首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative damage plays a critical role in many diseases of the central nervous system. This study was conducted to determine the molecular mechanisms involved in the putative anti-oxidative effects of curcumin against experimental stroke. Oxygen and glucose deprivation/reoxygenation (OGD/R) was used to mimic ischemic insult in primary cultured cortical neurons. A rapid increase in the intracellular expression of NAD(P)H: quinone oxidoreductase1 (NQO1) induced by OGD was counteracted by curcumin post-treatment, which paralleled attenuated cell injury. The reduction of phosphorylation Akt induced by OGD was restored by curcumin. Consequently, NQO1 expression and the binding activity of nuclear factor-erythroid 2-related factor 2 (Nrf2) to antioxidant response element (ARE) were increased. LY294002 blocked the increase in phospho-Akt evoked by curcumin and abolished the associated protective effect. Adult male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion for 60 minutes. Curcumin administration significantly reduced infarct size. Curcumin also markedly reduced oxidative stress levels in middle cerebral artery occlusion (MCAO) rats; hence, these effects were all suppressed by LY294002. Taken together, these findings provide evidence that curcumin protects neurons against ischemic injury, and this neuroprotective effect involves the Akt/Nrf2 pathway. In addition, Nrf2 is involved in the neuroprotective effects of curcumin against oxidative damage.  相似文献   

2.

Aims

This study is to investigate the mechanisms by which macrophage-activating lipopeptide-2 (MALP-2) induces heme oxygenase (HO)-1, a cytoprotective enzyme that catalyzes the degradation of heme, in human monocytes.

Methods

Human monocytic THP-1 cells were cultured for transient transfection with plasmids and stimulation with MALP-2 for indicative time intervals. After incubation with MALP-2, cells were collected and disrupted, before being tested for promoter activity using luciferase assay. For analysis of proteins, immunoreactive bands were detected using an enhanced chemiluminescence Western blotting system, and the band intensity was measured by densitometryic analysis. For the detection of co-immunoprecipitation, SDS-PAGE was performed and the membranes were probed using respective antibodies. To investigate the cellular localization of NF-E2-related factor 2 (Nrf2), cells underwent immunofluorescence staining and confocal microscopy, and were analyzed using electrophoretic mobility shift assay.

Results

MALP-2-induced HO-1 expression and promoter activity were abrogated by transfection with dominant negative (DN) plasmids of TLR2 and TLR6, or their neutralizing antibodies. However, inhibition of MyD88 or transfection with the DN-MyD88 was insufficient to attenuate HO-1 expression. In contrast, mutation or silencing of MyD88 adapter-like (Mal) by DN-Mal or siRNA almost completely blocked HO-1 induction. Btk, c-Src and PI3K were also involved in MALP-2-induced HO-1 expression, as revealed by specific inhibitors LFM-A13, PP1 and LY294002, or by transfection with siRNA of c-Src. MALP-2-induced activation of PI3K was attenuated by transfection with DN mutant of Mal, and by pretreatment with LFM-A13 or PP1. Furthermore, MALP-2 stimulated the translocation of Nrf2 from the cytosol to the nucleus and Nrf2 binding to the ARE site in the HO-1 promoter, which could also be inhibited by pretreatment with a PI3K inhibitor, LY294002.

Conclusions

These results indicated that MALP-2 required TLR2/6, Btk, Mal and c-Src to activate PI3K, which in turn initiated the activation of Nrf2 for efficient HO-1 induction.  相似文献   

3.
4.
5.
We examined mechanisms by which L-4F reduces obesity and diabetes in obese (ob) diabetic mice. We hypothesized that L-4F reduces adiposity via increased pAMPK, pAKT, HO-1, and increased insulin receptor phosphorylation in ob mice. Obese and lean mice were divided into five groups: lean, lean-L-4F-treated, ob, ob-L-4F-treated, and ob-L-4F-LY294002. Food intake, insulin, glucose adipocyte stem cells, pAMPK, pAKT, CB1, and insulin receptor phosphorylation were determined. Subcutaneous (SAT) and visceral adipose tissue (VAT) were determined by MRI and hepatic lipid content by magnetic resonance spectroscopy. SAT and VAT volumes decreased in ob-L-4F-treated animals compared with control. L-4F treatment decreased hepatic lipid content and increased the numbers of small adipocytes (P < 0.05) and phosphorylation of insulin receptors. L-4F decreased CB1 in SAT and VAT and increased pAKT and pAMPK in endothelium. L-4F-mediated improvement in endothelium was prevented by LY294002. Inhibition of pAKT and pAMPK by LY294002 was associated with an increase in glucose levels. Upregulation of HO-1 by L-4F produced adipose remodeling and increased the number of small differentiated adipocytes. The anti-obesity effects of L-4F are manifested by a decrease in visceral fat content with reciprocal increases in adiponectin, pAMPK, pAKT, and phosphorylation of insulin receptors with improved insulin sensitivity.  相似文献   

