首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Past research strongly indicates the importance of amino acids in the N economy of the Arctic tundra, but little is known about the seasonal dynamics of amino acids in tundra soils. We repeatedly sampled soils from tussock, shrub, and wet sedge tundra communities in the summers of 2000 and 2001 and extracted them with water (H2O) and potassium sulfate (K2SO4) to determine the seasonal dynamics of soil amino acids, ammonium (NH4+), nitrate (NO3), dissolved organic nitrogen (DON), dissolved organic carbon (DOC), and phosphate (PO42–). In the H2O extractions mean concentrations of total free amino acids (TFAA) were higher than NH4+ in all soils but shrub. TFAA and NH4+ were highest in wet sedge and tussock soils and lowest in shrub soil. The most predominant amino acids were alanine, arginine, glycine, serine, and threonine. None of the highest amino acids were significantly different than NH4+ in any soil but shrub, in which NH4+ was significantly higher than all of the highest individual amino acids. Mean NO3 concentrations were not significantly different from mean TFAA and NH4+ concentrations in any soil but tussock, where NO3 was significantly higher than NH4+. In all soils amino acid and NH4+ concentrations dropped to barely detectable levels in the middle of July, suggesting intense competition for N at the height of the growing season. In all soils but tussock, amino acid and NH4+ concentrations rebounded in August as the end of the Arctic growing season approached and plant N demand decreased. This pattern suggests that low N concentrations in tundra soils at the height of the growing season are likely the result of an increase in soil N uptake associated with the peak in plant growth, either directly by roots or indirectly by microbes fueled by increased root C inputs in mid-July. As N availability decreased in July, PO42– concentrations in the K2SO4 extractions increased dramatically in all soils but shrub, where there was a comparable increase in PO42– later in the growing season. Previous research suggests that these increases in PO42– concentrations are due to the mineralization of organic phosphorus by phosphatase enzymes associated with soil microbes and plant roots, and that they may have been caused by an increase in organic P availability.  相似文献   

2.
To investigate the dynamics of soil aggregation associated with the restoration of cultivated soil to tallgrass prairie, changes in soil aggregation and aboveground production were compared in a corn field, restored prairie plantings of various ages (second, fifth, eighth, and eleventh growing season), and an uncultivated prairie remnant. The restored prairie was also compared with a long-term (fourteenth growing season) ungrazed pasture dominated by Eurasian grasses. All plots were located on similar soils. The regression model, Y = 95.8 - 56.2/X (R2 = 0.93), best described the relatively rapid recovery of water-stable soil aggregates >0.2 mm diameter with time (in years) since cultivation. Similar models were also found to describe changes in the percentages of aggregates > 1 and > 2 mm diameter. Aggregates > 0.2 and > 2 mm diameter were more closely associated with prairie graminoids than with other vegetation categories. However, time without disturbance may be a more important factor in soil aggregate formation than vegetation type, but it was difficult to separate the effects of these two factors in this study. The percentage of aggregates > 0.2 mm diameter was found to be significantly higher (P = 0.0553) in the oldest restored prairie than in ungrazed pasture although the former had been cultivated more recently. This suggests that C4 prairie graminoids may confer some advantage over introduced C3 Eurasian grasses for the development of water-stable aggregates in soils of the Prairie Peninsula.  相似文献   

3.
Summary Net mineralization of N and net nitrification in field-moist clay soils (Evesham-Kingston series) from arable and grassland sites were measured in laboratory incubation experiments at 4, 10 and 20°C. Three depth fractions to 30 cm were used. Nitrate accumulated at all temperatures except when the soil was very dry (=0.13 cm3 cm–3). Exchangeable NH4-ions declined during the first 24 h and thereafter remained low. Net mineralization and net nitrification approximated to zero-order reactions after 24 h, with Q10 values generally <1.6. The effect of temperature on both processes was linear although some results conformed to an Arrhenius-type relationship. The dependence of net mineralization and net nitrification in the field soil on soil temperature (10 cm depth) and moisture (0–15, 15–25, 25–35 cm depths) was modelled using the laboratory incubation data. An annual net mineralization of 350 kg N ha–1 and net nitrification of 346 kg N ha–1 were predicted between September 1980 and August 1981. The model probably overstressed the effect of soil moisture relative to soil temperature.  相似文献   

