD4+ T cells in TB patients with or without COPD and COPD patients without TB was significantly lower than that in control group. The percentage of CD4+ T cells in patients with TB and COPD was significantly lower than that in the non-COPD TB patients. The percentage of CD8+ T cells was higher in the TB patients group than that in control group. The CD4+/CD8+ ratio in the TB patients group was significantly lower than that in control group. The concentrations of sIL-2R, IL-6, TNF-α, IFN-γ in TB patients with or without COPD and COPD patients without TB were significantly higher than those in control group. In addition, sIL-2R, IL-6, TNF-α concentrations in the patients with TB and COPD were higher than those in the non-COPD TB patients. The concentrations of sIL-2R, IL-6, TNF-α, IFN-γ in COPD patients with TB were significantly higher than those in COPD patients without TB. There was a significant negative correlation between serum levels of TNF-α, IL-6 and FEV1 (%, predicted) in COPD without TB group.

Conclusions

The patients with pulmonary tuberculosis complicated with COPD were impaired in cellular immunity, and its extent of immune impairment is more serious than those of the patients with pulmonary tuberculosis and the patients with COPD.  相似文献   

7.

Background

T cells producing multiple factors have been shown to be required for protection from disease progression in HIV but we have recently shown this not to be the case in TB. Subjects with active disease had a greater proportion of polyfunctional cells responding to ESAT-6/CFP-10 stimulation than their infected but non-diseased household contacts (HHC). We therefore wanted to assess this profile in subjects who had successfully completed standard TB chemotherapy.

Methods

We performed a cross-sectional study using PBMC from TB cases (pre- and post-treatment) and HHC. Samples were stimulated overnight with TB antigens (ESAT-6/CFP-10 and PPD) and their CD4+ and CD8+ T cells were assessed for production of CD107a, IFN-γ, IL-2 and TNF-α and the complexity of the responses was determined using SPICE and PESTLE software.

Results and Conclusions

We found that an increase in complexity (i.e., production of more than 1 factor simultaneously) of the T cell profile was associated with TB disease and that this was significantly reduced following TB treatment. This implies that T cells are able to respond adequately to TB antigens with active disease (at least initially) but the ability of this response to protect the host from disease progression is hampered, presumably due to immune evasion strategies by the bacteria. These findings have implications for the development of new diagnostics and vaccine strategies.  相似文献   

8.

Background

Although currently available IGRA have been reported to be promising markers for TB infection, they cannot distinguish active tuberculosis (TB) from latent infection (LTBI).

Objective

Children with LTBI, active TB disease or uninfected were prospectively evaluated by an in-house ELISPOT assay in order to investigate possible immunological markers for a differential diagnosis between LTBI and active TB.

Methods

Children at risk for TB infection prospectively enrolled in our infectious disease unit were evaluated by in-house IFN-γ and IL-2 based ELISPOT assays using a panel of Mycobacterium tuberculosis antigens.

Results

Twenty-nine children were classified as uninfected, 21 as LTBI and 25 as active TB cases (including 5 definite and 20 probable cases). Significantly higher IFN-γ ELISPOT responses were observed in infected vs. uninfected children for ESAT-6 (p<0.0001), CFP-10 (p<0.0001), TB 10.3 (p = 0.003), and AlaDH (p = 0.001), while differences were not significant considering Ag85B (p = 0.063), PstS1 (p = 0.512), and HspX (16 kDa) (p = 0.139). IL-2 ELISPOT assay responses were different for ESAT-6 (p<0.0001), CFP-10 (p<0.0001), TB 10.3 (p<0.0001), HspX (16 kDa) (p<0.0001), PstS1 (p<0.0001) and AlaDH (p = 0.001); but not for Ag85B (p = 0.063). Comparing results between children with LTBI and those with TB disease differences were significant for IFN-γ ELISPOT only for AlaDH antigen (p = 0.021) and for IL-2 ELISPOT assay for AlaDH (p<0.0001) and TB 10.3 antigen (p = 0.043). ROC analyses demonstrated sensitivity of 100% and specificity of 81% of AlaDH-IL-2 ELISPOT assay in discriminating between latent and active TB using a cut off of 12.5 SCF per million PBMCs.

Conclusion

Our data suggest that IL-2 based ELISPOT with AlaDH antigen may be of help in discriminating children with active from those with latent TB.  相似文献   

9.

Background

IFN-γ is presently the only soluble immunological marker used to help diagnose latent Mycobacterium tuberculosis (M.tb) infection. However, IFN-γ is not available to distinguish latent from active TB infection. Moreover, extrapulmonary tuberculosis, such as tuberculous pleurisy, cannot be properly diagnosed by IFN-γ release assay. As a result, other disease- or infection-related immunological biomarkers that would be more effective need to be screened and identified.

