首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial multidrug efflux pumps operate by periplasmic recruitment and opening of TolC family outer membrane exit ducts by cognate inner membrane translocases. Directed evolution of active hybrid pumps was achieved by challenging a library of mutated, shuffled TolC variants to adapt to the non-cognate Pseudomonas MexAB translocase, and confer resistance to the efflux substrate novobiocin. Amino acid substitutions in MexAB-adapted TolC variants that endowed high resistance were recreated independently, and revealed that MexAB-adaptation was conferred only by substitutions located in the lower alpha-helical barrel of TolC, specifically the periplasmic equatorial domain and entrance coiled coils. These changes converge to the native MexAB partner OprM, and indicate an interface key to the function and diversity of efflux pumps.  相似文献   

2.
TolC--the bacterial exit duct for proteins and drugs   总被引:1,自引:0,他引:1  
Koronakis V 《FEBS letters》2003,555(1):66-71
The TolC structure has unveiled a common mechanism for the movement of molecules, large and small, from the bacterial cell cytosol, across two membranes and the intervening periplasm, into the environment. Trimeric TolC is a remarkable cell exit duct that differs radically from other membrane proteins, comprising a 100-A long alpha-barrel that projects across the periplasmic space, anchored by a 40-A long beta-barrel spanning the outer membrane. The periplasmic entrance of TolC is closed until recruitment by substrate-specific translocases in the inner membrane triggers its transition to the open state, achieved by an iris-like 'untwisting' of the tunnel alpha-helices. TolC-dependent machineries present ubiquitous exit routes for virulence proteins and antibacterial drugs, and their conserved structure, specifically the electronegative TolC entrance constriction, may present a target for inhibitors of multidrug-resistant pathogens.  相似文献   

3.
TolC channel provides a route for the expelled drugs and toxins to cross the outer membrane of Escherichia coli. The puzzling feature of TolC structure is that the periplasmic entrance of the channel is closed by dense packing of 12 α‐helices. Efflux pumps exemplified by AcrAB are proposed to drive the opening of TolC channel. How interactions with AcrAB promote the close‐to‐open transition in TolC remains unclear. In this study, we investigated in vivo the functional and physical interactions of AcrAB with the closed TolC and its conformer opened by mutations in the periplasmic entrance. We found that the two conformers of TolC are readily distinguishable in vivo by characteristic drug susceptibility, thiol modification and proteolytic profiles. However, these profiles of TolC variants respond neither to the in vivo stoichiometry of AcrAB:TolC nor to the presence of vancomycin, which is used often to assess the permeability of TolC channel. We further found that the activity and assembly of AcrAB–TolC tolerates significant changes in amounts of TolC and that only a small fraction of intracellular TolC is likely used to support efflux needs of E. coli. Our findings explain why TolC is not a good target for inhibition of multidrug efflux.  相似文献   

4.
Macrolide-specific efflux pump MacAB-TolC has been identified in diverse gram-negative bacteria including Escherichia coli. The inner membrane transporter MacB requires the outer membrane factor TolC and the periplasmic adaptor protein MacA to form a functional tripartite complex. In this study, we used a chimeric protein containing the tip region of the TolC α-barrel to investigate the role of the TolC α-barrel tip region with regard to its interaction with MacA. The chimeric protein formed a stable complex with MacA, and the complex formation was abolished by substitution at the functionally essential residues located at the MacA α-helical tip region. Electron microscopic study delineated that this complex was made by tip-to-tip interaction between the tip regions of the α-barrels of TolC and MacA, which correlated well with the TolC and MacA complex calculated by molecular dynamics. Taken together, our results demonstrate that the MacA hexamer interacts with TolC in a tip-to-tip manner, and implies the manner by which MacA induces opening of the TolC channel.  相似文献   