6.
Previous report showed that epidermal growth factor (EGF) promotes tumor progression. Several studies demonstrated that growth factors can induce heme oxygenase (HO)-1 expression, protect against cellular injury and cancer cell proliferation. In this study, we investigated the involvement of the c-Src, NADPH oxidase, reactive oxygen species (ROS), PI3K/Akt, and NF-κB signaling pathways in EGF-induced HO-1 expression in human HT-29 colon cancer cells. Treatment of HT-29 cells with EGF caused HO-1 to be expressed in concentration- and time-dependent manners. Treatment of HT-29 cells with AG1478 (an EGF receptor (EGFR) inhibitor), small interfering RNA of EGFR (EGFR siRNA), a dominant negative mutant of c-Src (c-Src DN), DPI (an NADPH oxidase inhibitor), glutathione (an ROS inhibitor), LY294002 (a PI3K inhibitor), and an Akt DN inhibited EGF-induced HO-1 expression. Stimulation of cells with EGF caused an increase in c-Src phosphorylation at Tyr406 in a time-dependent manner. Treatment of HT-29 cells with EGF induced an increase in p47phox translocation from the cytosol to membranes. The EGF-induced ROS production was inhibited by DPI. Stimulation of cells with EGF resulted in an increase in Akt phosphorylation at Ser473, which was inhibited by c-Src DN, DPI, and LY 294002. Moreover, treatment of HT-29 cells with a dominant negative mutant of IκB (IκBαM) inhibited EGF-induced HO-1 expression. Stimulation of cells with EGF induced p65 translocation from the cytosol to nuclei. Treatment of HT-29 cells with EGF induced an increase in κB-luciferase activity, which was inhibited by a c-Src DN, LY 294002, and an Akt DN. Furthermore, EGF-induced colon cancer cell proliferation was inhibited by Sn(IV)protoporphyrin-IX (snPP, an HO-1 inhibitor). Taken together, these results suggest that the c-Src, NADPH oxidase, PI3K, and Akt signaling pathways play important roles in EGF-induced NF-κB activation and HO-1 expression in HT-29 cells. Moreover, overexpression of HO-1 mediates EGF-induced colon cancer cell proliferation.  相似文献   

7.
8.
CDDP [cisplatin or cis-diamminedichloroplatinum(II)] and CDDP-based combination chemotherapy have been confirmed effective against gastric cancer. However, CDDP efficiency is limited because of development of drug resistance. In this study, we found that PAK4 (p21-activated kinase 4) expression and activity were elevated in gastric cancer cells with acquired CDDP resistance (AGS/CDDP and MKN-45/CDDP) compared with their parental cells. Inhibition of PAK4 or knockdown of PAK4 expression by specific siRNA (small interfering RNA)-sensitized CDDP-resistant cells to CDDP and overcome CDDP resistance. Combination treatment of LY294002 [the inhibitor of PI3K (phosphoinositide 3-kinase)/Akt (protein kinase B or PKB) pathway] or PD98509 {the inhibitor of MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase] pathway} with PF-3758309 (the PAK4 inhibitor) resulted in increased CDDP efficacy compared with LY294002 or PD98509 alone. However, after the concomitant treatment of LY294002 and PD98509, PF-3758309 administration exerted no additional enhancement of CDDP cytotoxicity in CDDP-resistant cells. Inhibition of PAK4 by PF-3758309 could significantly suppress MEK/ERK and PI3K/Akt signalling in CDDP-resistant cells. Furthermore, inhibition of PI3K/Akt pathway while not MEK/ERK pathway could inhibit PAK4 activity in these cells. The in vivo results were similar with those of in vitro. In conclusion, these results indicate that PAK4 confers CDDP resistance via the activation of MEK/ERK and PI3K/Akt pathways. PAK4 and PI3K/Akt pathways can reciprocally activate each other. Therefore, PAK4 may be a potential target for overcoming CDDP resistance in gastric cancer.  相似文献   

