首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on GC content and the observed/expected CpG ratio (oCpGr), we found three major groups among the members of subfamily Parvovirinae: Group I parvoviruses with low GC content and low oCpGr values, Group II with low GC content and high oCpGr values and Group III with high GC content and high oCpGr values. Porcine parvovirus belongs to Group I and it features an ascendant CpG distribution by position in its coding regions similarly to the majority of the parvoviruses. The entire PPV genome remains hypomethylated during the viral lifecycle independently from the tissue of origin. In vitro CpG methylation of the genome has a modest inhibitory effect on PPV replication. The in vitro hypermethylation disappears from the replicating PPV genome suggesting that beside the maintenance DNMT1 the de novo DNMT3a and DNMT3b DNA methyltransferases can’t methylate replicating PPV DNA effectively either, despite that the PPV infection does not seem to influence the expression, translation or localization of the DNA methylases. SNP analysis revealed high mutability of the CpG sites in the PPV genome, while introduction of 29 extra CpG sites into the genome has no significant biological effects on PPV replication in vitro. These experiments raise the possibility that beyond natural selection mutational pressure may also significantly contribute to the low level of the CpG sites in the PPV genome.  相似文献   

2.
3.
Basal-like breast cancer is a molecularly distinct subtype of breast cancer that is highly aggressive and has a poor prognosis. MicroRNA-29c (miR-29c) has been shown to be significantly down-regulated in basal-like breast tumors and to be involved in cell invasion and sensitivity to chemotherapy. However, little is known about the genetic and regulatory factors contributing to the altered expression of miR-29c in basal-like breast cancer. We here report that epigenetic modifications at the miR-29c promoter, rather than copy number variation of the gene, may drive the lower expression of miR-29c in basal-like breast cancer. Bisulfite sequencing of CpG sites in the miR-29c promoter region showed higher methylation in basal-like breast cancer cell lines compared to luminal subtype cells with a significant inverse correlation between expression and methylation of miR-29c. Analysis of primary breast tumors using The Cancer Genome Atlas (TCGA) dataset confirmed significantly higher levels of methylation of the promoter in basal-like breast tumors compared to all other subtypes. Furthermore, inhibition of CpG methylation with 5-aza-CdR increases miR-29c expression in basal-like breast cancer cells. Flourescent In Situ Hybridization (FISH) revealed chromosomal abnormalities at miR-29c loci in breast cancer cell lines, but with no correlation between copy number variation and expression of miR-29c. Our data demonstrated that dysregulation of miR-29c in basal-like breast cancer cells may be in part driven by methylation at CpG sites. Epigenetic control of the miR-29c promoter by epigenetic modifiers may provide a potential therapeutic target to overcome the aggressive behavior of these cancers.  相似文献   

4.
SET domain lysine methyltransferases (KMTs) methylate specific lysine residues in histone and non-histone substrates. These enzymes also display product specificity by catalyzing distinct degrees of methylation of the lysine ϵ-amino group. To elucidate the molecular mechanism underlying this specificity, we have characterized the Y245A and Y305F mutants of the human KMT SET7/9 (also known as KMT7) that alter its product specificity from a monomethyltransferase to a di- and a trimethyltransferase, respectively. Crystal structures of these mutants in complex with peptides bearing unmodified, mono-, di-, and trimethylated lysines illustrate the roles of active site water molecules in aligning the lysine ϵ-amino group for methyl transfer with S-adenosylmethionine. Displacement or dissociation of these solvent molecules enlarges the diameter of the active site, accommodating the increasing size of the methylated ϵ-amino group during successive methyl transfer reactions. Together, these results furnish new insights into the roles of active site water molecules in modulating lysine multiple methylation by SET domain KMTs and provide the first molecular snapshots of the mono-, di-, and trimethyl transfer reactions catalyzed by these enzymes.  相似文献   

5.
6.
Proper functioning of the mitochondria is crucial for the survival of the cell. Viruses are able to interfere with mitochondrial functions as they infect the host cell. Parvoviruses are known to induce apoptosis in infected cells, but the role of the mitochondria in parvovirus induced cytopathy is only partially known. Here we demonstrate with confocal and electron microscopy that canine parvovirus (CPV) associated with the mitochondrial outer membrane from the onset of infection. During viral entry a transient depolarization of the mitochondrial transmembrane potential and increase in ROS level was detected. Subsequently, mitochondrial homeostasis was normalized shortly, as detected by repolarization of the mitochondrial membrane and decrease of ROS. Indeed, activation of cell survival signalling through ERK1/2 cascade was observed early in CPV infected cells. At 12 hours post infection, concurrent with the expression of viral non-structural protein 1, damage to the mitochondrial structure and depolarization of its membrane were apparent. Results of this study provide additional insight of parvovirus pathology and also more general information of virus-mitochondria association.  相似文献   