5.
The TolC protein of Escherichia coli is implicated in a variety of diverse cellular functions, including antibiotic efflux and alpha-hemolysin secretion. An incidental role of TolC is to facilitate the entry of the bacteriophage TLS and colicin E1 into the bacterial cell. Despite the resolution of TolC's atomic structure, the roles of specific residues in its diverse functions are unknown. Here, we describe a genetic strategy for isolating missense tolC mutations that abolish the bacteriophage receptor activity of the TolC protein without influencing its role in antibiotic efflux. These spontaneous mutations affected two regions of the TolC protein and included base-pair substitutions, insertions, and deletions. Comparison of the TolC sequence with those of its homologues revealed two hypervariable stretches that were predicted to represent loops. Interestingly, all but one of the TolC alterations preventing phage binding were located in these two hypervariable regions, which are likely to be exposed on the cell surface. This was substantiated by the recently solved three-dimensional structure of TolC. Curiously, all the phage-resistant TolC mutants showed varying degrees of resistance to colicin E1, suggesting the involvement of overlapping regions of TolC in colicin E1 import and phage binding.The phage used in this study, TLS, was earlier reported as a strain of U3. However, we show here that, unlike the previously reported lipopolysaccharide-specific U3 phage, this phage displays a distinctly different host range and discrete morphological features and, in addition to utilizing TolC as receptor, it requires the inner core of a lipopolysaccharide.  相似文献   

6.
The trimeric TolC protein of Escherichia coli comprises an outer membrane beta-barrel and a contiguous alpha-helical barrel projecting across the periplasm. This provides a single 140 A long pore for multidrug efflux and protein export. We have previously reported that trivalent cations such as hexammine cobalt can severely inhibit the conductivity of the TolC pore reconstituted in planar lipid bilayers. Here, isothermal calorimetry shows that Co(NH(3))(6)(3+) binds to TolC with an affinity of 20 nM. The crystal structure of the TolC-Co(NH(3))(6)(3+) complex was determined to 2.75 A resolution, and showed no significant difference in the protein when compared with unliganded TolC. An electron density difference map revealed that a single ligand molecule binds at the centre of the periplasmic entrance, the sole constriction of TolC. The octahedral symmetry of the ligand and the three-fold rotational symmetry of the TolC entrance determine a binding site in which the ligand forms hydrogen bonds with the Asp(374) residue of each monomer. When Asp(374) was substituted by alanine, high affinity ligand binding was abolished and inhibition of TolC pore conductivity in lipid bilayers was alleviated. Comparable effects followed independent substitution of the neighbouring Asp(371), indicating that this aspartate ring also contributes to the high affinity ligand binding site. As the electronegative entrance is widely conserved in the TolC family, it may be a useful target for the development of inhibitors against multidrug resistant pathogenic bacteria.  相似文献   

7.
Genetic data have suggested that TolC, AcrA and AcrB constitute a major antibiotic efflux system in Escherichia coli. Through reversion analysis of an unstable and antibiotic-sensitive TolC mutant (TolCP246R,S350C), we isolated extragenic suppressors that mapped within the acrRAB loci. DNA sequence analysis revealed that 18 isolates contained 10 different missense mutations within the acrA gene, whereas a single isolate had a missense mutation within the acrR gene, which codes for the acrAB repressor. Besides reversing the hypersensitivity phenotype of TolCP246R,S350C, AcrA and AcrR alterations elevated the mutant TolC protein level, thus indicating that the mechanism of suppression involves the stabilization of an unstable mutant TolC protein. Eight of the 10 AcrA alterations were clustered in the 202-265 region of the mature protein, whereas the other two suppressors affected residues 30 and 146. Based on the recently solved crystal structure of MexA, an AcrA counterpart from Pseudomonas aeruginosa, the regions encompassing residues 30 and 202-265 constitute the alpha+beta-domain of AcrA (MexA), whereas that of 146 form the alpha-domain. The data suggest that residues of these two AcrA domains either directly or indirectly influence interactions with TolC. Curiously, the stability of three mutant AcrA proteins, bearing an L222Q, L222R or P265R substitution, became dependent on the presence of either wild-type or mutant TolC. This dependence of the mutant AcrA proteins on TolC further supported the notion of a direct physical interaction between these two proteins. Because a mutation in acrR or acrAB expression from a multicopy plasmid also suppressed the TolCP246R,S350C defects, it indicated that wild-type AcrA when produced in high levels presumably establishes similar interactions with the mutant TolC protein as do the suppressor forms of AcrA produced from the chromosomal copy. The AcrA-mediated suppression of mutant TolC phenotypes and the stabilization of mutant TolC protein were dependent on AcrB, reflecting the existence of a functional complex between TolC and AcrAB in vivo.  相似文献   