9.
The consumption of foods containing resveratrol produces significant health benefits. Resveratrol inhibits cancer by reducing cell proliferation and metastasis and by inducing apoptosis. These actions could be explained by its ability to inhibit (ERK-1/2), Akt and suppressing the levels of estrogen and insulin growth factor -1 (IGF-1) receptor. How these processes are manifested into the antitumor actions of resveratrol is not clear. Using microarray studies, we show that resveratrol reduced the expression of various prostate-tumor associated microRNAs (miRs) including miR-21 in androgen-receptor negative and highly aggressive human prostate cancer cells, PC-3M-MM2. This effect of resveratrol was associated with reduced cell viability, migration and invasiveness. Additionally, resveratrol increased the expression of tumor suppressors, PDCD4 and maspin, which are negatively regulated by miR-21. Short interfering (si) RNA against PDCD4 attenuated resveratrol’s effect on prostate cancer cells, and similar effects were observed following over expression of miR-21 with pre-miR-21 oligonucleotides. PC-3M-MM2 cells also exhibited high levels of phospho-Akt (pAkt), which were reduced by both resveratrol and LY294002 (a PI3-kinase inhibitor). MiR-21 expression in these cells appeared to be dependent on Akt, as LY294002 reduced the levels of miR-21 along with a concurrent increase in PDCD4 expression. These in vitro findings were further corroborated in a severe combined immunodeficient (SCID) mouse xenograft model of prostate cancer. Oral administration of resveratrol not only inhibited the tumor growth but also decreased the incidence and number of metastatic lung lesions. These tumor- and metastatic-suppressive effects of resveratrol were associated with reduced miR-21 and pAkt, and elevated PDCD4 levels. Similar anti-tumor effects of resveratrol were observed in DU145 and LNCaP prostate cancer cells which were associated with suppression of Akt and PDCD4, but independent of miR-21.These data suggest that resveratrol’s anti-tumor actions in prostate cancer could be explained, in part, through inhibition of Akt/miR-21 signaling pathway.  相似文献   

10.

Background

Hypoxia-inducible factor-1 alpha (HIF-1α) is one of the key regulators of hypoxia/ischemia. MicroRNA-494 (miR-494) had cardioprotective effects against ischemia/reperfusion (I/R)-induced injury, but its functional relationship with HIF-1α was unknown. This study was undertaken to determine if miR-494 was involved in the induction of HIF-1α.

Results

Quantitative RT-PCR showed that miR-494 was up-regulated to peak after 4 hours of hypoxia in human liver cell line L02. To investigate the role of miR-494, cells were transfected with miR-494 mimic or miR-negative control, followed by incubation under normoxia or hypoxia. Our results indicated that overexpression of miR-494 significantly induced the expression of p-Akt, HIF-1α and HO-1 determined by qRT-PCR and western blot under normoxia and hypoxia, compared to negative control (p < 0.05). While LY294002 treatment markedly abolished miR-494-inducing Akt activation, HIF-1α and HO-1 increase under both normoxic and hypoxic conditions (p < 0.05). Moreover, apoptosis detection using Annexin V indicated that overexpression of miR-494 significantly decreased hypoxia-induced apoptosis in L02 cells, compared to control (p < 0.05). MiR-494 overexpression also decreased caspase-3/7 activity by 1.27-fold under hypoxia in L02 cells.

Conclusions

Overexpression of miR-494 upregulated HIF-1α expression through activating PI3K/Akt pathway under both normoxia and hypoxia, and had protective effects against hypoxia-induced apoptosis in L02 cells. Thus, these findings suggested that miR-494 might be a target of therapy for hepatic hypoxia/ischemia injury.  相似文献   