7.
DNA methylation is an epigenetic modification that plays a crucial role in normal mammalian development, retrotransposon silencing, and cellular reprogramming. Although methylation mainly occurs on the cytosine in a CG site, non-CG methylation is prevalent in pluripotent stem cells, brain, and oocytes. We previously identified non-CG methylation in several CG-rich regions in mouse germinal vesicle oocytes (GVOs), but the overall distribution of non-CG methylation and the enzymes responsible for this modification are unknown. Using amplification-free whole-genome bisulfite sequencing, which can be used with minute amounts of DNA, we constructed the base-resolution methylome maps of GVOs, non-growing oocytes (NGOs), and mutant GVOs lacking the DNA methyltransferase Dnmt1, Dnmt3a, Dnmt3b, or Dnmt3L. We found that nearly two-thirds of all methylcytosines occur in a non-CG context in GVOs. The distribution of non-CG methylation closely resembled that of CG methylation throughout the genome and showed clear enrichment in gene bodies. Compared to NGOs, GVOs were over four times more methylated at non-CG sites, indicating that non-CG methylation accumulates during oocyte growth. Lack of Dnmt3a or Dnmt3L resulted in a global reduction in both CG and non-CG methylation, showing that non-CG methylation depends on the Dnmt3a-Dnmt3L complex. Dnmt3b was dispensable. Of note, lack of Dnmt1 resulted in a slight decrease in CG methylation, suggesting that this maintenance enzyme plays a role in non-dividing oocytes. Dnmt1 may act on CG sites that remain hemimethylated in the de novo methylation process. Our results provide a basis for understanding the mechanisms and significance of non-CG methylation in mammalian oocytes.  相似文献   

8.
Biologists often define evolution as a change in allele frequencies. Consideration of the evolution of the pocket mouse will show that it is possible to have evolution without any change in the allele frequencies in a population (through change in the genotype frequencies). The implications of this for genic selectionism are then discussed. Sober and Lewontin (1982) have constructed an example to demonstrate the blindness of genic selectionism in certain cases. Sterelny and Kitcher (1988) offer a defense against these arguments which assumes a conventionalist approach to populations. The example considered here will be shown to offer a more plausible and far-reaching argument against the view that alleles can always be seen as the units of selection.  相似文献   

