首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Stream-dwelling fishes inhabit river networks where resources are distributed heterogeneously across space and time. Current theory emphasizes that fishes often perform large-scale movements among habitat patches for reproduction and seeking refugia, but assumes that fish are relatively sedentary during growth phases of their life cycle. Using stationary passive integrated transponder (PIT)-tag antennas and snorkel surveys, we assessed the individual and population level movement patterns of two species of fish across a network of tributaries within the Wood River basin in southwestern Alaska where summer foraging opportunities vary substantially among streams, seasons, and years. Across two years, Arctic grayling (Thymallus arcticus) and rainbow trout (Oncorhynchus mykiss) exhibited kilometer-scale movements among streams during the summer growing season. Although we monitored movements at a small fraction of all tributaries used by grayling and rainbow trout, approximately 50% of individuals moved among two or more streams separated by at least 7 km within a single summer. Movements were concentrated in June and July, and subsided by early August. The decline in movements coincided with spawning by anadromous sockeye salmon, which offer a high-quality resource pulse of food to resident species. Inter-stream movements may represent prospecting behavior as individuals seek out the most profitable foraging opportunities that are patchily distributed across space and time. Our results highlight that large-scale movements may not only be necessary for individuals to fulfill their life-cycle, but also to exploit heterogeneously spaced trophic resources. Therefore, habitat fragmentation and homogenization may have strong, but currently undescribed, ecological effects on the access to critical food resources in stream-dwelling fish populations.  相似文献   

3.
To study evolution of conditional dispersal, a Lotka-Volterra reaction-diffusion-advection model for two competing species in a heterogeneous environment is proposed and investigated. The two species are assumed to be identical except their dispersal strategies: both species disperse by random diffusion and advection along environmental gradients, but one species has stronger biased movement (i.e., advection along the environmental gradients) than the other one. It is shown that at least two scenarios can occur: if only one species has a strong tendency to move upward the environmental gradients, the two species can coexist since one species mainly pursues resources at places of locally most favorable environments while the other relies on resources from other parts of the habitat; if both species have such strong biased movements, it can lead to overcrowding of the whole population at places of locally most favorable environments, which causes the extinction of the species with stronger biased movement. These results provide a new mechanism for the coexistence of competing species, and they also imply that selection is against excessive advection along environmental gradients, and an intermediate biased movement rate may evolve.  相似文献   

4.
Migration by flight is essential for insects living in patchy landscapes and knowledge about variability in habitat patch structure and quality is important for the development of theory concerning insect dispersal polymorphisms. However, few studies provide more than anecdotal evidence about habitat change in time and space and its effects on insect survival and reproduction. Here I show how habitats and resource density of a lygaied bug,Lygaeus equestris, change in a patchy landscape over a seventeen year period. Although habitat patches per se are very stable, there are large temporal fluctuations in per capita food resources. Food seems to be limiting only in some years, and there may be periods of several years when populations change due to weather disturbance. Between-patch variation in reproductive success is large. Furthermore, the relative favourability of patches changes between years. There are also distance effects; in some years distances to suitable hibernation sites affect reproductive success. Long fliers experience more variable success, and sometimes extreme success, when compared with short fliers. The importance of movements from outlying areas also changes with time. The insect is thus faced with a habitat templet which varies strongly on many temporal and spatial scales.  相似文献   

5.
Spatially structured populations in patchy habitats show much variation in migration rate, from patchy populations in which individuals move repeatedly among habitat patches to classic metapopulations with infrequent migration among discrete populations. To establish a common framework for population dynamics in patchy habitats, we describe an individual-based model (IBM) involving a diffusion approximation of correlated random walk of individual movements. As an example, we apply the model to the Glanville fritillary butterfly (Melitaea cinxia) inhabiting a highly fragmented landscape. We derive stochastic patch occupancy model (SPOM) approximations for the IBMs assuming pure demographic stochasticity, uncorrelated environmental stochasticity, or completely correlated environmental stochasticity in local dynamics. Using realistic parameter values for the Glanville fritillary, we show that the SPOMs mimic the behavior of the IBMs well. The SPOMs derived from IBMs have parameters that relate directly to the life history and behavior of individuals, which is an advantage for model interpretation and parameter estimation. The modeling approach that we describe here provides a unified framework for patchy populations with much movements among habitat patches and classic metapopulations with infrequent movements.  相似文献   

6.
We consider a mathematical model of two competing species for the evolution of conditional dispersal in a spatially varying, but temporally constant environment. Two species are different only in their dispersal strategies, which are a combination of random dispersal and biased movement upward along the resource gradient. In the absence of biased movement or advection, Hastings showed that the mutant can invade when rare if and only if it has smaller random dispersal rate than the resident. When there is a small amount of biased movement or advection, we show that there is a positive random dispersal rate that is both locally evolutionarily stable and convergent stable. Our analysis of the model suggests that a balanced combination of random and biased movement might be a better habitat selection strategy for populations.  相似文献   