11.
The Src family kinases (SFKs) play essential roles in collagen- and von Willebrand factor (VWF)-mediated platelet activation. However, the roles of SFKs in G protein-coupled receptor-mediated platelet activation and the molecular mechanisms whereby SFKs are activated by G protein-coupled receptor stimulation are not fully understood. Here we show that the thrombin receptor protease-activated receptor 4 agonist peptide AYPGKF elicited SFK phosphorylation in P2Y12 deficient platelets but stimulated minimal SFK phosphorylation in platelets lacking Gq. We have previously shown that thrombin-induced SFK phosphorylation was inhibited by the calcium chelator 5,5′-dimethyl-bis-(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (dimethyl-BAPTA). The calcium ionophore A23187 induced SFK phosphorylation in both wild-type and Gq deficient platelets. Together, these results indicate that SFK phosphorylation in response to thrombin receptor stimulation is downstream from Gq/Ca2+ signaling. Moreover, A23187-induced thromboxane A2 synthesis, platelet aggregation, and secretion were inhibited by preincubation of platelets with a selective SFK inhibitor, PP2. AYPGKF-induced thromboxane A2 production in wild-type and P2Y12 deficient platelets was abolished by PP2, and AYPGKF-mediated P-selectin expression, integrin αIIbβ3 activation, and aggregation of P2Y12 deficient platelets were partially inhibited by the PKC inhibitor Ro-31-8220, PP2, dimethyl-BAPTA, or LY294002, but were abolished by Ro-31-8220 plus PP2, dimethyl-BAPTA, or LY294002. These data indicate that Ca2+/SFKs/PI3K and PKC represent two alternative signaling pathways mediating Gq-dependent platelet activation.  相似文献   

12.

Background

Upon lipopolysaccharide (LPS) stimulation, activation of both the Toll-like receptor 4 (TLR4) and phosphoinositide 3-kinase (PI3K) pathways serves to balance proinflammatory and anti-inflammatory responses. Although the antagonist to TLR4 represents an emerging promising target for the treatment of sepsis; however, the role of the PI3K pathway under TLR4-null conditions is not well understood. This goal of this study was to investigate the effect of inhibition of PI3K on innate resistance to LPS toxicity in a murine model.

Results

The overall survival of the cohorts receiving intraperitoneal injections of 100, 500, or 1000 μg LPS from Escherichia coli serotype 026:B6 after 7 d was 100%, 10%, and 10%, respectively. In contrast, no mortality was noted after 500-μg LPS injection in Tlr4-/- mice. When the PI3K inhibitor LY294002 was injected (1 mg/25 g body weight) 1 h prior to the administration of LPS, the overall survival of the Tlr4-/- mice was 30%. In the Tlr4-/- mice, the LPS injection induced no NF-κB activation but an increased Akt phosphorylation in the lung and liver, when compared to that of the C57BL/6 mice. Injection of 500 μg LPS led to a significant induction in O2- detected by electron paramagnetic resonance (EPR) spin trapping spectroscopy in the lung and liver at 3 and 6 h in C57BL/6 but not Tlr4-/- mice. Addition of LY294002 only significantly increased the O2- level in the lung and liver of the Tlr4-/- mice but not in the C57BL/6 mice following 500-μg LPS injection. In addition, the serum IL-1β and IL-2 levels were more elevated in C57BL/6 mice than in Tlr4-/- mice. Notably, IL-1β and IL-2 were significantly increased in Tlr4-/- mice but not in the C57BL/6 mice when the PI3K pathway was inhibited by LY294002 prior to LPS injection.

Conclusions

In this study, we demonstrate that innate resistance to LPS toxicity in Tlr4-/- mice is impaired by inhibition of the PI3K pathway, with a corresponding increase in mortality and production of tissue O2- and inflammatory cytokines.  相似文献   

13.
Diallyl sulfide, diallyl disulfide, and daillyl trisulfide (DATS) are major volatile components of garlic oil. In this study, we assessed their relative potency in inducing antioxidant enzyme expression. Among the three organosulfur compounds, DATS was found to be most potent in inducing heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase-1 (NQO1) in human gastric epithelial (AGS) cells. Furthermore, DATS administration by gavage increased the expression of HO-1 and NQO1 in C57BL/6 mouse stomach. Treatment with DATS increased the accumulation of nuclear factor-erythroid-2-related factor-2 (Nrf2) in the nucleus of cultured AGS cells and in mouse stomach in vivo. The DATS-induced expression of HO-1 and NQO1 was abrogated in the cells transiently transfected with Nrf2-siRNA or in the embryonic fibroblasts from Nrf2-null mice, indicating that Nrf2 is a key mediator of the cytoprotective effects of DATS. Pretreatment of AGS cells with N-acetylcysteine or dithiothreitol attenuated DATS-induced nuclear localization of Nrf2 and the expression of HO-1 and NQO1. Cysteine-151, -273 and -288 of Kelch-like ECH-associated protein-1 (Keap1), a cytosolic repressor of Nrf2, have been considered to act as a redox sensor and play a role in Nrf2 activation. To determine whether DATS could inactivate Keap1 through thiol modification, we established cell lines constitutively expressing wild type-Keap1 or three different mutant constructs in which cysteine-151, -273, or -288 of Keap1 was replaced with serine by retroviral gene transfer. DATS failed to activate Nrf2, and to induce expression of HO-1 and NQO1 only in Keap1-C288S mutant cells. LC-ESI-MS/MS analysis of recombinant Keap1 treated with DATS revealed that the peptide fragment containing Cys288 gained a molecular mass of 72.1 Da equivalent to the molecular weight of mono-allyl mono-sulfide. Taken together, these findings suggest that DATS may directly interact with the Cys288 residue of Keap1, which partly accounts for its ability to induce Nrf2 activation and upregulate defensive gene expression.  相似文献   