Methodology

A panel of 41 soluble immunological molecules (17 cytokines and 24 chemokines) was tested using Luminex liquid array-based multiplexed immunoassays. Samples, including plasma and pleural effusions, from healthy donors (HD, n = 12) or patients with latent tuberculosis infection (LTBI, n = 20), pulmonary tuberculosis (TB, n = 12), tuberculous pleurisy (TP, n = 15) or lung cancer (LC, n = 15) were collected and screened for soluble markers. Peripheral blood mononuclear cells (PBMCs) and pleural fluid mononuclear cells (PFMCs) were also isolated to investigate antigen-specific immune factors.

Principal Findings

For the 41 examined factors, our results indicated that three patterns were closely associated with infection and disease. (1) Significantly elevated plasma levels of IL-2, IP-10, CXCL11 and CXCL12 were present in both patients with tuberculosis and in a sub-group participant with latent tuberculosis infection who showed a higher level of IFN-γ producing cells by ELISPOT assay compared with other latently infected individuals. (2) IL-6 and IL-9 were only significantly increased in plasma from active TB patients, and the two factors were consistently highly secreted after M.tb antigen stimulation. (3) When patients developed tuberculous pleurisy, CCL1, CCL21 and IL-6 were specifically increased in the pleural effusions. In particular, these three factors were consistently highly secreted by pleural fluid mononuclear cells following M.tb-specific antigen stimulation. In conclusion, our data imply that the specific secretion of soluble immunological factors, in addition to IFN-γ, may be used to evaluate M.tb infection and tuberculosis disease.  相似文献   

10.

Background

Recently we and others have identified CD8 and CD4 T cell epitopes within the highly expressed M. tuberculosis protein TB10.4. This has enabled, for the first time, a comparative study of the dynamics and function of CD4 and CD8 T cells specific for epitopes within the same protein in various stages of TB infection.

Methods and Findings

We focused on T cells directed to two epitopes in TB10.4; the MHC class I restricted epitope TB10.4 3–11 (CD8/10.4 T cells) and the MHC class II restricted epitope TB10.4 74–88 (CD4/10.4 T cells). CD4/10.4 and CD8/10.4 T cells displayed marked differences in terms of expansion and contraction in a mouse TB model. CD4/10.4 T cells dominated in the early phase of infection whereas CD8/10.4 T cells were expanded after week 16 and reached 5–8 fold higher numbers in the late phase of infection. In the early phase of infection both CD4/10.4 and CD8/10.4 T cells were characterized by 20–25% polyfunctional cells (IL-2+, IFN-γ+, TNF-α+), but whereas the majority of CD4/10.4 T cells were maintained as polyfunctional T cells throughout infection, CD8/10.4 T cells differentiated almost exclusively into effector cells (IFN-γ+, TNF-α+). Both CD4/10.4 and CD8/10.4 T cells exhibited cytotoxicity in vivo in the early phase of infection, but whereas CD4/10.4 cell mediated cytotoxicity waned during the infection, CD8/10.4 T cells exhibited increasing cytotoxic potential throughout the infection.

Conclusions/Significance

Our results show that CD4 and CD8 T cells directed to epitopes in the same antigen differ both in their kinetics and functional characteristics throughout an infection with M. tuberculosis. In addition, the observed strong expansion of CD8 T cells in the late stages of infection could have implications for the development of post exposure vaccines against latent TB.  相似文献   

11.
L Fan  HP Xiao  ZY Hu  JD Ernst 《PloS one》2012,7(8):e42716

Objective

To determine the variation of IFN-γ and IL-17 responses to M. tuberculosis antigens in healthy TST+ humans.

Methods

We isolated peripheral blood mononuclear cells from 21 TST+ healthy adults, stimulated them with phytohemagglutinin (PHA), PPD, Ag85B, ESAT-6, and live M. bovis BCG, and assayed IFN-γ and IL-17 secretion by ELISA in supernatants after 24 or 72 hours of incubation respectively.

Results

As in other studies, we found a wide range of IFN-γ responses to M. tuberculosis antigens; the variation significantly exceeded that observed in the same donors to the polyclonal T cell stimulus, phytohemagglutinin (PHA). In addition, we assayed IL-17 secretion in response to the same stimuli, and found less subject-to-subject variation. Analysis of the ratio of IFN-γ to IL-17 secretion on a subject-to-subject basis also revealed a wide range, with the majority of results distributed in a narrow range, and a minority with extreme results all of which were greater than that in the majority of subjects. The data suggest that study of exceptional responses to M. tuberculosis antigens may reveal immunologic correlates with specific outcomes of M. tuberculosis infection.