4.
Non-mycorrhizal plants of the alpine sedge, Kobresia myosuroides, take up the amino acid glycine from nutrient solutions at greater rates than NO inf3 sup- or NH inf4 sup+ . The amino acids glutamate and proline were also taken up at high rates. Total plant biomass was twice as high after 4 months of growth on glycine, compared to NH4NO3, with significant increases in both root and leaf biomass. By taking advantage of differences in the 13C signature of air in the growth chamber and the glycine used for growth, a two-member mixing model was used to estimate that a significant amount of the glycine was taken up as intact molecules, enough to contribute 16% of the total carbon assimilation over a 4-month growing period. Glycine uptake was inhibited when roots were exposed to N2 in place of air, and when the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) was added to the root solution. From these results it is concluded that glycine uptake occurs through active transport. Glycine uptake exhibited a Q10 of 2.0 over the temperature range 5–15° C, with relatively high rates maintained at the lowest temperature measured (5° C). Roots of Kobreasia were not capable of taking up NH inf4 sup+ at measureable rates. To our knowledge, this is the first report of a plant whose non-mycorrhizal roots cannot take up NH inf4 sup+ . Measurements of three N fractions (NO inf3 sup- , NH inf4 sup+ , and total amino acids) in the soil pore water were made over two growing seasons in two Kobresia dry meadows using microlysimeters. At the West Knoll site, which is characterized by soils with average amounts of organic matter, the dominant forms of N in the soil pore water were NO inf3 sup- and NH inf4 sup+ (0–450 mol L-1). Amino acid concentrations were generally less than 20 mol L-1 at this site. At the East Knoll site, which is characterized by soils with higher than average amounts of organic matter, amino acids were generally present at higher concentrations (17–100 mol L-1), compared to NO inf3 sup- and NH inf4 sup+ . The most abundant amino acids were glycine (10–100 mol L-1), glutamate (5–70 mol L-1), and late in the season cystein (5–15 mol L-1). The results demonstrate that this sedge, which dominates dry meadow communities in many alpine ecosystems, is capable of taking up intact amino acids as a principal N source, and has access to high amino acid concentrations in certain alpine soils. Such uptake of organic N may accommodate plant N demands in the face of slow alpine N mineralization rates due to cold soil temperatures.  相似文献   

5.
Long-term data on nitrogen chemistry of streams draining Konza Prairie Biological Station (Konza), Kansas were analyzed to assess spatial and temporal patterns and examine the influence of agricultural activity on these patterns. Upland watersheds of Konza are predominantly tallgrass prairies, but agricultural fields and riparian forests border the lower reaches of the streams. We have up to 11 years of data in the relatively pristine upland reaches and 4 years of data on wells and downstream reaches influenced by fertilized croplands. Seasonal and spatial patterns in total nitrogen (TN) concentrations were driven largely by changes in the nitrate (NO3 ) concentrations. A gradient of increasing NO3 concentrations occurred from pristine upland stream reaches to the more agriculturally-influenced lowland reaches. Nitrate concentrations varied seasonally and were negatively correlated with discharge in areas influenced by row-crop agriculture (p = 0.007). The NO3 concentrations of stream water in lowland reaches were lowest during times of high precipitation, when the relative influence of groundwater drainage is minimal and water in the channel is primarily derived from upland prairie reaches. The groundwater from cropland increased stream NO3 concentrations about four-fold during low-discharge periods, even though significant riparian forest corridors existed along most of the lower stream channel. The minimum NO3 concentrations in the agriculturally influenced reaches were greater than at any time in prairie reaches. Analysis of data before and after introduction of bison to four prairie watersheds revealed a 35% increase of TN concentrations (p < 0.05) in the stream water channels after the introduction of bison. These data suggest that natural processes such as bison grazing, variable discharge, and localized input of groundwater lead to variation in NO3 concentrations less than 100-fold in prairie streams. Row-crop agriculture can increase NO3 concentrations well over 100-fold relative to pristine systems, and the influence of this land use process over space and time overrides natural processes.  相似文献   

