首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the aim of elucidating how plants synthesize lysine, extracts prepared from corn, tobacco, Chlamydomonas and soybean were tested and found to lack detectable amounts of N-alpha-acyl-L,L-diaminopimelate deacylase or N-succinyl-alpha-amino-epsilon-ketopimelate-glutamate aminotransaminase, two key enzymes in the central part of the bacterial pathway for lysine biosynthesis. Corn extracts missing two key enzymes still carried out the overall synthesis of lysine when provided with dihydrodipicolinate. An analysis of available plant DNA sequences was performed to test the veracity of the negative biochemical findings. Orthologs of dihydrodipicolinate reductase and diaminopimelate epimerase (enzymes on each side of the central pathway) were readily found in the Arabidopsis thaliana genome. Orthologs of the known enzymes needed to convert tetrahydrodipicolinate to diaminopimelic acid (DAP) were not detected in Arabidopsis or in the plant DNA sequence databases. The biochemical and reinforcing bioinformatics results provide evidence that plants may use a novel variant of the bacterial pathways for lysine biosynthesis.  相似文献   

2.
Summary Some of the strains containing mutations in the genes for the acetolactate synthase isoenzymes are temperature sensitive (ts). Suppression of the acetolactate synthase defect due to one of these mutations suppresses also the ts phenotype; moreover, a genetic cross shows that the two phenotypes cannot be dissociated.The ts phenotype is accompanied by a decreased efficiency of transduction with Pl phage. Observations at the light microscope show formation of abnormal cells. Under specific conditions diaminopimelate stimulates growth and restores normal transduction efficiency. The rate of diaminopimelate formed and excreted by non-growing cells decreases when an acetolactate synthase mutation is present.We give evidence that the ts phenotype is due to an increased formation of lysine from diaminopimelate; this causes a starvation for the latter and therefore cell wall abnormalities. In fact, even at the permissive temperature, the lysine pool is 8x increased in a strain with an acetolactate synthase defect, while a slight decrease in the diaminopimelate pool is observed. Moreover, introduction into a ts strain of a mutation in lysA (the gene coding for diaminopimelate decarboxylase) cures the ts phenotype. Finally among the temperature resistant revertants we found some lysine auxotrophs.  相似文献   

3.
Abstract The regulation of the synthesis of diaminopimelate decarboxylase (product of the lysA gene) of Escherichia coli was studied by measuring the expression of a lysA-lacZ chromosomal fusion. It appeared to be under an autogenous regulatory control involving lysine as an effector. The LysA protein from Pseudomonas aeruginosa could replace the E. coli protein in its regulatory role, but with a lower efficiency.  相似文献   

4.
Metabolites such as diaminopimelate and some aromatic derivatives, not synthesized in mammalian cells, are essential for growth of bacteria. As a first step towards the design of a new human live vaccine that uses attenuated strains of Leptospira interrogans, the asd, aroD and dapD genes, encoding aspartate beta-semialdehyde dehydrogenase, 3-dehydroquinase and tetrahydrodipicolinate N-succinyltransferase, respectively, were cloned by complementation of Escherichia coli mutants. The complete nucleotide sequence of the asd gene was determined and found to contain an open reading frame capable of encoding a protein of 349 amino acids with a calculated Mr of 38,007. Comparison of this deduced L. interrogans aspartate beta-semialdehyde dehydrogenase amino acid sequence with those of the same enzyme from Saccharomyces cerevisiae and Corynebacterium glutamicum revealed 46% and 36% identity, respectively. By contrast, the identity between the L. interrogans enzyme and the Streptococcus mutans or E. coli enzymes was less than 31%. Highly conserved sequences within aspartate semialdehyde dehydrogenase from the five organisms were observed at the amino and carboxyl termini, and around the cysteine of the active site.  相似文献   

5.
Summary The diaminopimelate (DAP) pathway provides the cell with lysine and with DAP, a vital cell wall constituent. Mutations in the DAP pathway of lysine biosynthesis are lethal for cells exposed to lysine in the absence of DAP. In this paper, the substitution of thedapD gene ofEscherichia coli with the kanamycin resistance gene from Tn903 is described and its possible uses are discussed.  相似文献   