Conclusion

Variation of IFNγ and IFN-γ/IL-17 responses to mycobacterial antigens exceeds that of responses to the polyclonal stimulus, PHA, in TST positive healthy humans. This indicates a quantitative spectrum of human immune responses to infection with M. tuberculosis. Since the outcome of human infection with M. tuberculosis varies greatly, systematic study of multiple immune responses to multiple antigens is likely to reveal correlations between selected immune responses and the outcomes of infection.  相似文献   

12.
Tuberculosis (TB) is among the leading causes of morbidity and mortality. The causative agent, Mycobacterium tuberculosis (Mtb), has evolved virulent factors for entry, survival, multiplication and immune evasion. Rv2031 (also called alpha crystallin, hspX, 16-kDa antigen), one of the most immunogenic latency antigens, is believed to play a key role in long-term viability of Mtb. Here, we report the dynamics of pro-inflammatory (IFN-γ, TNF-α) and anti-inflammatory (IL-10) cytokines against Rv2031 using whole blood assay in human cohorts in a TB endemic setting. Cytokine responses to ESAT-6-CFP-10 were also measured for comparison. Blood samples were collected from smear positive pulmonary TB patients and their contacts at baseline, 6 and 12 months, and from community controls at entry. At baseline, 54.4% of controls and 73.2% of contacts were QFT-GIT test positive. Baseline IFN-γ, TNF-α and IL-10 responses to Rv2031 were significantly higher in controls compared to contacts and untreated patients (p<0.001). Furthermore, untreated patients had significantly higher TNF-α and IL-10 responses to Rv2031 compared to contacts (p<0.001). In contacts and treated patients, IFN-γ, TNF-α and IL-10 responses to Rv2031 significantly increased over 12 months (p<0.0001) and became comparable with the corresponding levels in controls. There was a positive and significant correlation between Rv2031 and ESAT-6-CFP-10 specific cytokine responses in each study group. The fact that the levels of IFN-γ, TNF-α and IL-10 against Rv2031 were highest during latent TB infection may indicate their potential as markers of protection against TB. Taken together, the findings of this study suggest the potential of IFN-γ, TNF-α and IL-10 against Rv2031 as biomarkers of the host response to Mtb during convalescence from, and the absence of, active tuberculosis.  相似文献   

13.

Background

Although Type 1 cytokine responses are considered protective in pulmonary tuberculosis (PTB), their role as well as those of Type 2, 17 and immunoregulatory cytokines in tuberculous lymphadenitis (TBL) and latent tuberculosis (LTB) have not been well studied.

Aim and Methods

To identify cytokine responses associated with pulmonary tuberculosis (TB), TB lymphadenitits and latent TB, we examined mycobacterial antigen-specific immune responses of PTB, TBL and LTB individuals. More specifically, we examined ESAT-6 and CFP-10 induced Type 1, Type 2 and Type 17 cytokine production and their regulation using multiplex ELISA.

Results

PTB individuals exhibited a significantly lower baseline as well as antigen-specific production of Type 1 (IFNγ, TNFα and IL-2); Type 2 (IL-4) and Type 17 (IL-17A and IL-17F) cytokines in comparison to both TBL and LTB individuals. TBL individuals exhibited significantly lower antigen-specific IFNγ responses alone in comparison to LTB individuals. Although, IL-10 levels were not significantly higher, neutralization of IL-10 during antigen stimulation resulted in significantly enhanced production of IFNγ, IL-4 and IL-17A in PTB individuals, indicating that IL-10 mediates (at least partially) the suppression of cytokine responses in PTB.

Conclusion

Pulmonary TB is characterized by an IL-10 dependent antigen-specific suppression of Type 1, Type 2 and Type 17 cytokines, reflecting an important association of these cytokines in the pathogenesis of active TB.  相似文献   

14.

Background

Chronic hepatitis C (CHC) patients achieving rapid virological response (RVR) on PEG-IFN/ribavirin (P/R) therapy have high chance of sustained virological response (SVR). To analyze host immunological factors associated with RVR, viral kinetics, phenotype distribution and Th1/Th2 cytokine production by peripheral blood mononuclear cells (PBMC) were studied prior to and during P/R therapy.

Methods

TNF-α, IFN-γ, IL-2, IL-6, IL-4 and IL-10 production by PBMC were measured after Toll-like receptor 4 (TLR-4) or phorbol myristate acetate/Ionomycin stimulation in 20 healthy controls and in 50 CHC patients before receiving and during P/R therapy. RVR was achieved by 14, complete early virological response (cEVR) by 19 patients and 17 patients were null-responders (NR).

