首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
All living organisms contain a unique class of molecular chaperones called 60?kDa heat shock proteins (HSP60 – also known as GroEL in bacteria). While some organisms contain more than one HSP60 or GroEL isoform, at least one isoform has always proven to be essential. Because of this, we have been investigating targeting HSP60 and GroEL chaperonin systems as an antibiotic strategy. Our initial studies focused on applying this antibiotic strategy for treating African sleeping sickness (caused by Trypanosoma brucei parasites) and drug-resistant bacterial infections (in particular Methicillin-resistant Staphylococcus aureus – MRSA). Intriguingly, during our studies we found that three known antibiotics – suramin, closantel, and rafoxanide – were potent inhibitors of bacterial GroEL and human HSP60 chaperonin systems. These findings prompted us to explore what other approved drugs, natural products, and known bioactive molecules might also inhibit HSP60 and GroEL chaperonin systems. Initial high-throughput screening of 3680 approved drugs, natural products, and known bioactives identified 161 hit inhibitors of the Escherichia coli GroEL chaperonin system (4.3% hit rate). From a purchased subset of 60 hits, 29 compounds (48%) re-confirmed as selective GroEL inhibitors in our assays, all of which were nearly equipotent against human HSP60. These findings illuminate the notion that targeting chaperonin systems might be a more common occurrence than we previously appreciated. Future studies are needed to determine if the in vivo modes of action of these approved drugs, natural products, and known bioactive molecules are related to GroEL and HSP60 inhibition.  相似文献   

2.
The bacterial hyaluronan lyases (Hyals) that degrade hyaluronan, an important component of the extracellular matrix, are involved in microbial spread. Inhibitors of these enzymes are essential in investigation of the role of hyaluronan and Hyal in bacterial infections and constitute a new class of antibiotics against Hyal-producing bacteria. Recently, we identified 1,3-diacetylbenzimidazole-2-thione and related molecules as inhibitors of streptococcal Hyal. One of such compounds, 1-decyl-2-(4-sulfamoyloxyphenyl)-1-indol-6-yl sulfamate, was co-crystallized in a complex with Streptococcus pneumoniae Hyal and its structure elucidated. The resultant X-ray structure demonstrates that this inhibitor fits in the enzymatic active site via interactions resembling the binding mode of the natural hyaluronan substrate. X-ray structural analysis also indicates binding interactions with the catalytic residues and those of a catalytically essential hydrophobic patch. An IC50 value of 11 microM for Hyal from Streptococcus agalactiae (strain 4755) qualifies this phenylindole compound as one of the most potent Hyal inhibitors known to date. The structural data suggested a similar binding mode for N-(3-phenylpropionyl)-benzoxazole-2-thione. This new compound's inhibitory properties were confirmed resulting in discovery of yet another Hyal inhibitor (IC50 of 15 microM). These benzoxazole-2-thiones constitute a new class of inhibitors of bacterial Hyals and are well suited for further optimization of their selectivity, potency, and pharmacokinetic properties.  相似文献   

3.
Certain erythromycin-resistant strains of Staphylococcus aureus remain sensitive to other macrolide antibiotics. If these strains are exposed to low levels of erythromycin, resistance to other antibiotics is induced. The antibiotics to which resistance is induced by erythromycin include: other macrolides as well as lincosaminide, streptogramin (group B) antibiotics but not chloramphenicol, amicetin, streptogramin (group A) antibiotics, tetracyclines, and aminoglycosides. Hence erythromycin induces resistance exclusively towards inhibitors of 50S ribosomal subunit function and, thus far, only with respect to three of six known classes of inhibitors which act on this subunit. In the four strains tested, erythromycin did not induce resistance to pactamycin or bottromycin, to fusidic acid (which inhibits a function involving both subunits), or to other antibiotics which do not inhibit ribosomal function. Thus, by inducing resistance erythromycin could antagonize the action of other antibiotics, and a consistent pattern of antagonism was observed to each antibiotic class in all of the strains in which this could be tested, as well as to other antibiotic members of the same chemical class in each bacterial strain.  相似文献   