6.
The regulation of uridine diphosphate-N-acetylmuramyl-peptide (UDP-MurNAc-peptide) synthesis was studied by labeling Escherichia coli strains auxotrophic for lysine and diaminopimelate with [3H]diaminopimelate for 15 min under various conditions. The amounts of [3H]diaminopimelate incorporated into UDP-MurNAc-tripeptide and -pentapeptide by a stringent (rel+) strain were the same in the presence or absence of lysine. Chloramphenicol-treated rel+ cells showed a 2.8-fold increase in labeled UDP-MurNAc-pentapeptide. An isogenic relaxed (relA) strain deprived of lysine showed a 2.7-fold increase in UDP-MurNAc-pentapeptide. Thus, UDP-MurNAc-pentapeptide synthesis is regulated by the relA gene. D-Cycloserine treatment of rel+ and relA strains caused a depletion of intracellular UDP-MurNAc-pentapeptide. Labeled UDP-MurNAc-tripeptide accumulated in D-cycloserine-treated cells of the rel+ and relA strains, suggesting that UDP-MurNAc-pentapeptide is a feedback inhibitor of UDP-MurNAc-peptide synthesis. In lysine-deprived cells, D-cycloserine treatment caused 41- and 71-fold accumulations of UDP-MurNAc-tripeptide in rel+ and relA strains, respectively. A 124-fold increase in UDP-MurNAc-tripeptide occurred in lysine-deprived rel+ cells treated with both chloramphenicol and D-cycloserine. These results indicate that both the relA gene product and feedback inhibition are involved in regulating UDP-MurNAc-peptide synthesis during amino acid deprivation.  相似文献   

7.
Lysine biosynthesis in Staphylococcus aureus has been studied by use of a series of lysine auxotrophs. The strains were isolated after chemical mutagenesis. The majority of these mutant strains were classified according to the enzymatic step found to be deficient. Specific enzyme assays as well as nutritional tests were used to group the organisms. The enzymes included were dihydrodipicolinate synthetase, dihydrodipicolinate reductase, diaminopimelate epimerase, and diaminopimelate decarboxylase. The accumulation of diaminopimelate in certain mutants and the demonstration of dihydrodipicolinate synthetase and reductase provide the first detailed evidence that S. aureus utilizes the diaminopimelate pathway for lysine biosynthesis. A cell-free system was used to study the regulation of these enzymes with the exception of diaminopimelate epimerase. Lysine repressed all of the enzymes tested. The repression appeared to be coordinate in nature. The data presented provide suggestive evidence that the lysine biosynthetic region in S. aureus constitutes an operon.  相似文献   

8.
Methanobacterium thermoautotrophicum, an archaebacterium, possesses the first and last enzymes of the diaminopimelic acid pathway for lysine biosynthesis, dihydrodipicolinate synthase, and diaminopimelate decarboxylase. It does not have saccharopine dehydrogenase, the last enzyme of the aminoadipate pathway for lysine biosynthesis. The dihydrodipicolinate synthase is inhibited but not repressed by lysine. We conclude that this microbe uses the diaminopimelate pathway for synthesis of lysine.Deceased.  相似文献   

9.
10.
Regulation of enzymes of lysine biosynthesis in Corynebacterium glutamicum   总被引:9,自引:0,他引:9  
The regulation of the six enzymes responsible for the conversion of aspartate to lysine, together with homoserine dehydrogenase, was studied in Corynebacterium glutamicum. In addition to aspartate kinase activity, the synthesis of diaminopimelate decarboxylase was also found to be regulated. The specific activity of this enzyme was reduced to one-third in extracts of cells grown in the presence of lysine. Aspartate-semialdehyde dehydrogenase, dihydrodipicolinate synthase, dihydrodipicolinate reductase, and diaminopimelate dehydrogenase were neither influenced in their specific activity, nor inhibited, by any of the aspartate family of amino acids. Homoserine dehydrogenase was repressed by methionine (to 15% of its original activity) and inhibited by threonine (4% remaining activity). Inclusion of leucine in the growth medium resulted in a twofold increase of homoserine dehydrogenase specific activity. The flow of aspartate semialdehyde to either lysine or homoserine was influenced by the activity of homoserine dehydrogenase or dihydrodipicolinate synthase. Thus, the twofold increase in homoserine dehydrogenase activity resulted in a decrease in lysine formation accompanied by the formation of isoleucine. In contrast, repression of homoserine dehydrogenase resulted in increased lysine formation. A similar increase of the flow of aspartate semialdehyde to lysine was found in strains with increased dihydrodipicolinate synthase activity, constructed by introducing the dapA gene of Escherichia coli (coding for the synthase) into C. glutamicum.  相似文献   