Results

Patients with RVR showed an increased baseline TNF-α and IL-6 production by TLR-4 activated monocytes and increased IFN-γ, decreased IL-4 and IL-10 production by lymphocytes compared to non-RVR patients. SVR was also associated with increased baseline TNF-α production and decreased IL-10 levels compared to patients who did not achieve SVR. Baseline IL-2 production was higher in cEVR compared to NR patients. Antiviral treatment increased TNF-α, IL-6 production by monocytes and IFN-γ secretion by lymphocytes and decreased IL-4 and IL-10 production by lymphocytes in cEVR compared to NR patients.

Conclusion

RVR was associated with increased baseline proinflammatory cytokine production by TLR-4 stimulated monocytes and by activated lymphocytes. In null-responders and in patients who did not achieve SVR both TLR-4 sensing function and proinflammatory cytokine production were impaired, suggesting that modulation of TLR activity and controlled induction of inflammatory cytokine production may provide further therapeutic strategy for CHC patients non-responding to P/R treatment.  相似文献   

15.

Background

Hand-food-mouth disease (HFMD) cases can be fatal. These cases develop rapidly, and it is important to predict the severity of HFMD from mild to fatal and to identify risk factors for mild HFMD. The objective of this study was to correlate the levels of serum inflammatory cytokines with HFMD severity.

Methods

This study was designed as a nested serial case-control study. The data collected included general information, clinical symptoms and signs, laboratory findings and serum cytokine levels.

Results

The levels of IL-4, IL-6, IL-10, TNF-α and IFN-γ in patients with severe HFMD were significantly higher than in mild patients during the 2nd to 5th day after disease onset. The levels of IL-4, IL-6, IL-10 and IFN-γ increased from the 2nd day to the 4th day and later decreased. The levels of TNF-α were high on the first two days and subsequently decreased. The changes of IL-10, TNF-α and IFN-γ in the controls were similar for all cases. The levels of IL-4, IL-6 and IL-17 in the controls were not significantly different with the progression of HFMD.

Conclusions

Our findings indicate that the IL-4, IL-6, IL-10, TNF-α and IFN-γ levels correlate with HFMD severity.  相似文献   

16.

Background

To evaluate interleukin (IL)-2 and interferon (IFN)-γ secreting T-cells in parallel for the differentiation of latent infection with Mycobacterium tuberculosis infection (LTBI) from active tuberculosis.

Methods

Following ex-vivo stimulation of peripheral blood mononuclear cells (PBMC) with M. tuberculosis-specific antigens early secretory antigenic target (ESAT)-6 and culture filtrate protein (CFP)-10, immune responses were assessed by enzyme-linked immunospot IFN-γ release assay (EliSpot-IGRA) and a novel dual cytokine detecting fluorescence-linked immunospot (FluoroSpot) in 18 patients with pulmonary tuberculosis, 10 persons with previously cured tuberculosis, 25 individuals with LTBI and 16 healthy controls.

Results

Correlation of IFN- γ+ spot-forming cells in EliSpot-IGRA and FluoroSpot were R2 = 0.67 for ESAT-6 and R2 = 0.73 for CFP-10. The number of IL-2- IFN- γ+ producing cells was higher in patients with tuberculosis compared with past tuberculosis (CFP-10-induced p = 0.0068) or individuals with LTBI (ESAT-6-induced p = 0.0136). A cutoff value of >16 CFP-10-induced IFN-γ+ secreting cells/200.000 PBMC in the EliSpot-IGRA discriminated with highest sensitivity and specificity (89% and 76%, respectively). However, overlap in cytokine responses precludes distinction between the cohorts on an individual basis.

Conclusions

Combined analysis of IFN-γ and IL-2 secretion by antigen specific T-cells does not allow a reliable differentiation between different states of M. tuberculosis infection in clinical practice.  相似文献   

17.

Background

The Mycobacterium tuberculosis (Mtb)-specific T-cell interferon gamma release assays (IGRAs) are useful in detecting Mtb infection but perform poorly at distinguishing active tuberculosis disease (ATB) and latent tuberculosis infection (LTBI). This study is aimed at evaluating additional cytokines as biomarkers besides interferon-gamma (IFN-γ) to improve the identification of ATB and LTBI.

