首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polysaccharides produced by Neisseria meningitidis are pharmaceutically important molecules, and are the active components of vaccines against N. meningitidis serogroups A, C, W135 and Y. Effective vaccines based on capsular polysaccharide, polysaccharide conjugates and outer membrane vesicles have been developed for strains expressing capsular polysaccharides that define the sero groups A, C, Y and W135. However, conventional approaches to develop a vaccine for group B strains have been largely unsuccessful. This review focuses on the various aspects of fermentative production of meningococcal polysaccharide from N. meningitidis, methods of conjugation for improving the immunogenicity of polysaccharide vaccine, and efficient and cost effective methods for the purification of N. meningitidis capsular polysaccharide and outer membrane vesicles. In addition, different analytical techniques for the quantitative determination of polysaccharide vaccine and evaluation of structural integrity of conjugate vaccine have been described.  相似文献   

2.

SUMMARY

Neisseria meningitidis is a Gram-negative microorganism that exists exclusively in humans and can cause devastating invasive disease. Although capsular polysaccharide-based vaccines against serogroups A, C, Y, and W135 are widely available, the pathway to a broadly protective vaccine against serogroup B has been more complex. The last 11 years has seen the discovery and development of the N. meningitidis serogroup B (MnB) outer membrane protein factor H binding protein (fHBP) as a vaccine component. Since the initial discovery of fHBP, a tremendous amount of work has accumulated on the diversity, structure, and regulation of this important protein. fHBP has proved to be a virulence factor for N. meningitidis and a target for functional bactericidal antibodies. fHBP is critical for survival of meningococci in the human host, as it is responsible for the primary interaction with human factor H (fH). Binding of hfH by the meningococcus serves to downregulate the host alternative complement pathway and helps the organism evade host innate immunity. Preclinical studies have shown that an fHBP-based vaccine can elicit serum bactericidal antibodies capable of killing MnB, and the vaccine has shown very encouraging results in human clinical trials. This report reviews our current knowledge of fHBP. In particular, we discuss the recent advances in our understanding of fHBP, its importance to N. meningitidis, and its potential role as a vaccine for preventing MnB disease.  相似文献   

3.
《Biologicals》2014,42(6):312-315
A novel murine hybridoma monoclonal antibody (MAb) was produced against the capsular polysaccharide (CP) of Neisseria meningitidis serogroup X (MenX) in order to develop a sandwich enzyme linked immunosorbent assay (ELISA) for the quantitation of the meningococcal polysaccharide. The MAb only reacted with the CP from MenX and did not react with CPs from N. meningitidis serogroups A, C, Y and W (MenA, MenC, MenY, MenW). The affinity constant (Ka) of the MAb measured by non-competitive ELISA was 7.25 × 107 M−1. The application of this MAb in a sandwich ELISA was demonstrated by its ability to properly quantitate three lots of an experimental meningococcal CP-based vaccine. The MAb obtained in this work could be a valuable reagent for the detection and quantitation of future meningococcal vaccines containing MenX CP.  相似文献   

4.
The binding of human complement inhibitors to vaccine antigens in vivo could diminish their immunogenicity. A meningococcal ligand for the complement down-regulator, factor H (fH), is fH-binding protein (fHbp), which is specific for human fH. Vaccines containing recombinant fHbp or native outer membrane vesicles (NOMV) from mutant strains with over-expressed fHbp are in clinical development. In a previous study in transgenic mice, the presence of human fH impaired the immunogenicity of a recombinant fHbp vaccine. In the present study, we prepared two NOMV vaccines from mutant group B strains with over-expressed wild-type fHbp or an R41S mutant fHbp with no detectable fH binding. In wild-type mice in which mouse fH did not bind to fHbp in either vaccine, the NOMV vaccine with wild-type fHbp elicited 2-fold higher serum IgG anti-fHbp titers (P = 0.001) and 4-fold higher complement-mediated bactericidal titers against a PorA-heterologous strain than the NOMV with the mutant fHbp (P = 0.003). By adsorption, the bactericidal antibodies were shown to be directed at fHbp. In transgenic mice in which human fH bound to the wild-type fHbp but not to the R41S fHbp, the NOMV vaccine with the mutant fHbp elicited 5-fold higher serum IgG anti-fHbp titers (P = 0.002), and 19-fold higher bactericidal titers than the NOMV vaccine with wild-type fHbp (P = 0.001). Thus, in mice that differed only by the presence of human fH, the respective results with the two vaccines were opposite. The enhanced bactericidal activity elicited by the mutant fHbp vaccine in the presence of human fH far outweighed the loss of immunogenicity of the mutant protein in wild-type animals. Engineering fHbp not to bind to its cognate complement inhibitor, therefore, may increase vaccine immunogenicity in humans.  相似文献   