14.

Purpose

To investigate the effects of hypoxic conditioned media from rat cerebral cortical cells on the proliferation and differentiation of neural stem cells (NSCs) in vitro, and to study the roles of PI3-K/Akt and JNK signal transduction pathways in these processes.

Methods

Cerebral cortical cells from neonatal Sprague–Dawley rat were cultured under hypoxic and normoxic conditions; the supernatant was collected and named ‘hypoxic conditioned medium’ (HCM) and ‘normoxic conditioned medium’ (NCM), respectively. We detected the protein levels (by ELISA) of VEGF and BDNF in the conditioned media and mRNA levels (by RT-PCR) in cerebral cortical cells. The proliferation (number and size of neurospheres) and differentiation (proportion of neurons and astrocytes over total cells) of NSCs was assessed. LY294002 and SP600125, inhibitors of PI3-K/Akt and JNK, respectively, were applied, and the phosphorylation levels of PI3-K, Akt and JNK were measured by western blot.

Results

The protein levels and mRNA expressions of VEGF and BDNF in 4% HCM and 1% HCM were both higher than that of those in NCM. The efficiency and speed of NSCs proliferation was enhanced in 4% HCM compared with 1% HCM. The highest percentage of neurons and lowest percentage of astrocytes was found in 4% HCM. However, the enhancement of NSCs proliferation and differentiation into neurons accelerated by 4% HCM was inhibited by LY294002 and SP600125, with LY294002 having a stronger inhibitory effect. The increased phosphorylation levels of PI3-K, Akt and JNK in 4% HCM were blocked by LY294002 and SP600125.

Conclusions

4%HCM could promote NSCs proliferation and differentiation into high percentage of neurons, these processes may be mainly through PI3-K/Akt pathways.  相似文献   

15.
The contribution of oxidative stress to the pathophysiology of depression has been described in numerous studies. Particularly, an increased production of reactive oxygen species (ROS) caused by mitochondrial dysfunction can lead to neuronal cell death. Human neuroblastoma SH-SY5Y cells were used to investigate the neuroprotective effect of the antidepressant duloxetine against rotenone-induced oxidative stress. SH-SY5Y cells were pretreated with duloxetine (1–5 µM) for 24 h followed by a 24-h rotenone exposure (10 µM). The phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) inhibitor LY294002 (10 µM) and the heme oxygenase 1 (HO-1) inhibitor zinc protoporphyrin IX-ZnPP (5 µM) were added to cultures 1 h prior duloxetine treatments. After treatments cell viability and ROS generation were assessed. NF-E2-related factor-2 (Nrf2) nuclear translocation was assessed by immunofluorescent staining after 4 and 8 h of duloxetine incubation. Furthermore, the Nrf2 and HO-1 mRNA expression was carried out after 4–48 h of duloxetine treatment by qRT-PCR. Duloxetine pretreatment antagonized rotenone-induced overproduction of ROS and cell death in SH-SY5Y cells. In addition, a 1-h pretreatment with LY294002 abolished duloxetine’s protective effect. Duloxetine also induced nuclear translocation of the Nrf2 and the expression of its target gene, HO-1. Finally, the HO-1 inhibitor, ZnPP, suppressed the duloxetine protective effect. Overall, these results indicate that the mechanism of duloxetine neuroprotective action against oxidative stress and cell death might rely on the Akt/Nrf2/HO-1 pathways.  相似文献   

