首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
Eukaryotic cells control their proteome by regulating protein production and protein clearance. Protein production is determined to a large extent by mRNA levels, whereas protein degradation depends mostly upon the proteasome. Dysfunction of the proteasome leads to the accumulation of non-functional proteins that can aggregate, be toxic for the cell, and, in extreme cases, lead to cell death. mRNA levels are controlled by their rates of synthesis and degradation. Recent evidence indicates that these rates have oppositely co-evolved to ensure appropriate mRNA levels. This opposite co-evolution has been correlated with the mutations in the Ccr4-Not complex. Consistently, the deadenylation enzymes responsible for the rate-limiting step in eukaryotic mRNA degradation, Caf1 and Ccr4, are subunits of the Ccr4-Not complex. Another subunit of this complex is a RING E3 ligase, Not4. It is essential for cellular protein solubility and has been proposed to be involved in co-translational quality control. An open question has been whether this role of Not4 resides strictly in the regulation of the deadenylation module of the Ccr4-Not complex. However, Not4 is important for proper assembly of the proteasome, and the Ccr4-Not complex may have multiple functional modules that participate in protein quality control in different ways. In this work we studied how the functions of the Caf1/Ccr4 and Not4 modules are connected. We concluded that Not4 plays a role in protein quality control independently of the Ccr4 deadenylase, and that it is involved in clearance of aberrant proteins at least in part via the proteasome.  相似文献   

14.
15.
The filamentous fungusNeurospora crassais one of the best organisms for analysing the molecular basis of the circadian rhythm observed in asexual spore formation, conidiation. Many clock mutants in which the circadian conidiation rhythm has different characteristics compared to those in the wild-type strain have been isolated since the early 1970s. With the cloning of one of these clock genes,frq, the molecular basis of the circadian clock inNeurosporahas become gradually clearer. Physiological and pharmacological studies have also contributed to our understanding of the physiological basis of the circadian clock inNeurospora. These studies strongly indicate that the circadian clock is based on or is closely related to a network of metabolic processes for cellular activities. Based on these studies, it may be possible to isolate new types of clock mutants which should contribute to a better understanding of the molecular basis of the circadian clock inNeurospora.  相似文献   

16.
17.
All physicochemical and biological oscillators maintain a balance between destabilizing reactions (as, for example, intrinsic autocatalytic or amplifying reactions) and stabilizing processes. These two groups of processes tend to influence the period in opposite directions and may lead to temperature compensation whenever their overall influence balances. This principle of “antagonistic balance” has been tested for several chemical and biological oscillators. The Goodwin negative feedback oscillator appears of particular interest for modeling the circadian clocks in Neurospora and Drosophila and their temperature compensation. Remarkably, the Goodwin oscillator not only gives qualitative, correct phase response curves for temperature steps and temperature pulses, but also simulates the temperature behavior of Neurospora frq and Drosophila per mutants almost quantitatively. The Goodwin oscillator predicts that circadian periods are strongly dependent on the turnover of the clock mRNA or clock protein. A more rapid turnover of clock mRNA or clock protein results, in short, a slower turnover in longer period lengths. (Chronobiology International, 14(5), 499–510, 1997)  相似文献   

18.
19.
20.
The effects of 24 hr light-dark cycles on the circadian conidiation rhythm inNeurospora crassa were compared among will-typefrq + and clock mutantsfrq +,frq 3,frq 7,frq 9 andfrq 11. The minimum length of the light period necessary for complete entrainment to the light-dark cycles was almost 2 hr infrq +,frq 3 andfrq 7 strains. The minimum duration of the dark period necessary for the appearance of circadian conidiation was almost 4 hr in all of the strains except thefrq 11 strain. The phase of the conidiation rhythm was dependent on the light to dark transition in thefrq 1 strain in all light-dark cycles examined and in thefrq + andfrq 3 strains when the light period was shorter than 16 hr. In contrast, the phase of thefrq 7 strain was dependent on the light to dark transition when the light period was shorter than 10 hr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号