5.
Meningococcal disease is communicable by close contact or droplet aerosols. Striking features are high case fatality rates and peak incidences of invasive disease in infants, toddlers and adolescents. Vaccine development is hampered by bacterial immune evasion strategies including molecular mimicry. As for Haemophilus influenzae and Streptococcus pneumoniae, no vaccine has therefore been developed that targets all serogroups of Neisseria meningitidis. Polysaccharide vaccines available both in protein conjugated and non‐conjugated form, have been introduced against capsular serogroups A, C, W‐135 and Y, but are ineffective against serogroup B meningococci, which cause a significant burden of disease in many parts of the world. Detoxified outer membrane vesicles are used since decades to elicit protection against epidemic serogroup B disease. Genome mining and biochemical approaches have provided astounding progress recently in the identification of immunogenic, yet reasonably conserved outer membrane proteins. As subcapsular proteins nevertheless are unlikely to immunize against all serogroup B variants, thorough investigation by surrogate assays and molecular epidemiology approaches are needed prior to introduction and post‐licensure of protein vaccines. Research currently addresses the analysis of life vaccines, meningococcus B polysaccharide modifications and mimotopes, as well as the use of N. lactamica outer membrane vesicles.  相似文献   

6.

Background

The meningococcal serogroup A (MenA) polysaccharide conjugate vaccine used in Sub-Saharan Africa does not prevent disease caused by MenW or MenX strains, which also cause epidemics in the region. We investigated the vaccine-potential of native outer membrane vesicles with over-expressed factor H-binding protein (NOMV-fHbp), which targeted antigens in African meningococcal strains, and was combined with a MenA polysaccharide conjugate vaccine.

Methodology/Principal Findings

The NOMV-fHbp vaccine was prepared from a mutant African MenW strain with PorA P1.5,2, attenuated endotoxin (ΔLpxL1), deleted capsular genes, and over-expressed fHbp in variant group 1. The NOMV-fHbp was adsorbed with Al(OH)3 and used to reconstitute a lyophilized MenA conjugate vaccine, which normally is reconstituted with liquid MenC, Y and W conjugates in a meningococcal quadrivalent conjugate vaccine (MCV4-CRM, Novartis). Mice immunized with the NOMV-fHbp vaccine alone developed serum bactericidal (human complement) activity against 13 of 15 African MenA strains tested; 10 of 10 African MenX strains, 7 of 7 African MenW strains, and 6 of 6 genetically diverse MenB strains with fHbp variant group 1 (including 1 strain from The Gambia). The combination NOMV-fHbp/MenA conjugate vaccine elicited high serum bactericidal titers against the two MenA strains tested that were resistant to bactericidal antibodies elicited by the NOMV-fHbp alone; the combination elicited higher titers against the MenA and MenW strains than those elicited by a control MCV4-CRM vaccine (P<0.05); and high titers against MenX and MenB strains. For most strains, the titers elicited by a control NOMV-fHbp knock out vaccine were <1∶10 except when the strain PorA matched the vaccine (titers >1∶000).

Conclusion/Significance

The NOMV-fHbp/MenA conjugate vaccine provided similar or higher coverage against MenA and MenW strains than a quadrivalent meningococcal conjugate vaccine, and extended protection against MenX strains responsible for epidemics in Africa, and MenB strains with fHbp in variant group 1.  相似文献   

7.
The serogroups B, C, W135 and Y of Neisseria meningitidis express chemically and immunologically distinct capsular polysaccharides containing sialic acid. In the case of serogroup B meningococci sialic acid is synthesized by the gene products of a locus termed sia and forms the homopolymers of the capsule. The organization of the genes required for sialic acid synthesis in serogroups B, C, W135 and Y was elucidated by PCR technology. Cloning, sequencing and the functional expression of the polysialyltransferase (PST) genes of serogroups B and C demonstrated that the difference in capsule composition derives from the presence of related, but distinct siaD genes coding for PSTs. Analysis of meningococci of serogroups W135 and Y expressing sialic acid heteropolymers revealed that the DNA sequences of the corresponding genetic loci in these serogroups were highly homologous, but differed completely from the siaD genes of serogroups B and C. This finding suggests that enzymes unrelated to those of serogroups B and C are required for the formation of sialic acid heteropolymers characteristic of the capsules of serogroups W135 and Y.  相似文献   

8.