9.
The mosquito Anopheles gambiae has heteromorphic sex chromosomes, while the mosquito Aedes aegypti has homomorphic sex chromosomes. We use retrotransposed gene duplicates to show an excess of movement off the An. gambiae X chromosome only after the split with Ae. aegypti, suggesting that their ancestor had homomorphic sex chromosomes.HETEROMORPHIC sex chromosomes, both XX/XY and ZZ/ZW systems, have evolved independently multiple times in both animals and plants (Bull 1983; Charlesworth 1996; Rice 1996). Sex chromosomes are thought to evolve from a pair of autosomes that acquire a new sex-determining locus. Theory suggests that natural selection will favor tight linkage between the newly arisen sex-determining locus and sexually antagonistic alleles (i.e., genes that are beneficial in one sex, but detrimental in the other), which favors the suppression of recombination near the sex-determining locus (Charlesworth et al. 2005). In some species, this nonrecombining region includes only a small portion of the sex chromosome (hereafter referred to as homomorphic sex chromosomes), whereas in other species, this region encompasses most of the sex chromosomes (heteromorphic sex chromosomes). In many species the nonrecombining region progressively expands from only the portion near the sex-determining locus to nearly the full extent of the sex chromosomes (Lahn and Page 1999; Lawson Handley et al. 2004; Nicolas et al. 2005). However, the broad phylogenetic distribution of homomorphic sex chromosomes suggests that this progression does not happen in every species (e.g., Matsubara et al. 2006; Tsuda et al. 2007), although why it should occur in some lineages and not in others is unknown. As noted by Gilchrist and Haldane (1947, p. 187): “It is a striking fact that this [the suppression of recombination across the sex chromosome] has not happened in many large and successful groups.”Within the order Diptera, there are a wide variety of sex chromosomes and sex-determination mechanisms, including XY, ZW, multiple-X, and homomorphic systems, often varying within the same family (Marin and Baker 1998; Schutt and Nothiger 2000; Sanchez 2008). The mosquito Anopheles gambiae (a species in the subfamily Anophelinae) has fully differentiated heteromorphic X and Y chromosomes that show no evidence of recombination (Krzywinski et al. 2004). The mosquito Aedes aegypti (subfamily Culicinae) has a nonrecombining sex-determining region that spans only a few megabases on chromosome 1; this chromosome is homologous to chromosomes X and 2R of An. gambiae (Nene et al. 2007). An. gambiae and Ae. aegypti diverged ∼150 million years ago (Krzywinski et al. 2006).Because of the rapid turnover of sex-chromosome systems among the Diptera, it is not clear if the common ancestor of Ae. aegypti and An. gambiae had only a sex-determining region (i.e., homomorphic sex chromosomes) or fully differentiated heteromorphic sex chromosomes (Rai and Black 1999). The generally accepted model of sex-chromosome evolution, in which homomorphic sex chromosomes progressively suppress recombination and become heteromorphic, predicts that the common ancestor of Ae. aegypti and An. gambiae had homomorphic sex chromosomes (Figure 1A). This implies that evolution of heteromorphic sex chromosomes in An. gambiae occurred in a short period of time after the split between these two lineages and before the radiation of the Anophelines and that the homomorphic sex chromosomes of Ae. aegypti have been nearly static over evolutionary time. Alternatively, the common ancestor may have had nearly or fully differentiated sex chromosomes, and Ae. aegypti evolved from heteromorphic sex chromosomes to having only a small sex-determining region (Figure 1B; Rao and Rai 1987). We imagine this transition may have occurred by one of two mechanisms: either the sex-determining locus was transposed from the ancestral sex chromosome to an autosome or, in an XO sex-determination system, one of the “numerator” genes located on the X chromosome sustained an inactivating mutation, effectively making a karyotypic XX individual into a genetically male XO individual. (The precise mechanism of sex determination in Ae. aegypti is not known.)Open in a separate windowFigure 1.—Hypotheses for sex-chromosome evolution in Anopheles gambiae and Aedes aegypti. (A) The ancestor of An. gambiae and Ae. aegypti had homomorphic sex chromosomes and heteromorphism evolved along the Anopheline lineage. (B) The ancestor of An. gambiae and Ae. aegypti had heteromorphic chromosomes and homomorphism evolved along the Culicine lineage.To determine the state of the mosquito common ancestor, we examined genes duplicated by retrotransposition in the An. gambiae genome. Several organisms with heteromorphic sex chromosomes, including mammals and Drosophila, have an excess of retrotransposed genes moving from the X chromosome to autosomes compared to genes moving between autosomes or from the autosomes to the X (Betran et al. 2002; Emerson et al. 2004; Vinckenbosch et al. 2006; Meisel et al. 2009). This pattern is further found to be strongly associated with the origin of new X chromosomes in both mammals and Drosophila (Potrzebowski et al. 2008; Meisel et al. 2009), although it continues long after X chromosomes arise. While there are many hypotheses for the evolutionary forces that drive gene movement off X chromosomes—including sexual antagonism and meiotic sex-chromosome inactivation (e.g., Hense et al. 2007)—it is likely that all of these forces also act in mosquitoes, implying excess movement off the heteromorphic X in this clade as well. We reasoned that if the common ancestor of Ae. aegypti and An. gambiae had homomorphic sex chromosomes (Figure 1A), there should be an excess of retrogene movement off the X chromosome in An. gambiae