11.
The extent of incorporation of aspartate into dipicolinic acid and into various amino compounds was determined in Bacillus cereus at various times before, during, and near the end of synthesis of dipicolinic acid. The purpose of this study was to gain further information on the in vivo control of the biosynthesis of amino acids derived from aspartate. Control of the lysine biosynthetic pathway was of particular interest with regard to sporulation, owing to the important role of diaminopimelate and dipicolinate in the structure of the spore. As synthesis of dipicolinate was initiated, incorporation of carbon derived from aspartate was funneled preferentially into this compound as compared with others of the aspartate group. Incorporation into lysine essentially stopped just before the synthesis of dipicolinate began. This is consistent with the previously observed disappearance at this time of diaminopimelic acid decarboxylase in cell-free extracts. Synthesis of diaminopimelate continued during the time of synthesis of dipicolinate. The previous suggestion that diaminopimelate might exert negative control on one of the enzymes between dihydrodipicolinate and diaminopimelate is thus considered unlikely. The possibility is discussed that synthesis of dipicolinate is favored by an increase in the rate of synthesis of dihydrodipicolinate rather than by a block in its rate of utilization.  相似文献   

12.
Further studies on the expression of the two aspartokinase activities in Bacillus bovis are presented. Aspartokinase I (previously shown to be inhibited and repressed by lysine) was found to be repressed by diaminopimelate in the wild-type strain. However, in a mutant unable to convert diaminopimelate to lysine, starvation for lysine resulted in an increase in aspartokinase I activity. Thus, lysine itself or an immediate metabolite was the true effector of repression. Aspartokinase II (previously shown to be inhibited by lysine plus threonine) was repressed by threonine. Studies with the parent strain and auxotrophs inidicated that only threonine or an immediate metabolite of threonine was involved in this repression. Methionine and isoleucine were not effectors of any of the detected aspartokinase activities. Apart from inhibition and repression controls, a third as yet undefined regulatory mechanism operated to decrease the levels of both aspartokinases as growth declined, even in mutants in which repression control was absent. In thiosine-resistant, lysine-excreting mutants with elevated levels of aspartokinase, the increase in activity could always be attributed to one enzyme or the other, never both. The existence of separate structural genes for each aspartokinase is therefore suggested.  相似文献   

13.
From cell extracts of the pseudomurein possessing methanogen Methanobacterium thermoautotrophicum two putative pseudomurein precursors were isolated and characterized: (1) an undecaprenyl pyrophosphate activated disaccharide pentapeptide composed of N-acetylglucosamine, N-acetyltalosaminuronic acid, alanine, glutamic acid and lysine in a molar ratio of 1:1:2:2:1 and (2) the corresponding undecaprenyl pyrophosphate activated tetrapeptide lacking one alanine residue. The isolation of these precursors show that the biosynthesis of the eubacterial murein and the methano-bacterial pseudomurein differs not only in the cytoplasmic step, as recently described, but also in the lipid stage.Abbreviations GlcNitol glucosaminitol - NAcTalNUA N-acetyltalosaminuronic acid - Udp undecaprenol - TLC thin layer chromatography  相似文献   