Vaccination is the most cost-effective way to control disease caused by encapsulated bacteria; the capsular polysaccharide (CPS) is the primary virulence factor and vaccine target. Neisseria meningitidis (Nm) serogroups B, C, Y and W all contain sialic acid, a common surface feature of human pathogens. Two protein-based vaccines against serogroup B infection are available for human use while four tetravalent conjugate vaccines including serogroups C, W and Y have been licensed. The tetravalent Menveo® conjugate vaccine is well-defined: a simple monomeric structure of oligosaccharides terminally conjugated to amino groups of the carrier protein CRM197. However, not only is there a surprisingly low limit for antigen chain attachment to CRM197, but different serogroup saccharides have consistently different CRM197 loading, the reasons for which are unclear. Understanding this phenomenon is important for the long-term goal of controlling conjugation to prepare conjugate vaccines of optimal immunogenicity. Here we use molecular modeling to explore whether antigen flexibility can explain the varying antigen loading of the conjugates. Because flexibility is difficult to separate from other structural factors, we focus on sialic-acid containing CPS present in current glycoconjugate vaccines: serogroups NmC, NmW and NmY. Our simulations reveal a correlation between Nm antigen flexibility (NmW?>?NmC?>?NmY) and the number of chains attached to CRM197, suggesting that increased flexibility enables accommodation of additional chains on the protein surface. Further, in silico models of the glycoconjugates confirm the relatively large hydrodynamic size of the saccharide chains and indicate steric constraints to further conjugation.

  相似文献   

9.
Neisseria meningitidis is a leading cause of sepsis and meningitis. The bacterium recruits factor H (fH), a negative regulator of the complement system, to its surface via fH binding protein (fHbp), providing a mechanism to avoid complement-mediated killing. fHbp is an important antigen that elicits protective immunity against the meningococcus and has been divided into three different variant groups, V1, V2 and V3, or families A and B. However, immunisation with fHbp V1 does not result in cross-protection against V2 and V3 and vice versa. Furthermore, high affinity binding of fH could impair immune responses against fHbp. Here, we investigate a homologue of fHbp in Neisseria gonorrhoeae, designated as Gonococcal homologue of fHbp (Ghfp) which we show is a promising vaccine candidate for N. meningitidis. We demonstrate that Gfhp is not expressed on the surface of the gonococcus and, despite its high level of identity with fHbp, does not bind fH. Substitution of only two amino acids in Ghfp is sufficient to confer fH binding, while the corresponding residues in V3 fHbp are essential for high affinity fH binding. Furthermore, immune responses against Ghfp recognise V1, V2 and V3 fHbps expressed by a range of clinical isolates, and have serum bactericidal activity against N. meningitidis expressing fHbps from all variant groups.  相似文献   

10.
The serogroups B, C, W135 and Y of Neisseria meningitidis express chemically and immunologically distinct capsular polysaccharides containing sialic acid. In the case of serogroup B meningococci sialic acid is synthesized by the gene products of a locus termed sia and forms the homopolymers of the capsule. The organization of the genes required for sialic acid synthesis in serogroups B, C, W135 and Y was elucidated by PCR technology. Cloning, sequencing and the functional expression of the polysialyltransferase (PST) genes of serogroups B and C demonstrated that the difference in capsule composition derives from the presence of related, but distinct siaD genes coding for PSTs. Analysis of meningococci of serogroups W135 and Y expressing sialic acid heteropolymers revealed that the DNA sequences of the corresponding genetic loci in these serogroups were highly homologous, but differed completely from the siaD genes of serogroups B and C. This finding suggests that enzymes unrelated to those of serogroups B and C are required for the formation of sialic acid heteropolymers characteristic of the capsules of serogroups W135 and Y. Received: 24 June 1997 / Accepted: 23 September 1997  相似文献   