8.
The tripartite AcrAB–TolC multidrug efflux pump of Escherichia coli is the central conduit for cell‐toxic compounds and contributes to antibiotic resistance. While high‐resolution structures of all three proteins have been solved, much remains to be learned as to how the individual components come together to form a functional complex. In this study, we investigated the importance of the AcrB β‐hairpins belonging to the DN and DC subdomains, which are presumed to dock with TolC, in complex stability and activity of the complete pump. Our data show that the DN subdomain β‐hairpin residues play a more critical role in complex stability and activity than the DC subdomain hairpin residues. The failure of the AcrB DN β‐hairpin deletion mutant to engage with TolC leads to the drug hypersensitivity phenotype, which is reversed by compensatory alterations in the lipoyl and β‐barrel domains of AcrA. Moreover, AcrA and TolC mutants that induce TolC opening also reverse the drug hypersensitivity phenotype of the AcrB β‐hairpin mutants, indicating a failure by the AcrB mutant to interact and thus induce TolC opening on its own. Together, these data suggest that both AcrB β‐hairpins and AcrA act to stabilize the tripartite complex and induce TolC opening for drug expulsion.  相似文献   

9.
TolC is a multifunctional outer membrane protein of Escherichia coli that folds into a novel alpha-beta-barrel conformation absent in the other model outer membrane proteins used in assembly studies. The data presented in this work show that the unique folded structure of TolC reflects a unique assembly pathway. During its assembly, the newly translocated nascent TolC monomers are released in the periplasm. Maturation of these nascent monomers, and possibly their oligomerization, in the periplasm precedes their insertion in the outer membrane. The completion of the assembly process is signaled by the development of a characteristic proteinase K-resistant fragment generated by cleavage at a single, periplasmically exposed, protease-sensitive site of the membrane-anchored trimer. None of the assembly steps of TolC is affected by known folding factors, such as SurA, Skp, and lipopolysaccharide, which have profound effects on the assembly of other model trimeric outer membrane proteins. Two assembly-defective TolC mutants were isolated and characterized. One of the mutants (TolC(I106N)) was defective in the folding of nascent monomers, while the other (TolC(S350F)) was impaired in steps involving trimerization and membrane insertion of folded monomers.  相似文献   

10.
Data suggest a two-receptor model for colicin E1 (ColE1) translocation across the outer membrane of Escherichia coli. ColE1 initially binds to the vitamin B(12) receptor BtuB and then translocates through the TolC channel-tunnel, presumably in a mostly unfolded state. Here, we studied the early events in the import of ColE1. Using in vivo approaches, we show that ColE1 is cleaved when added to whole cells. This cleavage requires the presence of the receptor BtuB and the protease OmpT, but not that of TolC. Strains expressing OmpT cleaved ColE1 at K84 and K95 in the N-terminal translocation domain, leading to the removal of the TolQA box, which is essential for ColE1's cytotoxicity. Supported by additional in vivo data, this suggests that a function of OmpT is to degrade colicin at the cell surface and thus protect sensitive E. coli cells from infection by E colicins. A genetic strategy for isolating tolC mutations that confer resistance to ColE1, without affecting other TolC functions, is also described. We provide further in vivo evidence of the multistep interaction between TolC and ColE1 by using cross-linking followed by copurification via histidine-tagged TolC. First, secondary binding of ColE1 to TolC is dependent on primary binding to BtuB. Second, alterations to a residue in the TolC channel interfere with the translocation of ColE1 across the TolC pore rather than with the binding of ColE1 to TolC. In contrast, a substitution at a residue exposed on the cell surface abolishes both binding and translocation of ColE1.  相似文献   