4.
Hydrolysis of beta-lactam antibiotics by beta-lactamase enzymes is the most common mechanism of bacterial resistance to these agents. Several small-molecule, mechanism-based inhibitors of beta-lactamases such as clavulanic acid are clinically available although resistance to these inhibitors has been increasing in bacterial populations. In addition, these inhibitors act only on class A beta-lactamases. Here we utilized phage display to identify peptides that bind to the class A beta-lactamase, TEM-1. The binding affinity of one of these peptides was further optimized by the synthesis of peptide arrays using SPOT synthesis technology. After two rounds of optimization, a linear 6-mer peptide with the sequence RRGHYY was obtained. A soluble version of this peptide was synthesized and found to inhibit TEM-1 beta-lactamase with a K(i) of 136 micro M. Surprisingly, the peptide inhibits the class A Bacillus anthracis Bla1 beta-lactamase with a K(i) of 42 micro M and the class C beta-lactamase, P99, with a K(i) of 140 micro M, despite the fact that it was not optimized to bind these enzymes. This peptide may be a useful starting point for the design of non-beta-lactam, broad-spectrum peptidomimetic inhibitors of beta-lactamases.  相似文献   

5.
6.
One of the biggest challenges for recent medical research is the continuous development of new antibiotics interacting with bacterial essential mechanisms. The machinery for peptidoglycan biosynthesis is a rich source of crucial targets for antibacterial chemotherapy. The cytoplasmic steps of the biosynthesis of peptidoglycan precursor, catalysed by a series of Mur enzymes, are excellent candidates for drug development. There has been growing interest in these bacterial enzymes over the last decade. Many studies attempted to understand the detailed mechanisms and structural features of the key enzymes MurA to MurF. Only MurA is inhibited by a known antibiotic, fosfomycin. Several attempts made to develop novel inhibitors of this pathway are discussed in this review. Three novel inhibitors of MurA were identified recently. 4-Thiazolidinone compounds were designed as MurB inhibitors. Many phosphinic acid derivatives and substrate analogues were identified as inhibitors of the MurC to MurF amino acid ligases.  相似文献   

7.
β‐lactam antibiotics are crucial to the management of bacterial infections in the medical community. Due to overuse and misuse, clinically significant bacteria are now resistant to many commercially available antibiotics. The most widespread resistance mechanism to β‐lactams is the expression of β‐lactamase enzymes. To overcome β‐lactamase mediated resistance, inhibitors were designed to inactivate these enzymes. However, current inhibitors (clavulanic acid, tazobactam, and sulbactam) for β‐lactamases also contain the characteristic β‐lactam ring, making them susceptible to resistance mechanisms employed by bacteria. This presents a critical need for novel, non‐β‐lactam inhibitors that can circumvent these resistance mechanisms. The carbapenem‐hydrolyzing class D β‐lactamases (CHDLs) are of particular concern, given that they efficiently hydrolyze potent carbapenem antibiotics. Unfortunately, these enzymes are not inhibited by clinically available β‐lactamase inhibitors, nor are they effectively inhibited by the newest, non‐β‐lactam inhibitor, avibactam. Boronic acids are known transition state analog inhibitors of class A and C β‐lactamases, and are not extensively characterized as inhibitors of class D β‐lactamases. Importantly, boronic acids provide a novel way to potentially inhibit class D β‐lactamases. Sixteen boronic acids were selected and tested for inhibition of the CHDL OXA‐24/40. Several compounds were identified as effective inhibitors of OXA‐24/40, with Ki values as low as 5 μM. The X‐ray crystal structures of OXA‐24/40 in complex with BA3, BA4, BA8, and BA16 were determined and revealed the importance of interactions with hydrophobic residues Tyr112 and Trp115. These boronic acids serve as progenitors in optimization efforts of a novel series of inhibitors for class D β‐lactamases.  相似文献   

8.
Cysteine proteinases of parasitic protozoa   总被引:1,自引:0,他引:1  
Proteinases are involved with many processes in living organisms. In recent years, there has been increasing interest in elucidating the functions the enzymes perform in parasites. These studies have revealed that one class of proteinases, the cysteine proteinases, predominates in many parasitic protozoa. In this article Mick North, Jeremy Mottram and Graham Coombs review what is known about the cysteine proteinases of parasitic protozoa and discuss the approaches being pursued in attempts to design antiparasite drugs based on inhibitors or substrates of these enzymes.  相似文献   