6.
The dynamics of inorganic N are important in soil, and this applies particularly to the saline–alkaline soils of the former lake Texcoco in Mexico with high pH and salinity where a forestation program was started in the 1970s. In soils of lake Texcoco, in Mexico, more than 50% of applied N could not be accounted for one day after application of 200 mg kg–1 soil along with glucose amendment. It was not clear whether this was due to abiotic or biotic processes, the form of inorganic N applied or the result of applying an easily decomposable substrate. We investigated this by adding glucose and 200 mg kg–1 soil as (NH4)2SO4-N or KNO3-N to sterilized and unsterilized soil. The changes in inorganic and ninhydrin N, microbial biomass C and production of CO2 were then monitored. Between the time of applying N and extraction with 0.5 M K2SO4, i.e., after ca 2 h, approximately 110 mg NH4 +-N kg–1 dry soil could not be accounted for in the unsterilized and sterilized soil and that remained so for the entire incubation in the sterilized soil. After 1 day this increased to 140 mg NH4 +-N kg–1 dry soil in the unsterilized control and 170 mg NH4 +-N kg–1 dry soil in C amended soil. Volatilization of NH3 accounted for 56 mg NH4 +-N kg–1 so the rest appeared to be adsorbed on the soil matrix. The NH3 volatilization and NH4 + fixed in the soil matrix remained constant over time and no oxidation to NO2 or NO3 had occurred, so unaccounted N in unsterilized soil was probably incorporated into the microbial biomass in excess of what was required for metabolic activity. The unaccounted N was ca 70 mg NO3 –N in nitrate amended soil after 3 days and 138 NO3 –N when glucose was additionally added. Losses through abiotic processes were absent as inferred from changes in sterilized soil and the aerobic incubation inhibited possible losses through denitrification. It was inferred that NO3 that could not be accounted for was taken up by micro-organisms in excess of what was required for metabolic activity.  相似文献   

7.
Microbial activity under alpine snowpacks, Niwot Ridge, Colorado   总被引:19,自引:9,他引:10  
Experiments were conducted during 1993 at Niwot Ridge in the Colorado Front Range to determine if the insulating effect of winter snow cover allows soil microbial activity to significantly affect nitrogen inputs and outputs in alpine systems. Soil surface temperatures under seasonal snowpacks warmed from –14 °C in January to 0 °C by May 4th. Snowmelt began in mid-May and the sites were snow free by mid June. Heterotrophic microbial activity in snow-covered soils, measured as C02 production, was first identified on March 4, 1993. Net C02 flux increased from 55 mg CO2-C m–2 day–1 in early March to greater than 824 mg CO2-C m-2 day–1 by the middle of May. Carbon dioxide production decreased in late May as soils became saturated during snowmelt. Soil inorganic N concentrations increased before snowmelt, peaking between 101 and 276 mg kg–1 soil in May, and then decreasing as soils became saturated with melt water. Net N mineralization for the period of March 3 to May 4 ranged from 2.23 to 6.63 g N m–2, and were approximately two orders of magnitude greater than snowmelt inputs of 50.4 mg N m–2 for NH4 + and 97.2 mg N m–2 for NO3 . Both NO3 and NH4 + concentrations remained at or below detection limits in surface water during snowmelt, indicating the only export of inorganic N from the system was through gaseous losses. Nitrous oxide production under snow was first observed in early April. Production increased as soils warned, peaking at 75 g N2O-N m–2 day–1 in soils saturated with melt water one week before the sites were snow free. These data suggest that microbial activity in snow-covered soils may play a key role in alpine N cycling before plants become active.  相似文献   

8.
We followed the movements of 15N-labelled nitrate additions into biomass and soil pools of experimental plots (15×15 m each) in a mid-successional beech-maple-birch-spruce forest in order to identify sinks for nitrate inputs to a forest ecosystem. Replicate plots (n=3) were spray-irrigated with either 28 or 56 kg N ha–1 year–1 using 15N-labelled nitric acid solutions (15N = 344 ) during four successive growing seasons (April–October). The 15N contents of foliage, bolewood, forests floor and mineral soil (0–5 cm) increased during the course of treatments. Mass balance calculations showed that one-fourth to one-third of the nitrate applied to forest plots was assimilated into and retained by above ground plant tissues and surface soil horizons at both rates of nitrate application. Plant and microbial assimilation were of approximately equal importance in retaining nitrate additions to this forest. Nitrate use among tree species varied, however, with red spruce showing lower rates of nitrate assimilation into foliage and bolewood than American beech and other deciduous species.  相似文献   