11.
In this work we assessed the suitability of two different lipid membranes for the simulation of a TolC protein from Salmonella enterica serovar Typhi. The TolC protein family is found in many pathogenic Gram-negative bacteria including Vibrio cholera and Pseudomonas aeruginosa and acts as an outer membrane channel for expulsion of drug and toxin from the cell. In S. typhi, the causative agent for typhoid fever, the TolC outer membrane protein is an antigen for the pathogen. The lipid environment is an important modulator of membrane protein structure and function. We evaluated the conformation of the TolC protein in the presence of DMPE and POPE bilayers using molecular dynamics simulation. The S. typhi TolC protein exhibited similar conformational dynamics to TolC and its homologues. Conformational flexibility of the protein is seen in the C-terminal, extracellular loops, and α-helical region. Despite differences in the two lipids, significant similarities in the motion of the protein in POPE and DMPE were observed, including the rotational motion of the C-terminal residues and the partially open extracellular loops. However, analysis of the trajectories demonstrated effects of hydrophobic matching of the TolC protein in the membrane, particularly in the lengthening of the lipids and subtle movements of the protein’s β-barrel towards the lower leaflet in DMPE. The study exhibited the use of molecular dynamics simulation in revealing the differential effect of membrane proteins and lipids on each other. In this study, POPE is potentially a more suitable model for future simulation of the S. typhi TolC protein.  相似文献   

12.
A study examining the influence of TolC on AcrA, AcrR, and MarR1 mutants indicates that functional TolC is required for the operation of the AcrAB efflux system and for the expression of the Mar phenotype. That the effect of TolC on the AcrAB pump is not regulatory in nature is shown by studies measuring the influence of a tolC::Tn10 insertion mutation on the expression of an acrA::lacZ reporter fusion. These results are compatible with the hypothesis that TolC is a component of the AcrAB efflux complex.  相似文献   

13.
J Hwang  X Zhong    P C Tai 《Journal of bacteriology》1997,179(20):6264-6270
The antibacterial peptide toxin colicin V uses a dedicated signal sequence-independent system for its secretion in Escherichia coli and requires the products of three genes, cvaA, cvaB, and tolC. As a member of the membrane fusion protein family, CvaA is supposed to form a bridge that connects the inner and outer membranes via interaction with CvaB and TolC, respectively. In this study, we investigated the possible interaction of these proteins. When CvaA or CvaB was absent, the corresponding amount of CvaB or CvaA, respectively, was decreased, and the amounts of both proteins were reduced when TolC was depleted. Translational lacZ fusions showed that TolC did not affect the synthesis of either CvaA-beta-galactosidase or CvaB-beta-galactosidase, and CvaA or CvaB did not affect the synthesis of CvaB-beta-galactosidase or CvaA-beta-galactosidase, respectively. However, the stabilities of CvaA and CvaB proteins were affected by the absence of one another and by that of TolC. The instability of CvaA was more severe in TolC-depleted cells than in CvaB-depleted cells. On the other hand, CvaB was less stable in the absence of CvaA than in the absence of TolC. In addition, using a cross-linking reagent, we showed that CvaA directly interacts with both CvaB and TolC proteins. Taken together, these data support the hypothesized structural role of CvaA in connecting CvaB and TolC.  相似文献   

14.
DNA translocases play important roles during the bacterial cell cycle and in cell differentiation. Escherichia coli cells contain a multifunctional translocase, FtsK, which is involved in cell division, late steps of chromosome segregation and dimer resolution. In Gram-positive bacteria, the latter two processes are achieved by two translocases, SftA and SpoIIIE. These two translocases operate in a two step fashion, before and after closure of the division septum. DNA translocases have the remarkable ability to translocate DNA in a vectorial manner, orienting themselves according to polar sequences present in bacterial genomes, and perform various additional roles during the cell cycle. DNA translocases genetically interact with Structural Maintenance of Chromosomes (SMC) proteins in a flexible manner in different species, underlining the high versatility of this class of proteins.  相似文献   