9.
Cytosolic glutathione transferase (GSTs) are a family of multi-functional proteins which catalyse the conjugation of glutathione (GSH) to a large variety of endogenous and exogenous electrophilic compounds. Much is known about cytosolic mammalian GSTs, however, the presence of GSTs in several aerobic and anaerobic micro-organisms has also been demonstrated. Several findings seem to suggest that bacterial GSTs are involved in processes of biodegradation of xenobiotics, including antibiotics. However, the function played by these enzymes in the bacterial cell still remains to be clarified. At present, it is ill-defined whether bacterial GST can be classified, as in the case of mammalian enzymes, into several distinct classes.Here we report the purification of a GST isoform from Haemophilus influenzae using GSH-affinity chromatography. The purified protein was characterised by immunological and kinetic properties different from other known GSTs. The dissociation constants of chloramphenicol, ampicillin, rifampicin and tetracycline to the purified enzyme were 0.62, 9.06, 4.08 and 1.77 microM, respectively, as determined by following the quenching of the protein intrinsic fluorescence. These values were much lower than those previously determined for the same drugs with other mammalian or bacterial GSTs.The present results indicate that the enzyme purified from H. influenzae is a novel GST isoform well distinguished from other known mammalian or bacterial GSTs.  相似文献   

10.
Processing of exogenous glycerol esters is an initial step in energy derivation for many bacterial cells. Lipid-rich environments settled by a variety of organisms exert strong evolutionary pressure for establishing enzymatic pathways involved in lipid metabolism. However, a certain number of enzymes involved in this process remain unknown since they do not share detectable sequence similarity with any known protein domains. Using distant homology detection and fold recognition we predict that bacterial transmembrane proteins belonging to the uncharacterized domain of unknown function 2319 (DUF2319) family possess the alpha/beta hydrolase fold domain together with the catalytic triad critical for hydrolysis. A detailed analysis of sequence/structure features and genomic context indicates that DUF2319 proteins may be involved in lipid metabolism. Therefore, these enzymes are likely to serve as extracellular lipases.  相似文献   

11.
Increasing resistance to every major class of antibiotics and a dearth of novel classes of antibacterial agents in development pipelines has created a dwindling reservoir of treatment options for serious bacterial infections. The bacterial type IIA topoisomerases, DNA gyrase and topoisomerase IV, are validated antibacterial drug targets with multiple prospective drug binding sites, including the catalytic site targeted by the fluoroquinolone antibiotics. However, growing resistance to fluoroquinolones, frequently mediated by mutations in the drug-binding site, is increasingly limiting the utility of this antibiotic class, prompting the search for other inhibitor classes that target different sites on the topoisomerase complexes. The highly conserved ATP-binding subunits of DNA gyrase (GyrB) and topoisomerase IV (ParE) have long been recognized as excellent candidates for the development of dual-targeting antibacterial agents with broad-spectrum potential. However, to date, no natural product or small molecule inhibitors targeting these sites have succeeded in the clinic, and no inhibitors of these enzymes have yet been reported with broad-spectrum antibacterial activity encompassing the majority of Gram-negative pathogens. Using structure-based drug design (SBDD), we have created a novel dual-targeting pyrimidoindole inhibitor series with exquisite potency against GyrB and ParE enzymes from a broad range of clinically important pathogens. Inhibitors from this series demonstrate potent, broad-spectrum antibacterial activity against Gram-positive and Gram-negative pathogens of clinical importance, including fluoroquinolone resistant and multidrug resistant strains. Lead compounds have been discovered with clinical potential; they are well tolerated in animals, and efficacious in Gram-negative infection models.  相似文献   

12.
硫氧化细菌的种类及硫氧化途径的研究进展   总被引:3,自引:0,他引:3  
硫,作为生物必需的大量营养元素之一,参与了细胞的能量代谢与蛋白质、维生素和抗生素等物质代谢。自然界中,硫以多种化学形态存在,包括单质硫、还原性硫化物、硫酸盐和含硫有机物。硫氧化是硫元素生物地球化学循环的重要组成部分,通常是指单质硫或还原性硫化物被微生物氧化的过程。硫氧化细菌种类繁多,其硫氧化相关基因、酶和途径也多种多样。近几年,相关方面的研究已取得很多进展,但在不同层面仍存在一些尚未解决的科学问题。本文主要围绕硫氧化细菌的种类及硫氧化途径的研究进展进行了综述。  相似文献   