only after the divergence of the two lineages (i.e., since An. gambiae evolved a differentiated X chromosome). In contrast, if the common ancestor had fully heteromorphic chromosomes (Figure 1B), then our prediction is that there will be an excess of gene movement off the An. gambiae X on both the shared ancestral branch and the Anopheles-specific branch after the split with Aedes. (Note that the Ae. aegypti genome is largely not assembled onto chromosomes, precluding a similar analysis in this species.)We collected data on all functional, intact duplicates in the An. gambiae genome and all orthologs between An. gambiae and Ae. aegypti from Ensembl version 54. When genes are retrotransposed there will be introns in the parental copy, but no introns in the daughter copy, allowing us to polarize gene movement. Although introns may be lost—and more rarely gained—over time, the rate of such changes is quite low (Coulombe-Huntington and Majewski 2007). Nevertheless, unless a parental gene loses all of its introns and the daughter gene gains introns, such changes will merely cause us to miss events rather than to assign them to an incorrect chromosome. Using gene-tree/species-tree reconciliation (Goodman et al. 1979), we identified retrotransposition events in the An. gambiae genome that have occurred since the split with Drosophila melanogaster and assigned them to a branch on the basis of the timing of the inferred duplication event in the gene tree. Calculating the expected number of movements on the basis of the equations presented in Betran et al. (2002), we find that an excess of movement off the X chromosome has in fact occurred since the split with D. melanogaster2 = 23.83, d.f. = 2, P = 6.7 × 10−6). We then divided the retrotransposition events into those that occurred before the divergence of An. gambiae and Ae. aegypti and those that occurred only in An. gambiae since the split. We determined that there is a 400% excess of retrotransposition events off the X chromosome since the An. gambiae and Ae. aegypti split (Figure 2: χ2 = 51.97, d.f. = 2, P = 5.2 × 10−12). However, there is no excess of retrotransposition off the X chromosome prior to the split between An. gambiae and Ae. aegypti (Figure 2: χ2 = 1.51, d.f. = 2, P = 0.47). This strongly suggests a recent origin of fully differentiated heteromorphic sex chromosomes in An. gambiae.Open in a separate windowFigure 2.—Retroposition events off the X chromosome. There is an excess of genes moving off the X chromosome on the An. gambiae-specific lineage, but not on the branch leading to the common ancestor of An. gambiae and Ae. aegypti.The deepest split between species within the subfamily Anophelinae—all of which have fully differentiated sex chromosomes—occurs soon after the split with the Culicinae (Krzywinski et al. 2006). This implies that the evolution of heteromorphic sex chromosomes must have occurred very soon after the split with Ae. aegypti. To determine whether there was a burst of retrotransposition off the X following this split, we examined the amino acid sequence identity between X-to-autosome retrotransposed proteins and their parental paralogs. A comparison of these distributions indicates that there is no difference in the percentage of identity of genes retrotransposed off the An. gambiae X chromosome and one-to-one orthologs between An. gambiae and Ae. aegypti (71.1% vs. 70.7%, t-test, P = 0.92; JTT amino acid distances, 0.508 vs. 0.436, t-test, P = 0.57). Given the fact that functional retrotransposed genes have been found to evolve more rapidly than single-copy genes (Betran et al. 2002), these results support the idea that these duplication events occurred soon after the split between An. gambiae and Ae. aegypti.Our results have important implications for two further areas of research. First, a recent article (Moyle et al. 2010) proposed that X-to-autosome duplication events could be partly responsible for the large X-effect—the disproportionate effect of the X chromosome on reproductive isolation (Coyne and Orr 2004). This is because gene movement between chromosomes can itself cause reproductive isolation (e.g., Masly et al. 2006), and any excess movement involving the X will lead to an excess of reproductive isolation loci mapping to this chromosome. One prediction of this model is that species showing the large X-effect should also show an excess of X-to-autosome gene movement. As An. gambiae does in fact exhibit patterns consistent with the large X-effect (Slotman et al. 2005), our demonstration of an excess of movement off the X supports this model.Second, it has been proposed that the excess movement off the X in Drosophila is the cause of the deficit of male-biased genes on the X in the same species (e.g., Vibranovski et al. 2009), although the number of retrotransposed genes is much smaller than the number of missing male-biased genes (Betran et al. 2002; Parisi et al. 2003). We have previously shown that there is no deficit of male-biased genes on the An. gambiae X chromosome, at any significance level (Hahn and Lanzaro 2005). Given the observed excess of gene movement off the X presented here, we therefore find little support for a causal link between movement and genome-wide patterns of male-biased gene expression.Our results suggest that retrogene movement is a general feature of sex-chromosome evolution and support the hypothesis that the common ancestor of An. gambiae and Ae. aegypti had homomorphic sex chromosomes. It appears that the nonrecombining region around the sex-determining locus in An. gambiae expanded rapidly after the divergence with Ae. aegypti. Further investigation into the causes of the rapid expansion in the An. gambiae lineage and the long-term stasis in the Ae. aegypti lineage is clearly warranted.  相似文献   