9.
Summary The course of the CO2 evolution rates of soil samples has been followed continuously in the absence and in the presence of various organic compounds. After an incubation period of 300 hours at 13 and 20°C the CO2 evolution from pasture soil (containing 1.76% soil organic carbon) amounted to 0.13 and 0.44g CO2–C.g soil–1.h–1, respectively. For arable soil (containing 1.20% soil organic carbon) the rates amounted to 0.04 and 0.09 g CO2–C.g soil–1.h–1, respectively.At 20°C larger amounts of the organic substrates added to the soil supplied with 20 g NH4NO3–N.g soil–1 were lost as CO2 than at 13°C, indicating a higher efficiency of the growth of microorganisms at lower temperatures. In the absence of NH4NO3 the respiration rates were initially higher than in its presence, suggesting that a part of the soil microflora is inhibited by low concentrations of NH4NO3. The amounts of carbon lost were low for phenolcarboxylic acids with OH groups in the ortho position. The replacement of one of these groups by a methoxyl group resulted in a larger amount of the C lost as CO2. The replacement of the COOH group by a C=C–COOH group had a decreasing effect on the decomposition of the phenolic acids tested. The decomposition of vanillic acid,p-hydroxybenzoic acid, and of the benzoic acids with OH groups in the meta position was as complete as that of glucose, amino acids or casein. The decomposition of bacterial cells to CO2 was considerably less than that of glucose.No evidence could be obtained that the low percentage of substrate converted to CO2 at the time of maximal respiration rate was due to the decreasing diffusion rate of substrate to the microbial colonies in the soil during the consumption of substrate.  相似文献   

10.
Denitrification in the top and sub soil of grassland on peat soils   总被引:2,自引:0,他引:2  
Denitrification is an important process in the nitrogen (N) balance of intensively managed grassland, especially on poorly drained peat soils. Aim of this study was to quantify the N loss through denitrification in the top and sub soil of grassland on peat soils. Sampling took place at 2 sites with both control (0 N) and N fertilised (+ N) treatments. Main difference between the sites was the ground water level. Denitrification was measured on a weekly basis for 2 years with a soil core incubation technique using acetylene (C2H2) inhibition. Soil cores were taken from the top soil (0–20 cm depth) and the sub soil (20–40 cm depth) and incubated in containers for 24 hours. The denitrification rate was calculated from the nitrous oxide production between 4 and 24 hours of incubation. Denitrification capacities of the soils and the soil layers were also determined.The top soil was the major layer for denitrification with losses ranging from 9 to 26 kg N ha–1 yr–1 from the O N treatment. Losses from the top soil of the + N treatment ranged from 13 to 49 kg N ha–1 yr–1. The sub soil contributed, on average, 20% of the total denitrification losses from the 0–40 layer. Losses from the 0–40 cm layer were 2 times higher on the + N treatment than on the O N treatment and totalled up to 70 kg N ha–1 yr–1. Significant correlation coefficients were found between denitrification activity on the one hand, and ground water level, water filled pore space and nitrate content on the other, in the top soil but not in the sub soil. The denitrification capacity experiment showed that the availability of easily decomposable organic carbon was an important limiting factor for the denitrification activity in the sub soil of these peat soils.  相似文献   

11.
Degradation of benzene, toluene, ethylbenzene, m-, p- and o-xylenes (BTEX) and microbial community shifts in soil slurries contaminated with ethanol–gasoline blends (E-blends), containing 10, 50 or 90% (v/v) ethanol (E10, E50 and E90) were studied in soil slurries previously uncontaminated, contaminated by E-blends or ethanol. BTEX originating from E50 degraded fastest whereas from E10 slowest. Among the individual compounds, ethylbenzene degraded fastest (max 30% d−1), and o-xylene slowest (min 1% d−1) during aerobic conditions in previously not contaminated soils. Previous contamination by E-blends increased BTEX degradation significantly (3–19 times) compared with previously uncontaminated soils, whereas previous contamination with ethanol did not show significant difference in BTEX degradation. At least one type of the E-blends during aerobic conditions had a positive effect on total PLFAs (phospholipid fatty acids) and specific PLFAs, i.e. 10Me18:0, 16:1ω6 and cy17:0, but had a negative effect on cy19:0 and 18:2ω6,9c. The effects on total PLFAs, as well as the individual PLFAs, were particularly strong after repeated contamination. The single most affected PLFA was 16:1ω6, which increased 23 times during E10 treatment in soil slurries previously contaminated by E-blends. Altogether, the various E-blends had significantly different effects on BTEX degradation and also on individual PLFAs under aerobic conditions.  相似文献   