16.
Aquaporin 5 (AQP5) participates in the migration of endometrial cells. Elucidation of the molecular mechanisms associated with AQP5-mediated, migration of endometrial cells may contribute to a better understanding of endometriosis. Our objectives included identifying the estrogen-response element (ERE) in the promoter region of the AQP5 gene, and, investigating the effects of AQP5 on ectopic implantation of endometrial cells. Luciferase reporter assays and electrophoretic mobility shift assay (EMSA) identified the ERE-like motif in the promoter region of the AQP5 gene. After blocking and up-regulating estradiol (E2) levels, we analysed the expression of AQP5 in endometrial stromal (ES) cells. After blocking E2 /or phosphatidylinositol 3 kinase(PI3K), we analysed the role of AQP5 in signaling pathways. We constructed an AQP5, shRNA, lentiviral vector to knock out the AQP5 gene in ES cells. After knock-out of the AQP5 gene, we studied the role of AQP5 in cell invasion, proliferation, and the formation of ectopic endometrial implants in female mice. We identified an estrogen-response element in the promoter region of the AQP5 gene. Estradiol (E2) increased AQP5 expression in a dose-dependent fashion, that was blocked by ICI182,780(an estrogen receptor inhibitor). E2 activated PI3K /protein kinase B(AKT) pathway (PI3K/AKT), that, in turn, increased AQP5 expression. LY294002(PI3K inhibitor) attenuated estrogen-enhanced, AQP5 expression. Knock-out of the AQP5 gene with AQP5 shRNA lentiviral vector significantly inhibited E2-enhanced invasion, proliferation of ES cells and formation of ectopic implants. Estrogen induces AQP5 expression by activating ERE in the promoter region of the AQP5gene, activates the PI3K/AKT pathway, and, promotes endometrial cell invasion and proliferation. These results provide new insights into some of the mechanisms that may underpin the development of deposits of ectopic endometrium.  相似文献   

17.
O-GlcNAcylation (addition of N-acetyl-glucosamine on serine or threonine residues) is a post-translational modification that regulates stability, activity or localization of cytosolic and nuclear proteins. O-linked N-acetylgluocosmaine transferase (OGT) uses UDP-GlcNAc, produced in the hexosamine biosynthetic pathway to O-GlcNacylate proteins. Removal of O-GlcNAc from proteins is catalyzed by the β-N-Acetylglucosaminidase (OGA). Recent evidences suggest that O-GlcNAcylation may affect the growth of cancer cells. However, the consequences of O-GlcNAcylation on anti-cancer therapy have not been evaluated. In this work, we studied the effects of O-GlcNAcylation on tamoxifen-induced cell death in the breast cancer-derived MCF-7 cells. Treatments that increase O-GlcNAcylation (PUGNAc and/or glucosoamine) protected MCF-7 cells from death induced by tamoxifen. In contrast, inhibition of OGT expression by siRNA potentiated the effect of tamoxifen on cell death. Since the PI-3 kinase/Akt pathway is a major regulator of cell survival, we used BRET to evaluate the effect of PUGNAc+glucosamine on PIP3 production. We observed that these treatments stimulated PIP3 production in MCF-7 cells. This effect was associated with an increase in Akt phosphorylation. However, the PI-3 kinase inhibitor LY294002, which abolished the effect of PUGNAc+glucosamine on Akt phosphorylation, did not impair the protective effects of PUGNAc+glucosamine against tamoxifen-induced cell death. These results suggest that the protective effects of O-GlcNAcylation are independent of the PI-3 kinase/Akt pathway. As tamoxifen sensitivity depends on the estrogen receptor (ERα) expression level, we evaluated the effect of PUGNAc+glucosamine on the expression of this receptor. We observed that O-GlcNAcylation-inducing treatment significantly reduced the expression of ERα mRNA and protein, suggesting a potential mechanism for the decreased tamoxifen sensitivity induced by these treatments. Therefore, our results suggest that inhibition of O-GlcNAcylation may constitute an interesting approach to improve the sensitivity of breast cancer to anti-estrogen therapy.  相似文献   