11.
12.
Despite the introduction of conjugated polysaccharide vaccines for many of the Neisseria meningitidis serogroups, neisserial infections continue to cause septicaemia and meningitis across the world. This is in part due to the difficulties in developing a, cross-protective vaccine that is effective against all serogroups, including serogroup B meningococci. Although convalescent N. meningitidis patients develop a natural long-lasting cross-protective immunity, the antigens that mediate this response remain unknown. To help define the target of this protective immunity we identified the proteins recognized by IgG in sera from meningococcal patients by a combination of 2D protein gels, western blots and mass spectrometry. Although a number of outer membrane antigens were identified the majority of the antigens were cytoplasmic, with roles in cellular processes and metabolism. When recombinant proteins were expressed and used to raise sera in mice, none of the antigens elicited a positive SBA result, however flow cytometry did demonstrate that some, including the ribosomal protein, RplY were localised to the neisserial cell surface.  相似文献   

13.
GNA2132 (Genome-derived Neisseria Antigen 2132) is a surface-exposed lipoprotein discovered by reverse vaccinology and expressed by genetically diverse Neisseria meningitidis strains (Pizza et al. 2000). The protein induces bactericidal antibodies against most strains of Meningococccus and has been included in a multivalent recombinant vaccine against N. meningitidis serogroup B. Structure determination of GNA2132 is important for understanding the antigenic properties of the protein in view of increased efficiency vaccine development. We report practically complete 1H, 13C and 15N assignment of the detectable spectrum of a highly conserved C-terminal region of GNA2132 (residues 245–427) in micellar solution, a medium used to improve the spectral quality. The first 32 residues of our construct up to residue 277 were not visible in the spectrum, presumably because of line broadening due to solvent and/or conformational exchange. Secondary structure predictions based on chemical shift information indicate the presence of an all β-protein with eight β strands.  相似文献   

14.
The neuroinvasive pathogen Neisseria meningitidis has 13 capsular serogroups, but the majority of disease is caused by only 5 of these. Groups B, C, Y, and W-135 all display a polymeric sialic acid-containing capsule that provides a means for the bacteria to evade the immune response during infection by mimicking host sialic acid-containing cell surface structures. These capsules in serogroups C, Y, and W-135 can be further acetylated by a sialic acid-specific O-acetyltransferase, a modification that correlates with decreased immunoreactivity and increased virulence. In N. meningitidis serogroup Y, the O-acetylation reaction is catalyzed by the enzyme OatWY, which we show has clear specificity toward the serogroup Y capsule ([Glc-(α1→4)-Sia]n). To understand the underlying molecular basis of this process, we have performed crystallographic analysis of OatWY with bound substrate as well as determined kinetic parameters of the wild type enzyme and active site mutants. The structure of OatWY reveals an intimate homotrimer of left-handed β-helix motifs that frame a deep active site cleft selective for the polysialic acid-bearing substrate. Within the active site, our structural, kinetic, and mutagenesis data support the role of two conserved residues in the catalytic mechanism (His-121 and Trp-145) and further highlight a significant movement of Tyr-171 that blocks the active site of the enzyme in its native form. Collectively, our results reveal the first structural features of a bacterial sialic acid O-acetyltransferase and provide significant new insight into its catalytic mechanism and specificity for the capsular polysaccharide of serogroup Y meningococci.The bacterial pathogen Neisseria meningitidis is a major cause of life-threatening neuroinvasive meningitis in humans (1). In the United States, 75% of bacterial meningitis infections are caused by serogroup C, Y, or W-135 (2). In particular, the proportion of meningococcal infection occurrences in the United States caused by the group Y meningococci has increased significantly from 2% during 1989–1991 to 37% during 1997–2002 (2). Vaccines based on the capsular polysaccharide have been developed for groups A/C/Y/W-135 (2), and the introduction of a group C conjugate vaccine has reduced the incidence and carriage of the C serogroup significantly (3). Although these vaccines are working, they do not yet provide complete protection from meningococcal disease (4).The capsular polysaccharides of N. meningitidis are classified into 13 distinct serogroups based on their chemical structures (5). The capsules of serogroup B and C are homopolymers composed of α-2,8- or α-2,9-linked sialic acid, respectively, whereas serogroup Y and W-135 are heteropolymers of an α-2,6-linked sialic acid on glucose (Y) or galactose (W-135) (6, 7). N. meningitidis group B polysialic acid shares a biochemical epitope with the polysialylated form of the neural cell adhesion molecule of humans (8, 9). Because of this molecular mimicry of the polysialic acid-neural cell adhesion molecule, the bacterial capsular polysaccharide is thus considered a major virulence factor of N. meningitidis (5, 10).Serogroup C, Y, and W-135 of N. meningitidis modify their sialic acid capsules by O-acetylation of the sialic acid (11). Sialic acid is acetylated at the C-7 or C-8 position hydroxyl group in serogroup C, whereas the C-7 or C-9 position is acetylated in serogroup W-135 and Y (11). The O-acetylation of sialic acids is known to alter the physicochemical properties of the polysaccharide capsule (12). In addition, there is growing evidence that O-acetylation of the polysaccharide enhances bacterial pathogenesis by masking the protective epitope in the polysaccharide (1316). For these reasons, considerable effort has been expended to identify and characterize sialic acid O-acetyltransferases in pathogenic bacteria.Recently, the sialic acid-specific O-acetyltransferases from group B Streptococcus, Campylobacter jejuni, Escherichia coli K1, and N. meningitidis serogroup C have been identified (1720) with the latter two variants being the only ones to be characterized biochemically (2123). These studies showed that bacterial sialic acid-specific O-acetyltransferases utilize an acetyl-CoA cofactor as a donor for the acetylation of their capsular sialic acid acceptor substrates (Fig. 1) and identified essential amino acid residues for potential catalytic roles in activity (22, 23). Although the gene encoding the capsule-specific O-acetyltransferase in N. meningitidis serogroup Y (known as OatWY) has been identified, biochemical characterization of the enzyme has not yet been reported. Furthermore, the lack of structural information on a sialic acid O-acetyltransferase from any bacterial species has hampered our ability to further understand the mode of substrate binding, specificity, and catalytic mechanism of this important sialic acid-modifying family.Open in a separate windowFIGURE 1.Reaction scheme of the OatWY-catalyzed O-acetyltransferase. Although acetylation of both the O-7 and O-9 hydroxyl group of the N. meningitidis serogroup Y polysialic acid has been implied through NMR analysis of the corresponding bacterial capsule (11), for simplicity only the O-9 transfer is shown here.Here we report the first kinetic and structural analysis of polysialic acid O-acetyltransferase OatWY from N. meningitidis serogroup Y in complex with either CoA, acetyl-CoA, or S-(2-oxopropyl)-CoA, which is a nonhydrolyzable acetyl-CoA substrate analog. Collectively, this study significantly contributes to our understanding of bacterial polysialic acid O-acetyltransferases, providing valuable insight into how capsular polysaccharide is acetylated in pathogenic bacteria.  相似文献   

