首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Augmin is a protein complex that binds to spindle microtubules (MTs), recruits the potent MT nucleator, γ-tubulin, and thereby promotes the centrosome-independent MT generation within mitotic and meiotic spindles. Augmin is essential for acentrosomal spindle assembly, which is commonly observed during mitosis in plants and meiosis in female animals. In many animal somatic cells that possess centrosomes, the centrosome- and augmin-dependent mechanisms work cooperatively for efficient spindle assembly and cytokinesis. Yeasts have lost the augmin genes during evolution. It is hypothesized that their robust MT nucleation from the spindle pole body (SPB), the centrosome-equivalent structure in fungi, compensates for the lack of augmin. Intriguingly, however, a gene homologous to an augmin subunit (Aug6/AUGF) has been found in the genome of filamentous fungi, which has the SPB as a robust MT nucleation centre. Here, we aimed to clarify if the augmin complex is present in filamentous fungi and to identify its role in mitosis. By analysing the Aug6-like gene in the filamentous fungus Aspergillus nidulans, we found that it forms a large complex with several other proteins that share weak but significant homology to known augmin subunits. In A. nidulans, augmin was enriched at the SPB and also associated with spindle MTs during mitosis. However, the augmin gene disruptants did not exhibit growth defects under normal, checkpoint-deficient, or MT-destabilised conditions. Moreover, we obtained no evidence that A. nidulans augmin plays a role in γ-tubulin recruitment or in mitotic cell division. Our study uncovered the conservation of the augmin complex in the fungal species, and further suggests that augmin has several functions, besides mitotic spindle MT nucleation, that are yet to be identified.  相似文献   

2.
A mutation screen in Aspergillus nidulans uncovered mutations in the acdX gene that led to altered repression by acetate, but not by glucose. AcdX of A. nidulans is highly conserved with Spt8p of Saccharomyces cerevisiae, and since Spt8p is a component of the Spt-Ada-Gcn5 Acetyltransferase (SAGA) complex, the SAGA complex may have a role in acetate repression in A. nidulans. We used a bioinformatic approach to identify genes encoding most members of the SAGA complex in A. nidulans, and a proteomic analysis to confirm that most protein components identified indeed exist as a complex in A. nidulans. No apparent compositional differences were detected in mycelia cultured in acetate compared to glucose medium. The methods used revealed apparent differences between Yeast and A. nidulans in the deubiquitination (DUB) module of the complex, which in S. cerevisiae consists of Sgf11p, Sus1p, and Ubp8p. Although a convincing homologue of S. cerevisiae Ubp8p was identified in the A. nidulans genome, there were no apparent homologues for Sus1p and Sgf11p. In addition, when the SAGA complex was purified from A. nidulans, members of the DUB module were not co-purified with the complex, indicating that functional homologues of Sus1p and Sgf11p were not part of the complex. Thus, deubiquitination of H2B-Ub in stress conditions is likely to be regulated differently in A. nidulans compared to S. cerevisiae.  相似文献   

3.
The multifunctional regulator VelB physically interacts with other velvet regulators and the resulting complexes govern development and secondary metabolism in the filamentous fungus Aspergillus nidulans. Here, we further characterize VelB’s role in governing asexual development and conidiogenesis in A. nidulans. In asexual spore formation, velB deletion strains show reduced number of conidia, and decreased and delayed mRNA accumulation of the key asexual regulatory genes brlA, abaA, and vosA. Overexpression of velB induces a two-fold increase of asexual spore production compared to wild type. Furthermore, the velB deletion mutant exhibits increased conidial germination rates in the presence of glucose, and rapid germination of conidia in the absence of external carbon sources. In vivo immuno-pull-down analyses reveal that VelB primarily interacts with VosA in both asexual and sexual spores, and VelB and VosA play an inter-dependent role in spore viability, focal trehalose biogenesis and control of conidial germination. Genetic and in vitro studies reveal that AbaA positively regulates velB and vosA mRNA expression during sporogenesis, and directly binds to the promoters of velB and vosA. In summary, VelB acts as a positive regulator of asexual development and regulates spore maturation, focal trehalose biogenesis and germination by interacting with VosA in A. nidulans.  相似文献   