12.
Kirk  G.J.D. 《Plant and Soil》2001,232(1-2):129-134
The ways in which root–soil interactions can control nutrient acquisition by plants is illustrated by reference to the N nutrition of rice. Model calculations and experiments are used to assess how uptake is affected by root properties and N transport through the soil. Measurements of the kinetics of N absorption and assimilation and their regulation, and of interactions between NH4 + and NO3 nutrition, are described. It is shown that uptake of N from the soil–-as opposed to N in ricefield floodwater which can be absorbed very rapidly but is otherwise lost by gaseous emission–-will often be limited by root uptake properties. Rice roots are particularly efficient in absorbing and assimilating NO3 , and NH4 + absorption and assimilation are stimulated by NO3 . The uptake of NO3 formed in the rice rhizosphere by root-released O2 may be more important than previously thought, with beneficial consequences for rice growth. Other root-induced changes in the rice rhizosphere and their consequences are discussed.  相似文献   

13.
Summary Inhibitory effect of potassium chloride on nitrification of ammonium sulfate and urea in acid, neutral and calcareous soils was observed in an incubation study. In acidic soil, NO 3 –N production in soil treated with urea was retarded by addition of KCl. NO 3 –N concentration was much less even in comparison to control where ammonium sulfate and KCl were added together which might be due to cumulative effect of Cl and SO 4 –2 ions. In neutral and calcareous soils, nitrification inhibition was less conspicuous.  相似文献   

14.
Clough  T.J.  Ledgard  S.F.  Sprosen  M.S.  Kear  M.J. 《Plant and Soil》1998,199(2):195-203
A field lysimeter experiment was conducted over a 406 day period to determine the effect of different soil types on the fate of synthetic urinary nitrogen (N). Soil types included a sandy loam, silty loam, clay and peat. Synthetic urine was applied at 1000 kg N ha-1, during a winter season, to intact soil cores in lysimeters. Leaching losses, nitrous oxide (N2O) emissions, and plant uptake of N were monitored, with soil 15N content determined upon destructive sampling of the lysimeters. Plant uptake of urine-N ranged from 21.6 to 31.4%. Soil type influenced timing and form of inorganic-N leaching. Macropore flow occurred in the structured silt and clay soils resulting in the leaching of urea. Ammonium (NH 4 + –N), nitrite (NO 2 - –N) and nitrate (NO3 -–N) all occurred in the leachates with maximum concentrations, varying with soil type and ranging from 2.3–31.4 g NH 4 + –N mL-1, 2.4–35.6 g NO 2 - –N mL-1, and 62–102 g NO 3 - –N mL-1, respectively. Leachates from the peat and clay soils contained high concentrations of NO 2 - –N. Gaseous losses of N2O were low (<2% of N applied) over a 112 day measurement period. An associated experiment showed the ratio of N2–N:N2O–N ranged from 6.2 to 33.2. Unrecovered 15N was presumed to have been lost predominantly as gaseous N2. It is postulated that the high levels of NO 2 - –N could have contributed to chemodenitrification mechanisms in the peat soil.  相似文献   

15.
The fluxes and transformations of nitrogen (N) were investigated from 1985 through 1987 at the Emerald Lake watershed (ELW), a 120 ha high-elevation catchment located in the southern Sierra Nevada, California, USA. Up to 90% of annual wet deposition of N was stored in the seasonal snowpack; NO 3 and NH 4 + were released from storage in the form of an ionic pulse, where the first fraction of meltwater draining from the snowpack had concentrations of NO 3 and NH 4 + as high as 28 eq L–1 compared to bulk concentrations of <5 eq L–1 in the snowpack. The soil reservoir of organic N (81 keq ha–1) was about ten times the N storage in litter and biomass (12 keq ha–1). Assimilation of N by vegetation was balanced by the release of N from soil mineralization, nitrification, and litter decay. Mineralization and nitrification processes produced 1.1 keq ha–1 yr–1 of inorganic N, about 3 1/2 times the loading of N from wet and dry deposition. Less than 1% of the NH 4 + in wet and dry deposition was exported from the basin as NH 4 + . Biological assimilation was primarily responsible for retention of NH 4 + in the basin, releasing one mode of H+ for every mole of NH 4 + retained and neutralizing about 25% of the annual acid neutralizing capacity produced by mineral weathering in the basin. Nitrate concentrations in stream waters reached an annual peak during the first part of snowmelt runoff, with maximum concentrations in stream water of 20 eq L–1, more than 4 times the volume-weighted mean annual concentrations of NO 3 in wet deposition. This annual peak in stream water NO 3 was consistent with the release of NO 3 from the snowpack in the form of an ionic pulse; however soil processes occurring underneath the winter snowpack were another potential source of this NO 3 . Concentrations of stream water NO 3 during the summer growing season were always near or below detection limits (0.5 eq L–1).  相似文献   