10.
The 3.5-Å resolution X-ray crystal structure of mature cricket parvovirus (Acheta domesticus densovirus [AdDNV]) has been determined. Structural comparisons show that vertebrate and invertebrate parvoviruses have evolved independently, although there are common structural features among all parvovirus capsid proteins. It was shown that raising the temperature of the AdDNV particles caused a loss of their genomes. The structure of these emptied particles was determined by cryo-electron microscopy to 5.5-Å resolution, and the capsid structure was found to be the same as that for the full, mature virus except for the absence of the three ordered nucleotides observed in the crystal structure. The viral protein 1 (VP1) amino termini could be externalized without significant damage to the capsid. In vitro, this externalization of the VP1 amino termini is accompanied by the release of the viral genome.  相似文献   

11.
目的研制犬细小病毒(CPV)基因疫苗。方法以CPV VP2基因为基因免疫的目的基因,以pcDNA3和pcDNAK质粒为基因免疫的载体,以非甲基化的胞嘧啶鸟嘌呤二核苷酸(CpG)为核心的免疫刺激序列为免疫佐剂,构建重组质粒并免疫BALB/c小鼠和毕格犬。结果经pcDNA3-VP2C1(含1个拷贝CpG基序)基因免疫的BALB/c小鼠能产生抗CPV血凝抑制抗体;对于经CPV灭活苗初次免疫的毕格犬,用pcDNAK-VP2C2(含2个拷贝CpG基序)质粒免疫产生的再次免疫应答优于pcDNA3-VP2C1。结论VP2基因、pcDNAK和犬源CpG可用于CPV基因疫苗的进一步研究。  相似文献   

12.
Abstract

The crystal and molecular structure of the sodium salt of deoxycytidylyl-{3′ ?5′)-deoxyguanosine has been determined from X-ray diffraction data. The crystals, obtained from an aqueous y- butyrolactone solution at pH = 5.3, are orthorhombic, P212121, a= 10.640(2), b= 11.184(2) and c=44.618(4) A. The structure was refined to an R = 0.041. The d(CpG) structure is similar to the ammonium salt solved by Cruse et al.(1). Both structures form a parallel self base paired mini-double helix. In d(CpG).Na+, one of the two paired cytosines is protonated on N(3). The cytosines form 3 hydrogen bonds while the guanines form only 2. The Na+ ion is coordinated with five groups: two water molecules, 0(6) of guanine A, N(7) of guanine B and 0(5′) of cytosine B, forming a square pyramid. The hydration shell around the mini-helix is analysed and compared with that of the ammonium salt. d(CpG).Na+ is the second d(CpG) oligonucleotide found with a self base pairing arrangement despite of the fact that the crystallization conditions and counterion were different in both cases. The hypothesis that self base pairing is not only a crystallization artifact but may play a role under physiological conditions as a source of transversion mutations is discussed.  相似文献   

13.
14.
Study of Tissue-Specific CpG Methylation of DNA in Extended Genomic Loci   总被引:2,自引:0,他引:2  
Modern approaches for studies on genome functioning include investigation of its epigenetic regulation. Methylation of cytosines in CpG dinucleotides is an inherited epigenetic modification that is responsible for both functional activity of certain genomic loci and total chromosomal stability. This review describes the main approaches for studies on DNA methylation. Under consideration are site-specific approaches based on bisulfite sequencing and methyl-sensitive PCR, whole-genome approaches aimed at searching for new methylation hot spots, and also mapping of unmethylated CpG sites in extended genomic loci.  相似文献   

15.
Russian Journal of Plant Physiology - It was established that the functioning of ATP-citrate lyase in maize (Zea mays L.) leaves is regulated by the light conditions of plants, in particular,...  相似文献   

16.
The virulence spectrum for different regions in Germany in 1986 shows that only virulences for resistance genes Pm1, 4a, 7, 8 and Ml-i are common in Northern Germany; in the Southern part only Pm3b and 9 (+Pm1+ 2) remain effective; the combination Pm2 + 6 is effective within the whole country. The selection pressure of resistance genes on virulences is complex, but was relatively stable under different environmental conditions in 1985 and 1986.  相似文献   