Methodology/Principal Findings

Sixty-six patients with ATB, 73 household contacts (HHC) of ATB patients and 76 healthy controls (HC) were recruited to undergo QuantiFERON TB GOLD in-tube assay (QFT) and the enzyme-linked immunosorbent assay (ELISA) where the release of IFN-γ, IFN-γ inducible protein 10 (IP-10), Interleukin 2 (IL-2) and Tumor Necrosis Factor-α (TNF-α) was determined in the whole blood with or without antigen-stimulation. The positive rates of the QFT, IP-10 and IL-2 tests were 86.4%, 89.4% and 86.4% for the ATB group with no difference between them (p>0.05). However, QFT in combination with IP-10 and IL-2 significantly increased the detection rate to 95.5% in the ATB group (p = 0.03) and the indeterminate rate of all samples decreased from 2.3% (5/215) to 0.4% (1/215). The un-stimulated level of IP-10 was significantly higher in the HHC than the ATB and HC groups. The IP-10 responses were strongly associated with extended Mtb exposure time and the degree of smear-positivity of the index cases. The IL-2/IFN-γ ratio in the antigen-stimulated plasma could discriminate LTBI from ATB with a sensitivity of 77.2% and a specificity of 87.2%.

Conclusion

The increased Mtb-specific antigen-stimulated expression of IP-10 and IL-2 may be useful for detecting both ATB and LTBI. Combining the QFT with IP-10 and IL-2 could increase the detection accuracy of active TB over the QFT alone.  相似文献   

18.

Background

Tuberculosis (TB) is a disease caused by the chronic and continuous infection of the pathogen Mycobacterium tuberculosis (M. tuberculosis). M. tuberculosis is an intracellular bacterial pathogen and is eliminated mainly through CD4+ effector Th cells. M. tuberculosis induces regulatory T lymphocytes (Tregs) that mediate immune suppression by cell-to-cell contact or by secreting cytokines such as transforming growth factor-β (TGF-β). To understand the role of regulatory T-cells in the pathogenesis of TB, we have measured the in vivo frequency of regulatory T-cells and associated in vivo cytokine production in pulmonary tuberculosis patients.

Methodology/Principal Findings

In this study, we analyzed blood samples from 3 different populations (Group 1: patients with active TB, Group 2: patients recovered from TB and Group 3: healthy controls). We measured natural regulatory T-cell expression in peripheral blood using flow cytometry, and levels of blood serum IFN-γ and TGF-β1 using ELISA. The in vivo function of inductive regulatory T cells was mainly indicated by the expression of IFN-γ, TGF-β1, etc. Frequencyof natural regulatory T cells and inductive regulatory T cells in the peripheral blood samples from Group 1 patients were all significantly higher (P<0.05) than those from Groups 2 and 3.

Conclusion/Significance

Our results indicate that frequency of natural regulatory T cells and inductive regulatory T cells are significantly higher in the peripheral blood of patients with active pulmonary tuberculosis. These findings have potential application in improving TB diagnostic methods.  相似文献   

19.
20.

Background

Cytokines are the hallmark of immune response to different pathogens and often dictate the disease outcome. HIV infection and tuberculosis (TB) are more destructive when confronted together than either alone. Clinical data related to the immune status of HIV-TB patients before the initiation of any drug therapy is not well documented. This study aimed to collect the baseline information pertaining to the immune status of HIV-TB co-infected patients and correlate the same with CD4+T cell levels and viral loads at the time of diagnosis prior to any drug therapy.

Methodology/Principal Findings

We analyzed the cytokines, CD4+T cell levels and viral loads to determine the immune environment in HIV-TB co-infection. The study involved four categories namely, Healthy controls (n = 57), TB infected (n = 57), HIV infected (n = 59) and HIV-TB co-infected (n = 57) patients. The multi-partite comparison and correlation between cytokines, CD4+T-cell levels and viral loads prior to drug therapy, showed an altered TH1 and TH2 response, as indicated by the cytokine profiles and skewed IFN-γ/IL-10 ratio. Inadequate CD4+T cell counts in HIV-TB patients did not correlate with high viral loads and vice-versa. When compared to HIV category, 34% of HIV-TB patients had concurrent high plasma levels of IL-4 and TNF-α at the time of diagnosis. TB relapse was observed in 5 of these HIV-TB co-infected patients who also displayed high IFN-γ/IL-10 ratio.

Conclusion/Significance

With these studies, we infer (i) CD4+T-cell levels as baseline criteria to report the disease progression in terms of viral load in HIV-TB co-infected patients can be misleading and (ii) co-occurrence of high TNF-α and IL-4 levels along with a high ratio of IFN-γ/IL-10, prior to drug therapy, may increase the susceptibility of HIV-TB co-infected patients to hyper-inflammation and TB relapse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号