16.
The fate of nitrogen from15N-labelled sheep manure and ammonium sulfate in small lysimeters and plots in the field was studied during two growth seasons. In April 1991,15N-labelled sheep faeces (87 kg N ha–1) plus unlabelled (NH4)2SO4 (90 kg N ha–1), and (15NH4)2SO4 (90 kg N ha–1) were each applied to three soils; soil 1 (100% soil + 0% quartz sand), soil 2 (50% soil + 50% quartz sand) and soil 3 (25% soil + 75% quartz sand). The lysimeters were cropped with spring barley (Hordeum vulgare L.) and undersown ryegrass (Lolium perenne L.). The barley crop recovered 16–17% of the labelled manure N and 56% of the labelled (NH4)2SO4-N. After 18 months 30% of the labelled manure N and 65% of the labelled (NH4)2SO4-N were accumulated in barley, the succeeding ryegrass crop and in leachate collected below 45 cm of soil, irrespective of the soil-sand mixture. Calculating the barley uptake of manure N by difference of N uptake between manured and unmanured soils, indicated that 4%, 10% and 14% of the applied manure N was recovered in barley grown on soil-sand mixtures with 16%, 8% and 4% clay, respectively. The results indicated that the mineralization of labelled manure N was similar in the three soil-sand mixtures, but that the manure caused a higher immobilization of unlabelled ammonium-N in the soil with the highest clay content. Some of the immobilized N apparently was remineralized during the autumn and the subsequent growth season. After 18 months, 11–19% of the labelled manure N was found in the subsoil (10–45 cm) of the lysimeters, most of this labelled N probably transported to depth as organic forms by leaching or through the activities of soil fauna. In unplanted soils 67–74% of the labelled manure N was recovered in organic form in the 0–10 cm soil layer after 4 months, declining to 55–64% after 18 months. The lowest recovery of labelled N in top-soil was found in the soil-sand mixture with the lowest clay content. The mass balance of15N showed that the total recovery of labelled N was close to 100%. Thus, no significant gaseous losses of labelled N occurred during the experiment.  相似文献   

17.
A protocol to monitor respiration as O2 consumption in soil slurries using the Strathtox® respirometer was developed and tested on four soils from brownfield sites. Respiration rates (mg l−1 h−1) of soil slurries in the Strathtox® were compared with rates (μl min−1) of field moist soils analysed using the Columbus Oxymax® ER10 respirometer. One of the soils (99612B), historically contaminated with diesel, was further studied by monitoring the effect of inorganic NH4NO3 liquid nutrient on enhancing respiration rate. Soil microcosms were monitored continuously on the Oxymax® or sampled at 24, 48 and 72 h intervals, prepared as soil slurries, and analysed on the Strathtox®. On the full-scale remediation project (6000 m3) soil 99612B was treated as a biopile with spent mushroom compost (SMC) amendment and respiration rates monitored in samples over an 8-week period. In the laboratory microcosm experiment and full-scale bioremediation treatment described, correlation was found for respiration rates between the two respirometry systems.  相似文献   

18.
Owen  Jeffrey S.  Wang  Ming Kuang  Sun  Hai Lin  King  Hen Biau  Wang  Chung Ho  Chuang  Chin Fang 《Plant and Soil》2003,251(1):167-174
We used the buried bag incubation method to study temporal patterns of net N mineralization and net nitrification in soils at Ta-Ta-Chia forest in central Taiwan. The site included a grassland zone, (dominant vegetation consists of Yushania niitakayamensis and Miscanthus transmorrisonensis Hayata) and a forest zone (Tsuga chinensis var. formosana and Yushania niitakamensis). In the grassland, soil concentration NH4 + in the organic horizon (0.1–0.2 m) ranged from 1.0 to 12.4 mg N kg–1 soil and that of NO3 varied from 0.2 to 2.1 mg N kg–1 soil. In the forest zone, NH4 + concentration was between 2.8 and 25.0 mg N kg–1 soil and NO3 varied from 0.2 to 1.3 mg N kg–1 soil. There were lower soil NH4 + concentrations during the summer than other seasons. Net N mineralization was higher during the summer while net nitrification rates did not show a distinct seasonal pattern. In the grassland, net N mineralization and net nitrification rates were between –0.1 and 0.24 and from –0.04 to 0.04 mg N kg–1 soil day–1, respectively. In the forest zone, net N mineralization rates were between –0.03 and 0.45 mg N kg–1 soil day–1 and net nitrification rates were between –0.01 and 0.03 mg N kg–1 soil day–1. These differences likely result from differing vegetation communities (C3 versus C4 plant type) and soil characteristics.  相似文献   