14.
l-Lysine caused repression of diaminopimelate decarboxylase synthesis in Bacillus cereus when grown in either a minimal defined medium (CDGS medium) or a complex defined medium (a modified lysine assay medium). When cells were grown in either of the two media, variations in the specific activity of the enzyme as a function of time were found to be correlated with the intracellular lysine pool size during growth. From all of the data presented, it seems reasonable to conclude that during growth the synthesis of diaminopimelate decarboxylase is probably regulated by the intracellular lysine pool size. The relationship between lysine pool concentration and the specific activity of the enzyme did not occur in sporulating cells. The specific activity of diaminopimelate decarboxylase started to decrease at the end of exponential growth and continued to decline until it became nondetectable at the time of dipicolinic acid synthesis and development of spore refractility. Throughout this time, the intracellular lysine pool size remained below that which allowed derepression of enzyme synthesis during exponential growth. The mechanism(s) responsible for the observed decrease in the specific activity of the enzyme at the end of exponential growth is unknown. A threefold rise in the intracellular diaminopimelic acid concentration occurred when there was little or no detectable enzyme activity at the time of dipicolinic acid synthesis. This accumulation of diaminopimelic acid may exert positive control on the synthesis of spore peptidoglycan, the major component of the spore cortex.  相似文献   

15.
Mutants of Escherichia coli that lack cytoplasmic superoxide dismutase (SOD) exhibit auxotrophies for sulfur-containing, branched-chain, and aromatic amino acids and cannot catabolize nonfermentable carbon sources. A secondary-site mutation substantially relieved all of these growth defects. The requirement for fermentable carbon and the branched-chain auxotrophy occur because superoxide (O2-) leaches iron from the [4Fe-4S] clusters of a family of dehydratases, thereby inactivating them; the suppression of these phenotypes was mediated by the restoration of activity to these dehydratases, evidently without changing the intracellular concentration of O2-. Cloning, complementation, and sequence analysis identified the suppressor mutation to be in dapD, which encodes tetrahydrodipicolinate succinylase, an enzyme involved in diaminopimelate and lysine biosynthesis. A block in dapB, which encodes dihydrodipicolinate reductase in the same pathway, conferred similar protection. Genetic analysis indicated that the protection stems from the intracellular accumulation of tetrahydro- or dihydrodipicolinate. Heterologous expression in the SOD mutants of the dipicolinate synthase of Bacillus subtilis generated dipicolinate and similarly protected them. Dipicolinates are excellent iron chelators, and their accumulation in the cell triggered derepression of the Fur regulon and a large increase in the intracellular pool of free iron, presumably as a dipicolinate chelate. A fur mutation only partially relieved the auxotrophies, indicating that Fur derepression assists but is not sufficient for suppression. It seems plausible that the abundant internal iron permits efficient reactivation of superoxide-damaged iron-sulfur clusters. This result provides circumstantial evidence that the sulfur and aromatic auxotrophies of SOD mutants are also directly or indirectly linked to iron metabolism.  相似文献   

16.
Diaminopimelate decarboxylase has been characterized in extracts of Bacillus subtilis and resolved from aspartokinases I and II. Under certain conditions, the enzyme is specifically inhibited by physiological concentrations of L-lysine, but less specificity and altered kinetics of inhibition are observed if lower ionic strengths are employed in the assay procedure. Diaminopimelate decarboxylase can be desensitized to lysine inhibition by either lowering the pH or diluting the enzyme in Tris buffer in the absence of pyridoxal phosphate. Evidence is presented to incidate that, under proper conditions, lysine inhibition involves an interaction of the amino acid with the enzyme rather than competition for available pyridoxal phosphate in the assay. Lysine, by affecting the level of meso-diaminopimelate, may thus regulate its biosynthesis through sequential feedback inhibition. Analysis of the diaminopimelate decarboxylase of 15 revertants of mutants that had originally lacked diaminopimelate decarboxylase activity indicates that as little as 5% of the specific activity of enzyme observed in the wild-type strain is sufficient to permit normal growth rates. In the growing cell, diaminopimelate decarboxylase may therefore exist largely in an inhibited state.  相似文献   