13.
DNA gyrase: structure and function.   总被引:27,自引:0,他引:27  
DNA gyrase is an essential bacterial enzyme that catalyzes the ATP-dependent negative super-coiling of double-stranded closed-circular DNA. Gyrase belongs to a class of enzymes known as topoisomerases that are involved in the control of topological transitions of DNA. The mechanism by which gyrase is able to influence the topological state of DNA molecules is of inherent interest from an enzymological standpoint. In addition, much attention has been focused on DNA gyrase as the intracellular target of a number of antibacterial agents as a paradigm for other DNA topoisomerases. In this review we summarize the current knowledge concerning DNA gyrase by addressing a wide range of aspects of the study of this enzyme.  相似文献   

14.
Abstract

Recent advances in microbial genomics, synthetic organic chemistry and X-ray crystallography provided opportunities to identify novel antibacterial targets for the development of new classes of antibiotics and to design more potent antimicrobial compounds derived from existing antibiotics in clinical use for decades. The antimetabolites, sulfa drugs and trimethoprim (TMP)-like agents, are inhibitors of three families of enzymes. One family belongs to the carbonic anhydrases, which catalyze a simple but physiologically relevant reaction in all life kingdoms, carbon dioxide hydration to bicarbonate and protons. The other two enzyme families are involved in the synthesis of tetrahydrofolate (THF), i.e. dihydropteroate synthase (DHPS) and dihydrofolate reductase. The antibacterial agents belonging to the THF and DHPS inhibitors were developed decades ago and present significant bacterial resistance problems. However, the molecular mechanisms of drug resistance both to sulfa drugs and TMP-like inhibitors were understood in detail only recently, when several X-ray crystal structures of such enzymes in complex with their inhibitors were reported. Here, we revue the state of the art in the field of antibacterials based on inhibitors of these three enzyme families.  相似文献   

15.
Bacterial proteases play an important role in a broad spectrum of processes, including colonization, proliferation, and virulence. In this respect, bacterial proteases are potential biomarkers for bacterial diagnosis and targets for novel therapeutic protease inhibitors. To investigate these potential functions, the authors designed and used a protease substrate fluorescence resonance energy transfer (FRET) library comprising 115 short d- and l-amino-acid-containing fluorogenic substrates as a tool to generate proteolytic profiles for a wide range of bacteria. Bacterial specificity of the d-amino acid substrates was confirmed using enzymes isolated from both eukaryotic and prokaryotic organisms. Interestingly, bacterial proteases that are known to be involved in housekeeping and nutrition, but not in virulence, were able to degrade substrates in which a d-amino acid was present. Using our FRET peptide library and culture supernatants from a total of 60 different bacterial species revealed novel, bacteria-specific, proteolytic profiles, although in-species variation was observed for Pseudomonas aeruginosa, Porphyromonas gingivalis, and Staphylococcus aureus. Overall, the specific characteristic of our substrate peptide library makes it a rapid tool to high-throughput screen for novel substrates to detect bacterial proteolytic activity.  相似文献   

16.
Soil streptomycetes are saprotrophic bacteria that secrete numerous secondary metabolites and enzymes for extracellular functions. Many streptomycetes produce antibiotics thought to protect vegetative mycelia from competing organisms. Here we report that an organism isolated from soil, Streptomyces sp. Mg1, actively degrades colonies and causes cellular lysis of Bacillus subtilis when the organisms are cultured together. We predicted that the inhibition and degradation of B. subtilis colonies in this competition depends upon a combination of secreted factors, including small molecule metabolites and enzymes. To begin to unravel this complex competitive phenomenon, we use a MALDI imaging mass spectrometry strategy to map the positions of metabolites secreted by both organisms. In this report, we show that Streptomyces sp. Mg1 produces the macrolide antibiotic chalcomycin A, which contributes to inhibition of B. subtilis growth in combination with other, as yet unidentified factors. We suggest that efforts to understand competitive and cooperative interactions between bacterial species benefit from assays that pair living organisms and probe the complexity of metabolic exchanges between them.  相似文献   