4.
5.
Citrate synthase is a central activity in carbon metabolism. It is required for the tricarboxylic acid (TCA) cycle, respiration, and the glyoxylate cycle. In Saccharomyces cerevisiae and Arabidopsis thaliana, there are mitochondrial and peroxisomal isoforms encoded by separate genes, while in Aspergillus nidulans, a single gene, citA, encodes a protein with predicted mitochondrial and peroxisomal targeting sequences (PTS). Deletion of citA results in poor growth on glucose but not on derepressing carbon sources, including those requiring the glyoxylate cycle. Growth on glucose is restored by a mutation in the creA carbon catabolite repressor gene. Methylcitrate synthase, required for propionyl-coenzyme A (CoA) metabolism, has previously been shown to have citrate synthase activity. We have been unable to construct the mcsAΔ citAΔ double mutant, and the expression of mcsA is subject to CreA-mediated carbon repression. Therefore, McsA can substitute for the loss of CitA activity. Deletion of citA does not affect conidiation or sexual development but results in delayed conidial germination as well as a complete loss of ascospores in fruiting bodies, which can be attributed to loss of meiosis. These defects are suppressed by the creA204 mutation, indicating that McsA activity can substitute for the loss of CitA. A mutation of the putative PTS1-encoding sequence in citA had no effect on carbon source utilization or development but did result in slower colony extension arising from single conidia or ascospores. CitA-green fluorescent protein (GFP) studies showed mitochondrial localization in conidia, ascospores, and hyphae. Peroxisomal localization was not detected. However, a very low and variable detection of punctate GFP fluorescence was sometimes observed in conidia germinated for 5 h when the mitochondrial targeting sequence was deleted.There has been increased interest in primary carbon metabolism in fungi in recent years. There are two main reasons for this. As fungal pathogens establish infection they must adapt their utilization of carbon sources to the substrates present in the new environment of the host cells (reviewed in reference 6). With many of the fungal genomes available, the number of genes encoding enzymes and transporters potentially involved in central metabolism has become apparent and is greater than might have been anticipated (for example, see reference 16). Deciphering this complexity requires not only genome-wide studies but also detailed studies of individual genes encoding these proteins in order to determine their regulation and the cellular localization of the proteins, as well as their roles in metabolism and development. Here we report molecular genetic analysis of the citA gene encoding citrate synthase (EC 4.1.3.7), a central enzyme of carbon metabolism, in the filamentous ascomycete Aspergillus nidulans.Citrate synthase is required for the formation of citrate from acetyl-coenzyme A (CoA) and oxaloacetate in the tricarboxylic acid (TCA) cycle and is therefore necessary for respiratory growth as well as for the generation of intermediates for biosynthetic reactions. Together with aconitase, malate dehydrogenase, isocitrate lyase, and malate synthase, it is also an essential enzyme in the glyoxylate cycle, which is necessary for growth on carbon sources such as acetate, ethanol, and fatty acids which are catabolized via acetyl-CoA (reviewed in reference 26).In Saccharomyces cerevisiae the mitochondrial Cit1 is the major citrate synthase of the TCA cycle. An additional enzyme, Cit2, is peroxisomally localized via a C-terminal peroxisomal targeting sequence (PTS1) (29). In response to mitochondrial dysfunction CIT2 is upregulated via the retrograde response