15.
The development of new immune potentiators for human vaccines is an important and expanding field of research. In the present study, the ability of the capsular polysaccharide from Neisseria meningitidis serogroup A (CPS-A), a mannose-containing carbohydrate, to enhance the antibody production against a co-administered model vaccine antigen, is examined. A protein-meningococcal serogroup C capsular polysaccharide (CPS-C) conjugate was selected as the model antigen for this study. After subcutaneous immunization of Balb/C mice, the conjugate mixed with CPS-A induced higher anti-CPS-C IgG and IgG2a antibody levels and higher anti-meningococcal serogroup C bactericidal titers than the conjugate alone or mixed with CPS-C. The immuno-stimulatory properties exhibited by CPS-A and the fact that vaccines based on purified CPS-A has been safely used during decades to fight the serogroup A meningococcal disease, support the proposal to use CPS-A as immune potentiator for human vaccination studies.  相似文献   

16.
The active components of most meningococcal vaccines are four antigenic serogroup capsular polysaccharides (A, C, Y, W135). The vaccines, monovalent or multivalent mixtures of either free polysaccharides or polysaccharides conjugated to antigenic carrier proteins, may be in liquid or lyophilised formulations, with or without excipients. Acid hydrolysis and chromatographic methods for serogroup quantitation, which were previously optimised and qualified using polysaccharide-based standards and a narrow range of real vaccines, are here challenged with multiple lots of a broad assortment of additional multivalent polysaccharide-based meningococcal vaccine products. Centrifugal filtration successfully removed all interfering lactose excipient without loss of polysaccharides to allow for the determination of Y and W135 serogroups. Replicate operations by three different analysts indicated high method reproducibility. Results indicated some lot-to-lot and product-to-product variations. However, all vaccines were within general specifications for each serogroup polysaccharide, with the exception of all lots of one polysaccharide vaccine – which by these methods were found to be deficient in the serogroup A component only. These robust techniques are very useful for the evaluation of antigen content and consistency of manufacture. The deformulation, hydrolysis and chromatographic methods may be adaptable for the evaluation of other types of polysaccharide-based vaccines.  相似文献   