19.
Oxisols have a high likelihood of NO3 leaching which may strongly reduce N availability for tropical crops. The aim of this work was to evaluate the N and the water submodels of the STICS crop model for its ability to estimate N availability in N-fertilised field maize crops on two oxisols in Guadeloupe (French West Indies) with and without Al toxicity: a non-limed plot (NLI, pHKCl 3.9, 2.1 cmol Al3+ kg–1), and a limed plot (LI, pHKCl 4.5, 0 cmol Al3+ kg–1). An uncropped plot (UC, pHKCl 4.5, 0 cmol Al3+ kg–1) was used in order to fit some model parameters for soil evaporation, nitrification and NO3 transport. The model was modified in order to describe nitrification as a partially inhibited process in acid soils, and to take into account NO3 retention in oxisols. Nitrification was described as the result of the multiplicative effects of soil acidity, temperature and soil water content. Soil moisture and NO3 and NH4 + content up to 0.8 m soil depth, above-ground biomass and N uptake by crops, and their leaf area index (LAI), were measured from sowing to the beginning of grain filling. The model described correctly the changes in soil water content during the moist and the dry periods of the experiment, and there was some evidence that capillary rise occurred in the dry period. Nitrogen mineralization, nitrification in UC, NO3 transport and plant uptake were satisfactorily simulated by the model. Because of the effect of Al toxicity on plant growth, LAI at flowering was three times higher in LI than in NLI. Some discrepancies between observed and simulated data were found for the distribution of NO3 and NH4 + in the cropped plots. This was probably due to the change of the ionic N form absorbed by the crops as a function of soil acidity and available P in the soil. No leaching was observed below 0.8 m depth and this was associated with NO3 retention in the soil. The results showed that partial inhibition of nitrification and NO3 retention should be taken into account by crop models to obtain realistic estimates of N availability for plants in tropical acid soils.  相似文献   

20.
Two Dutch heathland sites Hoorneboeg (HB) and Ede, dominated by Deschampsia flexuosa and differing in nitrate production, were sampled for an entire growing season. A large number of soil and plant parameters were monitored in an attempt to assess the contribution of nitrate in the N supply and its assimilation by Deschampsia.Average NO3 and NH4 + concentrations (mg kg–1) in the top 10-cm depth were 0.03 and 2.2, respectively, for HB, and 2.1 and 6.7, respectively, for Ede. Laboratory incubations of intact cores and experiments with FH-layer suspensions showed significantly higher mineralization and nitrification rates for the Ede site during most of the season. Nitrification was largely controlled by the rate of net N-mineralization, which in turn was highly affected by soil moisture. Nitrate production was virtually zero at HB and accounted for 25% of the net N-mineralization at Ede.Shoot chemical composition showed no essential differences for the two sites, but mean in vivo (current) foliar NRA was almost 2-fold higher at Ede than at HB, indicating some utilization of nitrate at the former location. At the HB site with essentially no nitrate production, however, enzyme activities were clearly higher than basal constitutive levels in NH4 +-fed plants. Apparently, shoot NRA at the HB site became positively affected by factors other than nitrate availability and/or showed disproportional increases in response to atmospheric nitrate inputs. Root NRA displayed the same low basal level at the two sites. Nitrate fertilization (100 kg N ha–1) yielded maximally induced foliar NRAs similar to levels found in hydroponic nitrate plants. Although no accumulation of free NO3 was observed in shoots from fertilized plots, increases in foliar concentrations of both organic N and carboxylates clearly indicated nitrate assimilation. Root NRA showed no response to nitrate addition.It is concluded that current NRA measurements in Deschampsia at heathland sites are of limited value only, especially when interpreted in isolation. A combined approach, using concurrently conducted soil and plant analyses, will allow the extent of nitrate utilization in the field to be best characterized.Publication 2013 of the Netherlands Institute of Ecology.FAX no corresponding author: +31 8306 23227  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号