mediated by RTG1, -2, and -3, while mitochondrial respiratory deficiency results in RTG-dependent expression of CIT1 as well as that of aconitase (ACO1) and isocitrate dehydrogenase (IDH1 and IDH2), all enzymes necessary for 2-oxoglutarate formation and hence the synthesis of glutamate required for amino acid biosynthesis (9, 15, 30). In addition a third gene, CIT3, encodes a mitochondrial enzyme with citrate synthase activity. This enzyme has greater activity with propionyl-CoA, forming methylcitrate, and is necessary for the mitochondrial methylcitrate cycle involved in the metabolism of propionate (24). Cit2 has also been proposed to have methylcitrate synthase activity (17).In S. cerevisiae Cit2 also plays a role in the transfer of acetyl-CoA generated in peroxisomes by β-oxidation of fatty acids or by ethanol and acetate metabolism in the cytoplasm to the mitochondria for metabolism via the TCA cycle. There are two alternative pathways: transfer as acetyl-carnitine formed by the peroxisomal/mitochondrial carnitine acetyltransferase Cat2, together with the cytoplasmic Yat1 and Yat2 carnitine acetyltransferases, or transfer via citrate formed by Cit2 (45, 51, 52). Only disruption of both pathways (e.g., by deletion of CAT2 and CIT2) results in a growth defect on fatty acids. The fact that deletion of CIT2 is not essential for utilization of carbon sources metabolized via acetyl-CoA indicates that mitochondrial citrate synthase activity can replace the peroxisomal activity in the glyoxylate cycle. In contrast, in the pathogenic yeast Candida albicans, there is a single gene for citrate synthase and it is mitochondrial, and acetyl-CoA transport to mitochondria is solely dependent on the carnitine pathway (43, 57). In the plant Arabidopsis thaliana, there are five genes encoding citrate synthase enzymes. Two are peroxisomal (CSY2 and CSY3) and required for fatty acid respiration and seed germination, indicating that carnitine acetyltransferases are not required for shuttling acetyl units to the mitochondria (37).The filamentous ascomycete Aspergillus nidulans has both citrate synthase-encoding and methylcitrate synthase-encoding genes, citA and mcsA, respectively (8, 36). In both A. nidulans and Aspergillus fumigatus it has been shown that McsA is mitochondrial and has both methylcitrate and citrate synthase activities and is required for propionyl-CoA metabolism (8, 22, 31). Cell fractionation studies have shown that citrate synthase activity colocalizes with the mitochondrial fraction (35), and an N-terminal mitochondrial targeting sequence is predicted by the gene sequence (36). However, CitA has a putative C-terminal peroxisomal targeting sequence (PTS1 AKL), and genes in some filamentous ascomycetes also have potential PTS1 sequences (see below). The role of peroxisomal citrate synthase activity is not at all clear. The acuJ-encoded peroxisomal/mitochondrial carnitine acetyltransferase is required for growth on both fatty acids and acetate, while the facC-encoded cytoplasmic enzyme is required for growth on acetate (1, 20, 42). Therefore, like C. albicans, the carnitine shuttle is absolutely required for acetyl-CoA intracellular transport.Because of our interest in the role of peroxisomes in fatty acid and acetate metabolism in A. nidulans (21), we have investigated phenotypes resulting from deletion of the citA gene. Our results indicate that loss of CreA-mediated carbon repression allows expression of mcsA, resulting in the restoration of sufficient citrate synthase activity to suppress growth and developmental defects resulting from citAΔ. We have also investigated the role of peroxisomal localization of CitA and found this is at most extremely low and does not play a major role.  相似文献   