17.
Immunization of mice with recombinant IgA1 protease of Neisseria meningitidis or several structural derivatives thereof protects the animals infected with a variety of deadly pathogens, including N. meningitidis serogroups A, B, and C and 3 serotypes of Streptococcus pneumonia. In sera of rabbits immunized with inactivated pneumococcal cultures, antibodies binding IgA1-protease from N. meningitidis serogroup B were detected. Thus, the cross-reactive protection against meningococcal and pneumococcal infections has been demonstrated in vivo. Presumably it indicates the presence of common epitopes in the N. meningitidis IgA1 protease and S. pneumoniae surface proteins.  相似文献   

18.
Neisseria meningitidis is a strictly human pathogen and is the major cause of septicemia and meningitis worldwide. Factor H binding protein (fHbp) is a meningococcal surface-exposed lipoprotein that binds the human Complement factor H allowing the bacterium to evade the host innate immune response. FHbp is also a key antigen in two vaccines against N. meningitidis serogroup B. Although the fHbp gene is present in most circulating meningococcal strains, level of fHbp expression varies among isolates and has been correlated to differences in promoter sequences upstream of the gene. Here we elucidated the sequence determinants that control fHbp expression in globally circulating strains. We analyzed the upstream fHbp intergenic region (fIR) of more than 5800 strains representative of the UK circulating isolates and we identified eleven fIR sequence alleles which represent 88% of meningococcal strains. By engineering isogenic recombinant strains where fHbp expression was under the control of each of the eleven fIR alleles, we confirmed that the fIR sequence determines a specific and distinct level of expression. Moreover, we identified the molecular basis for variation in expression through polymorphisms within key regulatory regions that are known to affect fHbp expression. We experimentally established three expression groups, high–medium–low, that correlated directly with the susceptibility to killing mediated by anti-fHbp antibodies and the ability of the meningococcal strain to survive within human serum. By using this sequence classification and information about the variant, we predicted fHbp expression in the panel of UK strains and we observed that strains with higher expressing fIR alleles are more likely associated with invasive disease. Overall, our findings can contribute to understand and predict vaccine coverage mediated by fHbp as well as to shed light on the role of this virulence factor in determining an invasive phenotype.  相似文献   

19.
At a time when tetravalent conjugate vaccines for meningococcal serogroups A/C/Y/W135 are being formulated the O-acetylation status of their respective capsular polysaccharides has not previously been studied in the UK for all components. Although this has been elucidated for serogroup C, little is known about the O-acetylation status of serogroups W135 and Y. Meningococcal serogroup W135 (n=181) and Y (n=90) isolates submitted to the PHLS Meningococcal Reference Unit in 1996, 2000 and 2001 were investigated for O-acetylation capsular status by dot blot assay. Eight per cent of W135 and 79% of Y isolates respectively were found to be O-acetylated with a similar distribution found in both carrier and case isolates. An increase in O-acetylated W135 isolates was noted between 2000 (0%) and 2001 (21%) which was not due to the introduction of the Hajj associated W135 (ET 37 complex; serosubtype P1.5,2) isolates, all of which were de-O-acetylated. Although the biological relevance of O-acetylation status is unknown for these serogroups, an understanding of O-acetylation status of the respective polysaccharides may provide useful insights into the optimal vaccine formulation.  相似文献   

20.
脑膜炎奈瑟菌主要引起儿童细菌性脑脊髓膜炎和败血症,有较高的发病率和病死率。现用疫苗能够控制A、C、W135和Y群脑膜炎球菌引起的感染,而由于B群荚膜多糖免疫原性弱,外膜蛋白变异性高等原因,仍无安全和具有广泛保护性的疫苗用于控制B群脑膜炎球菌的感染。目前,B群脑膜炎球菌大多已成为引起发达国家侵袭性脑膜炎疾病的主要病原体。随着研究的不断深入,B群脑膜炎球菌疫苗的研究已经取得了很大的进展,外膜囊(Out membrane vesicles,OMV)疫苗已经在控制特异性菌株爆发流行中取得了成功。然而,人们对具有广泛保护性的B群脑膜炎球菌疫苗的探索仍在继续。本文对近年来B群脑膜炎球菌基于不同型抗原疫苗的各种研制策略及其存在的问题进行了综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号