15.
The TolC protein of Escherichia coli, through its interaction with AcrA and AcrB, is thought to form a continuous protein channel that expels inhibitors from the cell. Consequently, tolC null mutations display a hypersensitive phenotype. Here we report the isolation and characterization of tolC missense mutations that direct the synthesis of mutant TolC proteins partially disabled in their efflux role. All alterations, consisting of single amino acid substitutions, were localized within the periplasmic alpha-helical domain. In two mutants carrying an I106N or S350F substitution, the hypersensitivity phenotype may be in part due to aberrant TolC assembly. However, two other alterations, R367H and R390C, disrupted efflux function by affecting interactions among the helices surrounding TolC's periplasmic tunnel. Curiously, these two TolC mutants were sensitive to a large antibiotic, vancomycin, and exhibited a Dex(+) phenotype. These novel phenotypes of TolC(R367H) and TolC(R390C) were likely the result of a general influx of molecules through a constitutively open tunnel aperture, which normally widens only when TolC interacts with other proteins during substrate translocation. An intragenic suppressor alteration (T140A) was isolated from antibiotic-resistant revertants of the hypersensitive TolC(R367H) mutant. T140A also reversed, either fully (R390C) or partially (I106N and S350F), the hypersensitivity phenotype of other TolC mutants. Our data suggest that this global suppressor phenotype of T140A is the result of impeded antibiotic influx caused by tapering of the tunnel passage rather than by correcting individual mutational defects. Two extragenic suppressors of TolC(R367H), mapping in the regulatory region of acrAB, uncoupled the AcrR-mediated repression of the acrAB genes. The resulting overexpression of AcrAB reduced the hypersensitivity phenotype of all the TolC mutants. Similar results were obtained when the chromosomal acrR gene was deleted or the acrAB genes were expressed from a plasmid. Unlike the case for the intragenic suppressor T140A, the overexpression of AcrAB diminished hypersensitivity towards only erythromycin and novobiocin, which are substrates of the TolC-AcrAB efflux pump, but not towards vancomycin, which is not a substrate of this pump. This showed that the two types of suppressors produced their effects by fundamentally different means, as the intragenic suppressor decreased the general influx while extragenic suppressors increased the efflux of TolC-AcrAB pump-specific antibiotics.  相似文献   

16.
The outer membrane channel TolC is a key component of multidrug efflux and type I secretion transporters in Escherichia coli. Mutational inactivation of TolC renders cells highly susceptible to antibiotics and leads to defects in secretion of protein toxins. Despite impairment of various transport functions, no growth defects were reported in cells lacking TolC. Unexpectedly, we found that the loss of TolC notably impairs cell division and growth in minimal glucose medium. The TolC‐dependent phenotype was further exacerbated by the loss of ygiB and ygiC genes expressed in the same operon as tolC and their homologues yjfM and yjfC located elsewhere on the chromosome. Our results show that this growth deficiency is caused by depletion of the critical metabolite NAD+ and high NADH/NAD+ ratios. The increased amounts of PspA and decreased rates of NADH oxidation in ΔtolC membranes indicated stress on the membrane and dissipation of a proton motive force. We conclude that inactivation of TolC triggers metabolic shutdown in E. coli cells grown in minimal glucose medium. The ΔtolC phenotype is partially rescued by YgiBC and YjfMC, which have parallel functions independent from TolC.  相似文献   

17.
The Escherichia coli TolC, composed of 471 amino-acid residues, functions as a channel tunnel in the transport of various molecules across the outer membrane. We found previously that Leu-412, the 60th amino-acid residue from the carboxy terminal end, was crucial to the transport activity of TolC. Leu-412 is located in a domain which protrudes from the main body of TolC into the periplasm. Subsequent study indicated that the hydrophobicity generated by Leu-412 played an important role in the activity of TolC (H. Yamanaka, T. Nomura, N. Morisada, S. Shinoda, and K. Okamoto, Microb. Pathog. 33: 81-89, 2002). We predicted that other hydrophobic amino-acid residues around Leu-412 were also involved in the expression of the activity of TolC. To test this possibility, we substituted several hydrophobic residues around Leu-412, (Leu-3, Val-6, Leu-212, Leu-213, Leu-223, and Leu-224), with serine and examined the activity of these mutant TolCs. The result showed that Leu-3 is involved in the activity of TolC, but the other residues are not. The involvement of Leu-3 was confirmed by the residue deletion experiment. A subsequent point-mutational analysis of the residue showed that a hydrophobic side chain is required at position 3 for TolC to express its activity. As the distance between the alpha-carbons of Leu-3 and Leu-412 is just 7.45 angstroms, hydrophobic interaction between the two leucine residues might be involved in the activity of TolC.  相似文献   