17.
The mechanisms through which microbes communicate using signal molecules has inspired a great deal of research. Microbes use this exchange of information, known as quorum sensing (QS), to initiate and perpetuate infectious diseases in eukaryotic organisms, evading the eukaryotic defense system by multiplying and expressing their pathogenicity through QS regulation. The major issue to arise from such networks is increased bacterial resistance to antibiotics, resulting from QS-dependent mediation of the formation of biofilm, the induction of efflux pumps, and the production of antibiotics. QS inhibitors (QSIs) of diverse origins have been shown to act as potential antipathogens. In this review, we focus on the use of QSIs to counter diseases in humans as well as plants and animals of economic importance. We also discuss the challenges encountered in the potential applications of QSIs.  相似文献   

18.
氨基糖苷类抗生素在治疗感染性疾病尤其是革兰氏阴性菌引起的严重感染方面起着重要作用 ,但是耐药菌株的出现较大地限制了此类抗生素的发展 ,因此 ,如何控制耐药性已经成为一项迫切需要解决的任务。细菌对氨基糖苷类抗生素产生抗性的机制很多 ,目前普遍接受的主要有三种 :1. 通过减少对氨基糖苷类抗生素的摄取或减少药物在体内的累积而产生抗性。 2. 通过改变核糖体结合位点而产生抗性。 3. 通过表达氨基糖苷类抗生素修饰酶而产生抗性。目前细菌耐药性的控制主要集中在对原有氨基糖苷类抗生素进行改造或合成新的抗生素 ,开发氨基糖苷类抗生素修饰酶抑制剂。  相似文献   

19.
Microbes that have gained resistance against antibiotics pose a major emerging threat to human health. New targets must be identified that will guide the development of new classes of antibiotics. The selective inhibition of key microbial enzymes that are responsible for the biosynthesis of essential metabolites can be an effective way to counter this growing threat. Aspartate semialdehyde dehydrogenases (ASADHs) produce an early branch point metabolite in a microbial biosynthetic pathway for essential amino acids and for quorum sensing molecules. In this study, molecular modeling and docking studies were performed to achieve two key objectives that are important for the identification of new selective inhibitors of ASADH. First, virtual screening of a small library of compounds was used to identify new core structures that could serve as potential inhibitors of the ASADHs. Compounds have been identified from diverse chemical classes that are predicted to bind to ASADH with high affinity. Next, molecular docking studies were used to prioritize analogs within each class for synthesis and testing against representative bacterial forms of ASADH from Streptococcus pneumoniae and Vibrio cholerae. These studies have led to new micromolar inhibitors of ASADH, demonstrating the utility of this molecular modeling and docking approach for the identification of new classes of potential enzyme inhibitors.  相似文献   

20.
Helicobacter pylori is a gastric mucosal pathogen and is associated with diseases like peptic ulcer and gastric cancer. To combat H. pylori infection, there is an urgent need for new class of antibiotics due to the emergence of drug-resistant strains. Enzymes involved in bacterial lysine biosynthetic pathways may be potential targets for antibacterial drug development, since lysine is an essential component of the bacterial peptidoglycan cell wall. No pathway exists for lysine biosynthesis in humans; hence, the inhibitors targeting bacterial enzymes may have selective toxicity. dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) is a critical enzyme of this pathway and deletion of DapE gene is lethal to H. pylori, since the organism has no alternative pathway for lysine biosynthesis. In this study, we reported a 3D model structure of H. pylorie DapE, which consisted of a catalytic domain and a dimerization domain generated by MODELLER software. We also confirmed the stability of the modeled structure through 10 ns molecular dynamics simulation using GROMACS software. Next, to identify potential small molecule inhibitors of DapE, drug-like small molecule-screening library was generated. This was performed by Tanimoto-based similarity searching in the PubChem Database with DapE substrate L,L-SDAP as a query molecule, followed by fragment-based docking approach using GLIDE XP. This approach identified two potential substrate-competitive small molecule inhibitors of DapE. These new molecules may provide a starting point to search for novel therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号