18.
A chemical inhibitor library of 84 compounds was screened to investigate the signaling pathway(s) leading to activation of Nrf2 in response to nitric oxide (NO). We identified the protein kinase C delta (PKCδ) inhibitor rottlerin as the only compound that reduced NO-induced ARE-luciferase reporter activity and diminished NO-induced up-regulation of two Nrf2/ARE-regulated proteins - NAD(P)H:quinone oxidoreductase-1 (NQO1) and hemeoxygenase-1 (HO-1) in SH-Sy5y cells. Rottlerin also sensitized neuroblastoma cells and mouse primary cortical neurons to NO-induced apoptosis. Stable over-expression of PKCδ augmented NO-induced, ARE-dependent gene expression of HO-1 in SH-Sy5y cells, which were more protected from NO killing. Conversely, NO-induced ARE-dependent gene expression was reduced in PKCδ-knockdown SH-EP cells, which displayed greater sensitivity to apoptosis. PKCδ−/− cortical neurons exhibited increased NO-induced apoptosis and less HO-1 mRNA and protein induction compared with wild type neurons. Hence, PKCδ is an important positive modulator of NO-induced Nrf2/ARE-dependent signaling that counteracts NO-mediated apoptosis in neuronal cells.  相似文献   

19.
R-(−)-gossypol acetic acid (AT-101) is a natural cottonseed product that exhibits anticancer activity. However, the molecular mechanism behind the antileukemic activity of AT-101 has not been well characterized. In this study, we investigated how AT-101 induces apoptosis in human leukemia cells. Exposure to AT-101 significantly increased apoptosis in both human leukemia cell lines and primary human leukemia cells. This increase was accompanied by the activation of caspases, cytochrome c release, Bcl2-associated X protein (Bax) translocation, myeloid cell leukemia-1 (Mcl-1) downregulation, Bcl-2-associated death promoter (Bad) dephosphorylation, Akt inactivation, and RhoA/Rho-associated coiled-coil containing protein kinase 1/phosphatase and tensin homolog (RhoA/ROCK1/PTEN) activation. RhoA, rather than caspase-3 cleavage, mediated the cleavage/activation of ROCK1 that AT-101 induced. Inhibiting RhoA and ROCK1 activation by C3 exoenzyme (C3) and Y27632, respectively, attenuated the ROCK1 cleavage/activation, PTEN activity, Akt inactivation, Mcl-1 downregulation, Bad dephosphorylation, and apoptosis mediated by AT-101. Knocking down ROCK1 expression using a ROCK1-specific siRNA also significantly abrogated AT-101-mediated apoptosis. Constitutively active Akt prevented the AT-101-induced Mcl-1 downregulation, Bad dephosphorylation, and apoptosis. Conversely, AT-101 lethality was potentiated by the phosphatidylinositol 3-kinase inhibitor LY294002. In vivo, the tumor growth inhibition caused by AT-101 was also associated with RhoA/ROCK1/PTEN activation and Akt inactivation in a mouse leukemia xenograft model. Collectively, these findings suggest that AT-101 may preferentially induce apoptosis in leukemia cells by interrupting the RhoA/ROCK1/PTEN pathway, leading to Akt inactivation, Mcl-1 downregulation, Bad dephosphorylation, and Bax translocation, which culminate in mitochondrial injury and apoptosis.  相似文献   

20.
AMPK/Nrf2 signaling regulates multiple antioxidative factors and exerts neuroprotective effects. Emodin is one of the main bioactive components extracted from Polygonum multiflorum, a plant possessing important activities for human health and for treating a variety of diseases. This study examined whether emodin can activate AMPK/Nrf2 signaling and induce the expression of genes targeted by this pathway. In addition, the anti-neuroinflammatory properties of emodin in lipopolysaccharide (LPS)-stimulated microglia were examined. In microglia, the emodin treatment increased the levels of LKB1, CaMKII, and AMPK phosphorylation. Emodin increased the translocation and transactivity of Nrf2 and enhanced the levels of HO-1 and NQO1. In addition, the emodin-mediated expression of HO-1 and NQO1 was attenuated completely by an AMPK inhibitor (compound C). Moreover, emodin decreased dramatically the LPS-induced production of NO and PGE2 as well as the protein expression and promoter activity of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). In addition, emodin effectively inhibited the production of pro-inflammatory cytokines, TNF-α and IL-6, and reduced the level of IκBα phosphorylation, leading to the suppression of the nuclear translocation, phosphorylation, and transactivity of NF-κB. Emodin also suppressed the LPS-stimulated activation of STATs, JNK, and p38 MAPK. The anti-inflammatory effects of emodin were reversed by transfection with Nrf-2 and HO-1 siRNA and by a co-treatment with an AMPK inhibitor. These results suggest that emodin isolated from P. multiflorum can be used as a natural anti-neuroinflammatory agent that exerts its effects by inducing HO-1 and NQO1 via AMPK/Nrf2 signaling in microglia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号