6.

Background

Gene silencing triggered by chemically synthesized small interfering RNAs (siRNAs) has become a powerful tool for deciphering gene function in many eukaryotes. However, prediction and validation of a single siRNA duplex specific to a target gene is often ineffective. RNA interference (RNAi) with synthetic siRNA suffers from lower silencing efficacy, off-target effects and is cost-intensive, especially for functional genomic studies. With the explosion of fungal genomic information, there is an increasing need to analyze gene function in a rapid manner. Therefore, studies were performed in order to investigate the efficacy of gene silencing induced by RNase III-diced-siRNAs (d-siRNA) in model filamentous fungus, Aspergillus nidulans.

Methodology/Principal Findings

Stable expression of heterologous reporter gene in A. nidulans eases the examination of a new RNAi-induction route. Hence, we have optimized Agrobacterium tumefaciens-mediated transformation (AMT) of A. nidulans for stable expression of sGFP gene. This study demonstrates that the reporter GFP gene stably introduced into A. nidulans can be effectively silenced by treatment of GFP-d-siRNAs. We have shown the down-regulation of two endogenous genes, AnrasA and AnrasB of A. nidulans by d-siRNAs. We have also elucidated the function of an uncharacterized Ras homolog, rasB gene, which was found to be involved in hyphal growth and development. Further, silencing potency of d-siRNA was higher as compared to synthetic siRNA duplex, targeting AnrasA. Silencing was shown to be sequence-specific, since expression profiles of other closely related Ras family genes in d-siRNA treated AnrasA and AnrasB silenced lines exhibited no change in gene expression.

Conclusions/Significance

We have developed and applied a fast, specific and efficient gene silencing approach for elucidating gene function in A. nidulans using d-siRNAs. We have also optimized an efficient AMT in A. nidulans, which is useful for stable integration of transgenes.  相似文献   

7.
8.
9.
10.
Although the high affinity Ca2+ channel, Cch1, and its subunit Mid1 have been investigated and evaluated in yeast and some of filamentous fungi, little is known about the function of their homologs in the Aspergilli. Here, we have functionally characterized the yeast homologs, CchA and MidA, in Aspergillus nidulans using conditional and null deletion mutants. CchA and MidA not only have functional benefits of fast growth, which is consistent with Cch1 and Mid1 in yeast, but also have unique and complex roles in regulating conidiation, hyphal polarity and cell wall components in low-calcium environments. The defect of CchA or MidA resulted in a sharp reduction in the number of conidiospores, accompanied by abnormal metulae, and undeveloped-phialides at a higher density of inoculum. Most interestingly, these conidiation defects in mutants can, remarkably, be rescued either by extra-cellular Ca2+ in a calcineurin-dependent way or by osmotic stress in a calcineurin-independent way. Moreover, the fact that the phenotypic defects are not exacerbated by the presence of the double deletion, together with the Y2H assay, indicates that CchA and MidA may form a complex to function together. Our findings suggest that the high-affinity Ca2+ channel may represent a viable and completely unexplored avenue to reduce conidiation in the Aspergilli.  相似文献   

11.
The heavy chain of cytoplasmic dynein is required for nuclear migration in Aspergillus nidulans and other fungi. Here we report on a new gene required for nuclear migration, nudG, which encodes a homologue of the “8-kD” cytoplasmic dynein light chain (CDLC). We demonstrate that the temperature sensitive nudG8 mutation inhibits nuclear migration and growth at restrictive temperature. This mutation also inhibits asexual and sexual sporulation, decreases the intracellular concentration of the nudG CDLC protein and causes the cytoplasmic dynein heavy chain to be absent from the mycelial tip, where it is normally located in wild-type mycelia. Coimmunoprecipitation experiments with antibodies against the cytoplasmic dynein heavy chain (CDHC) and the nudG CDLC demonstrated that some fraction of the cytoplasmic dynein light chain is in a protein complex with the CDHC. Sucrose gradient sedimentation analysis, however, showed that not all of the NUDG protein is complexed with the heavy chain. A double mutant carrying a cytoplasmic dynein heavy chain deletion plus a temperature-sensitive nudG mutation grew no more slowly at restrictive temperature than a strain with only the CDHC deletion. This result demonstrates that the effect of the nudG mutation on nuclear migration and growth is mediated through an interaction with the CDHC rather than with some other molecule (e.g., myosin-V) with which the 8-kD CDLC might theoretically interact.  相似文献   