17.
The dapB gene, which encodes L-2,3-dihydrodipicolinate reductase, the second enzyme of the lysine branch of the aspartic amino acid family, was cloned and sequenced from a tabtoxin-producing bacterium, Pseudomonas syringae pv. tabaci BR2.024. The deduced amino acid sequence shared 60 to 90% identity to known dapB gene products from gram-negative bacteria and 19 to 21% identity to the dapB products from gram-positive bacteria. The consensus sequence for the NAD(P)H binding site [(V/I)(A/G)(V/I)XGXXGXXG)] and the proposed substrate binding site (HHRHK) were conserved in the polypeptide. A BR2.024 dapB mutant is a diaminopimelate auxotroph and tabtoxin negative. The addition of a mixture of L-,L-, D,D-, and meso-diaminopimelate to defined media restored growth but not tabtoxin production. Cloned DNA fragments containing the parental dapB gene restored the ability to grow in defined media and tabtoxin production to the dapB mutant. These results indicate that the dapB gene is required for both lysine and tabtoxin biosynthesis, thus providing the first genetic evidence that the biosynthesis of tabtoxin proceeds in part along the lysine biosynthetic pathway. These data also suggest that L-2,3,4,5-tetrahydrodipicolinate is a common intermediate for both lysine and tabtoxin biosynthesis.  相似文献   

18.
Osmoprotectants exogenously supplied to a hyperosmotic culture medium are efficiently imported and amassed by stressed cells of Escherichia coli. In addition to their evident role in the recovery and maintenance of osmotic balance, these solutes should play an important role on the behavior of cellular macromolecules, for example in the process of protein folding. Using a random chemical mutagenesis approach, a conditional lysine auxotrophic mutant was obtained. The growth of this mutant was restored by addition of either lysine or osmoprotectants including glycine betaine (GB) in the minimal medium. The growth rate increased proportionally with the augmentation of the intracellular GB concentration. The mutation was located in the lysA gene and resulted in the substitution of the Ser at position 384 by Phe of the diaminopimelate decarboxylase (DAPDC), which catalyzes the conversion of meso-diaminopimelate to L-lysine. We purified both the wild type DAPDC and the mutated DAPDC-sf and demonstrated that GB was capable of activating DAPDC-sf in vitro, thus confirming the in vivo results. Most importantly, we showed that the activation was correlated with a conformational change of DAPDC-sf. Taken together, these results show, for the first time, that GB may actively assist in vivo protein folding in a chaperone-like manner.  相似文献   

19.
Summary When studying mutants affecting lysyl-tRNA synthetase or tRNALys (hisT, hisW), a lack of correlation is clearly observed between the amount of lysyl-tRNA and the level of derepression of several lysine biosynthetic enzymes. This excludes the possible role of lysyl-tRNA as the specific corepressor of the lysine regulon. However, the level of derepression of DAP-decarboxylase, the last enzyme of the lysine pathway, is very low in the hisT mutant; this indicates that tRNALys is a secondary effector involved in the regulation of the synthesis of this enzyme.Abbreviations DAP diaminopimelate - KRS lysyl-tRNA synthetase - L-lysine tRNA ligase (AMP) (EC6.1.16) - AK III lysinesensitive aspartokinase (EC 2.7.24) - ASA-dehydrogenase aspartic semialdehyde dehydrogenase (EC 1.2.1.10) - DHDP-reductase dihydrodipicolinic acid reductase - DAP-decarboxylase diaminopimelate decarboxylase (EC 4.1.1.20) - AK I threonine-sensitive aspartokinase - HDHI threonine-sensitive homoserine dehydrogenase  相似文献   

20.
Methanothermobacter thermautotrophicus is a methanogenic Gram-positive microorganism with a cell wall consisting of pseudomurein. Currently, no information is available on extracellular pseudomurein biology and so far only two prophage pseudomurein autolysins, PeiW and PeiP, have been reported. In this paper we show that PeiW and PeiP contain two different N-terminal pseudomurein cell wall binding domains. This finding was used to identify a novel domain, PB007923, on the M. thermautotrophicus genome present in 10 predicted open reading frames. Three homologues were identified in the Methanosphaera stadtmanae genome. Binding studies of fusion constructs of three separate PB007923 domains to green fluorescent protein revealed that it also constituted a cell wall binding domain. Both prophage domains and the PB007923 domain bound to the cell walls of Methanothermobacter species and fluorescence microscopy showed a preference for the septal region. Domain specificities were revealed by binding studies with other pseudomurein-containing archaea. Localized binding was observed for M. stadtmanae and Methanobrevibacter species, while others stained evenly. The identification of the first pseudomurein cell wall binding domains reveals the dynamics of the pseudomurein cell wall and provides marker proteins to study the extracellular pseudomurein biology of M. thermautotrophicus and of other pseudomurein-containing archaea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号