18.
The outer membrane proteins TolC and EefC from Enterobacter aerogenes are involved in multidrug resistance as part of two resistance-nodulation-division efflux systems. To gain more understanding in the molecular mechanism underlying drug efflux, we have undertaken an electrophysiological characterization of the channel properties of these two proteins. TolC and EefC were purified in their native trimeric form and then reconstituted in proteoliposomes for patch-clamp experiments and in planar lipid bilayers. Both proteins generated a small single channel conductance of about 80 pS in 0.5 M KCl, indicating a common gated structure. The resultant pores were stable, and no voltage-dependent openings or closures were observed. EefC has a low ionic selectivity (P(K)/P(Cl)= approximately 3), whereas TolC is more selective to cations (P(K)/P(Cl)= approximately 30). This may provide a possible explanation for the difference in drug selectivity between the AcrAB-TolC and EefABC efflux systems observed in vivo. The pore-forming activity of both TolC and EefC was severely inhibited by divalent cations entering from the extracellular side. Another characteristic of the TolC and EefC channels was the systematic closure induced by acidic pH. These results are discussed in respect to the physiological functions and structural models of TolC and EefC.  相似文献   

19.
Outer membrane protein TolC serves as an exit duct for exporting substances out of cell. The occluded periplasmic entrance of TolC is required to open for substrate transport, although the opening mechanism remains elusive. In this study, systematic molecular dynamics (MD) simulations for wild type TolC and six mutants were performed to explore the conformational dynamics of TolC. The periplasmic gate was shown to sample multiple conformational states with various degrees of gating opening. The gate opening was facilitated by all mutations except Y362F, which adopts an even more closed state than wild type TolC. The interprotomer salt‐bridge R367–D153 is turned out to be crucial for periplasmic gate opening. The mutations that disrupt the interactions at the periplasmic tip may affect the stability of the trimeric assembly of TolC. Structural asymmetry of the periplasmic gate was observed to be opening size dependent. Asymmetric conformations are found in moderately opening states, while the most and the least opening states are often more symmetric. Finally, it is shown that lowering pH can remarkably stabilize the closed state of the periplasmic gate. Proteins 2014; 82:2169–2179. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
The major Escherichia coli multidrug efflux pump AcrAB-TolC expels a wide range of antibacterial agents. Using in vivo cross-linking, we show for the first time that the antiporter AcrB and the adaptor AcrA, which form a translocase in the inner membrane, interact with the outer membrane TolC exit duct to form a contiguous proteinaceous complex spanning the bacterial cell envelope. Assembly of the pump appeared to be constitutive, occurring in the presence and absence of drug efflux substrate. This contrasts with substrate-induced assembly of the closely related TolC-dependent protein export machinery, possibly reflecting different assembly dynamics and degrees of substrate responsiveness in the two systems. TolC could be cross-linked independently to AcrB, showing that their large periplasmic domains are in close proximity. However, isothermal titration calorimetry detected no interaction between the purified AcrB and TolC proteins, suggesting that the adaptor protein is required for their stable association in vivo. Confirming this view, AcrA could be cross-linked independently to AcrB and TolC in vivo, and calorimetry demonstrated energetically favourable interactions of AcrA with both AcrB and TolC proteins. AcrB was bound by a polypeptide spanning the C-terminal half of AcrA, but binding to TolC required interaction of N- and C-terminal polypeptides spanning the lipoyl-like domains predicted to present the intervening coiled-coil to the periplasmic coils of TolC. These in vivo and in vitro analyses establish the central role of the AcrA adaptor in drug-independent assembly of the tripartite drug efflux pump, specifically in coupling the inner membrane transporter and the outer membrane exit duct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号