12.
13.
The effect of various kinds of starch, as the sole source of organic carbon, on the biosynthesis of glucose oxidase by A. niger GIV-10 was examined. A. niger grown on 6% wheat starch medium provided extracellular and intracellular glucose oxidase with the highest enzymatic activities. A new method of intracellular glucose oxidase extraction (without disruption of mycelium), developed and discussed in this paper, increased 2 to 3.8-times glucose oxidase yield, as compared to that described earlier.  相似文献   

14.
15.
The psychostimulants d-amphetamine (AMPH) and methamphetamine (METH) release excess dopamine (DA) into the synaptic clefts of dopaminergic neurons. Abnormal DA release is thought to occur by reverse transport through the DA transporter (DAT), and it is believed to underlie the severe behavioral effects of these drugs. Here we compare structurally similar AMPH and METH on DAT function in a heterologous expression system and in an animal model. In the in vitro expression system, DAT-mediated whole-cell currents were greater for METH stimulation than for AMPH. At the same voltage and concentration, METH released five times more DA than AMPH and did so at physiological membrane potentials. At maximally effective concentrations, METH released twice as much [Ca2+]i from internal stores compared with AMPH. [Ca2+]i responses to both drugs were independent of membrane voltage but inhibited by DAT antagonists. Intact phosphorylation sites in the N-terminal domain of DAT were required for the AMPH- and METH-induced increase in [Ca2+]i and for the enhanced effects of METH on [Ca2+]i elevation. Calmodulin-dependent protein kinase II and protein kinase C inhibitors alone or in combination also blocked AMPH- or METH-induced Ca2+ responses. Finally, in the rat nucleus accumbens, in vivo voltammetry showed that systemic application of METH inhibited DAT-mediated DA clearance more efficiently than AMPH, resulting in excess external DA. Together these data demonstrate that METH has a stronger effect on DAT-mediated cell physiology than AMPH, which may contribute to the euphoric and addictive properties of METH compared with AMPH.The dopamine transporter (DAT)3 is a main target for psychostimulants, such as d-amphetamine (AMPH), methamphetamine (METH), cocaine (COC), and methylphenidate (Ritalin®). DAT is the major clearance mechanism for synaptic dopamine (DA) (1) and thereby regulates the strength and duration of dopaminergic signaling. AMPH and METH are substrates for DAT and competitively inhibit DA uptake (2, 3) and release DA through reverse transport (49). AMPH- and METH-induced elevations in extracellular DA result in complex neurochemical changes and profound psychiatric effects (2, 1016). Despite their structural and pharmacokinetic similarities, a recent National Institute on Drug Abuse report describes METH as a more potent stimulant than AMPH with longer lasting effects at comparable doses (17). Although the route of METH administration and its availability must contribute to the almost four times higher lifetime nonmedical use of METH compared with AMPH (18), there may also be differences in the mechanisms that underlie the actions of these two drugs on the dopamine transporter.Recent studies by Joyce et al. (19) have shown that compared with d-AMPH alone, the combination of d- and l-AMPH in Adderall® significantly prolonged the time course of extracellular DA in vivo. These experiments demonstrate that subtle structural features of AMPH, such as chirality, can affect its action on dopamine transporters. Here we investigate whether METH, a more lipophilic analog of AMPH, affects DAT differently than AMPH, particularly in regard to stimulated DA efflux.METH and AMPH have been reported as equally effective in increasing extracellular DA levels in rodent dorsal striatum (dSTR), nucleus accumbens (NAc) (10, 14, 20), striatal synaptosomes, and DAT-expressing cells in vitro (3, 6). John and Jones (21), however, have recently shown in mouse striatal and substantia nigra slices, that AMPH is a more potent inhibitor of DA uptake than METH. On the other hand, in synaptosomes METH inhibits DA uptake three times more effectively than AMPH (14), and in DAT-expressing COS-7 cells, METH releases DA more potently than AMPH (EC50 = 0.2 μm for METH versus EC50 = 1.7 μm for AMPH) (5). However, these differences do not hold up under all conditions. For example, in a study utilizing C6 cells, the disparity between AMPH and METH was not found (12).The variations in AMPH and METH data extend to animal models. AMPH- and METH-mediated behavior has been reported as similar (22), lower (20), or higher (23) for AMPH compared with METH. Furthermore, although the maximal locomotor activation response was less for METH than for AMPH at a lower dose (2 mg/kg, intraperitoneal), both drugs decreased locomotor activity at a higher dose (4 mg/kg) (20). In contrast, in the presence of a salient stimuli, METH is more potent in increasing the overall magnitude of locomotor activity in rats yet is equipotent with AMPH in the absence of these stimuli (23).The simultaneous regulation of DA uptake and efflux by DAT substrates such as AMPH and METH, as well as the voltage dependence of DAT (24), may confound the interpretation of existing data describing the action of these drugs. Our biophysical approaches allowed us to significantly decrease the contribution of DA uptake and more accurately determine DAT-mediated DA efflux with millisecond time resolution. We have thus exploited time-resolved, whole-cell voltage clamp in combination with in vitro and in vivo microamperometry and Ca2+ imaging to compare the impact of METH and AMPH on DAT function and determine the consequence of these interactions on cell physiology.We find that near the resting potential, METH is more effective than AMPH in stimulating DAT to release DA. In addition, at efficacious concentrations METH generates more current, greater DA efflux, and higher Ca2+ release from internal stores than AMPH. Both METH-induced or the lesser AMPH-induced increase in intracellular Ca2+ are independent of membrane potential. The additional Ca2+ response induced by METH requires intact phosphorylation sites in the N-terminal domain of DAT. Finally, our in vivo voltammetry data indicate that METH inhibits clearance of locally applied DA more effectively than AMPH in the rat nucleus accumbens, which plays an important role in reward and addiction, but not in the dorsal striatum, which is involved in a variety of cognitive functions. Taken together these data imply that AMPH and METH have distinguishable effects on DAT that can be shown both at the molecular level and in vivo, and are likely to be implicated in the relative euphoric and addictive properties of these two psychostimulants.  相似文献   