17.
Abstract

Oligonucleotide and codon frequencies have been determined in published sequences of E. coli DNA totaling 103,100bp with 18,459 reading frame trinucleotides; corresponding to 2.5% of the total genome. Dinucleotide frequencies are in excellent agreement with those determined by nearest neighbor chemical analysis, indicating the computer count of a limited sampling to be a good representation of the overall frequencies in total genomic DNA. The distinctive nonrandom codon pattern is found to be uniformly distributed and contributes to a distinctive nonrandom oligonucleotide pattern; enabling correlations between frequency levels to be extended beyond reading frame sequences. Correlation analysis indicates a surprisingly high degree of correlation everywhere in the genome. Coefficients of correlation between oligonucleotide frequencies overall and those in specific segments vary as follows: primary strands of individual coding sequences >0.9> lambda DNA> noncoding, non-RNA>φiX174 DNA> complementary strands> RNA genes ?0.6> transposon-insertion elements> T7DNA? eukaryotic sequences ?0. It is concluded that this high degree of oligonucleotide and codon correspondence in E. coli reflects the widespread distribution of remnants of an early and slowly changing codon pattern that has been continually dispersed by duplication-divergence processes, leading to the present genome.  相似文献   

18.
Yang Y  Wang LL  Li YH  Gao XN  Liu Y  Yu L 《Biochemical genetics》2012,50(1-2):122-134
To test the hypothesis that methylation of a CpG island is associated with regulation of microRNA expression, we investigated CpG islands in the upstream sequences of microRNA precursors (pre-miRNAs) through bioinformatic analysis and determined whether the CpG islands were methylated by methylation-specific PCR in the k-562 cell line. We used 5-azacytidine for DNA demethylation, and changes in microRNA expression were detected by microarray assay, RT-PCR, and real-time PCR after 5-azacytidine induction. We showed that the CpG islands in the upstream regions of 18 pre-miRNAs were methylated, including miR-663, miR-369, miR-615, and miR-410, and promoter activity was detected in the upstream region of pre-miR-663. We found that a decrease in methylation of a CpG island could up-regulate the expression of miR-663, suggesting that miR-663 could be regulated by DNA methylation. Expression levels of miR-369, miR-615, and miR-410 were not regulated by DNA methylation in this cell line.  相似文献   

19.
Soft tissue sarcomas (STS) are rare, complex tumors with a poor prognosis. The identification of new prognostic biomarkers is needed to improve patient management. Our aim was to determine the methylation status of the 118 CpG sites in the PLAGL1 tumor-suppressor gene P1 CpG island promoter and study the potential prognostic impact of PLAGL1 promoter methylation CpG sites in STS. Training cohorts constituted of 28 undifferentiated sarcomas (US) and 35 leiomyosarcomas (LMS) were studied. PLAGL1 mRNA expression was investigated by microarray analysis and validated by RT-qPCR. Pyrosequencing was used to analyze quantitative methylation of the PLAGL1 promoter. Associations between global promoter or specific CpG site methylation and mRNA expression were evaluated using Pearson’s product moment correlation coefficient. Cox univariate and multivariate proportional hazard models were used to assess the predictive power of CpG site methylation status. Sixteen CpG sites associated with PLAGL1 mRNA expression were identified in US and 6 in LMS. Statistical analyses revealed an association between CpG107 methylation status and both overall and metastasis-free survival in US, which was confirmed in a validation cohort of 37 US. The exhaustive study of P1 PLAGL1 promoter methylation identified a specific CpG site methylation correlated with mRNA expression, which was predictive for both metastasis-free and overall survival and may constitute the first US-specific biomarker. Such a biomarker may be relevant for identifying patients likely to derive greater benefit from treatment.  相似文献   

20.
Borderline personality disorder (BPD) is a complex psychiatric disease with an increased impact in the last years. While the diagnosis and therapy are well established, little is known on the pathogenesis of borderline personality disorder. Previously, a significant increase in DNA methylation of relevant neuropsychiatric genes in BPD patients has been reported. In our study we performed genome wide methylation analysis and revealed specific CpG sites that exhibited increased methylation in 24 female BPD patients compared to 11 female healthy controls. Bead chip technology and quantitative bisulfite pyrosequencing showed a significantly increased methylation at CpG sites of APBA2 (1.1 fold) and APBA3 (1.1 fold), KCNQ1 (1.5 fold), MCF2 (1.1 fold) and NINJ2 (1.2 fold) in BPD patients. For the CpG sites of GATA4 and HLCS an increase in DNA methylation was observed, but was only significant in the bead chip assay. Moreover genome wide methylation levels of blood samples of BPD patients and control samples are similar. In summary, our results show a significant 1.26 fold average increase in methylation at the analyzed gene associated CpG sites in the blood of BPD patients compared to controls samples (p<0.001). This data may provide new insights into epigenetic mechanisms underlying the pathogenesis of BPD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号