16.
17.
Osteosarcoma is the most common primary malignancy of bone. Even after the traditional standard surgical therapy, metastasis still occurs in a high percentage of patients. Glucose is an important source of metabolic energy for tumor proliferation and survival. Tumors usually overexpress glucose transporters, especially hypoxia-responsive glucose transporter 1 and glucose transporter 3. Osteopontin, hypoxia-responsive glucose transporter 1, and glucose transporter 3 are overexpressed in many types of tumors and have been linked to tumorigenesis and metastasis. In this study, we investigated the regulation of glucose transporters by osteopontin in osteosarcoma. We observed that both glucose transporters and osteopontin were upregulated in hypoxic human osteosarcoma cells. Endogenously released osteopontin regulated the expression of glucose transporter 1 and glucose transporter 3 in osteosarcoma and enhanced glucose uptake into cells via the αvβ3 integrin. Knockdown of osteopontin induced cell death in 20% of osteosarcoma cells. Phloretin, a glucose transporter inhibitor, also caused cell death by treatment alone. The phloretin-induced cell death was significantly enhanced in osteopontin knockdown osteosarcoma cells. Combination of a low dose of phloretin and chemotherapeutic drugs, such as daunomycin, 5-Fu, etoposide, and methotrexate, exhibited synergistic cytotoxic effects in three osteosarcoma cell lines. Inhibition of glucose transporters markedly potentiated the apoptotic sensitivity of chemotherapeutic drugs in osteosarcoma. These results indicate that the combination of a low dose of a glucose transporter inhibitor with cytotoxic drugs may be beneficial for treating osteosarcoma patients.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号