7.
To understand the evolution of dispersal, we study a Lotka–Volterra reaction–diffusion–advection model for two competing species in a heterogeneous environment. The two species are assumed to be identical except for their dispersal strategies: both species disperse by random diffusion and advection along environmental gradients, but with slightly different random dispersal or advection rates. Two new phenomena are found for one-dimensional habitats and monotone intrinsic growth rates: (i) If both species disperse only by random diffusion, i.e., no advection, it was well known that the slower diffuser always wins. We show that if both species have the same advection rate which is suitably large, the faster dispersal will evolve; (ii) If both species have the same random dispersal rate, it was known that the species with a little advection along the resource gradient always wins, provided that the other species is a pure random disperser and the habitat is convex. We show that if both species have the same random dispersal rate and both also have suitably large advection rates, the species with a little smaller advection rate always wins. Implications of these results for the habitat choices of species will be discussed. Some future directions and open problems will be addressed.  相似文献   

8.
We study the effect of changes in flow speed on competition of an arbitrary number of species living in advective environments, such as streams and rivers. We begin with a spatial Lotka–Volterra model which is described by n reaction–diffusion–advection equations with Danckwerts boundary conditions. Using the dominant eigenvalue \(\lambda \le 0\) of the diffusion–advection operator subject to boundary conditions, we reduce the model to a system of ordinary differential equations. We impose a “transitive arrangement” of the competitors in terms of their interspecific coefficients and growth rates, which means that in the absence of advection, we have the following situation: for all \(1\le i<j\le n\), species i out-competes species j, while species j has higher intrinsic growth rate than species i. Changing advection speed in the original spatial model corresponds to changing the value of \(\lambda \) in the spatially implicit model. Considering the cases of the odd and even n separately, we obtain explicit intervals of the values of \(\lambda \) that allow all n species to be present in the habitat (coexistence interval). Stability of this equilibrium is shown for \(n\le 4\).  相似文献   

9.
Habitat selection by small mammals is usually evaluated using data from live trapping, which provides little information about the movements of individuals. Few studies used movement data or compared the results of different sampling methods to study habitat selection by these animals. We evaluated habitat selection by the rodent Nectomys squamipes and the marsupial Micoureus paraguayanus in the Atlantic Forest of Brazil using the spool-and-line technique. We also determined if percentage of captures reflected the amount of movements in each habitat. Habitat selection was determined comparing use and availability of five habitat types at two spatial scales (movement paths and movement areas) using compositional analysis, which allowed ranking of habitats according to their relative use by animals. The use of available habitat types was non-random for both species at both spatial scales. The two species had contrasting habitat affinities directly related to their particular habits, with N. squamipes using predominantly the stream habitat, and M. paraguayanus using mainly the restinga forest habitat. Patterns of habitat selection were similar at both spatial scales probably due to the small size of movement areas, which may not represent habitat use at a broader scale. For both species, live trapping and movement data provided the same ranking in habitat use, demonstrating that simple capture indices may be used to study habitat selection by these species across different habitat types.  相似文献   

10.
We studied microgeographic and temporal genetic differentiation in natural populations of Drosophila persimilis with respect to chromosome inversion and enzyme polymorphisms. Both inversion frequencies and allozyme frequencies varied significantly over short distances. Neither differed significantly between morning and evening collections. Because several studies of the dispersal behavior of this species have been performed, we attempt to fit the observed data to mathematical models which relate dispersion to random genetic drift and to spatially varying selection coefficients. We conclude that the observations are due at least partly to behavioral differences among genotypes. i.e., habitat preferences. These results have implications for genetic load theory and models of selection in heterogeneous environments.  相似文献   

11.
Habitat fragmentation causes negative population trends or even local extinction in many species. Understanding the role of fragmentation on behavior and space use of animals is an essential part of revealing the mechanism behind observed population declines. We studied experimentally the effects of small-scale habitat fragmentation on the distribution and movement of bank voles (Myodes glareolus) in seminatural enclosures. We predicted that besides habitat structure, availability of two resources, food for both sexes, and receptive females for males, determine individual distribution. We manipulated female density (either 0, 4, or 12 per enclosure) and followed movements of radio-collared males. We also studied the effect of unequal food distribution between the fragments on vole distribution. The habitat of 0.25-ha enclosures was manipulated by forming either one large, two medium-sized, or four small habitat patches surrounded by an inhospitable matrix. Female density and distribution clearly affected male spacing behavior. Males had larger home ranges in the medium female density enclosures. Furthermore, the use of the inhospitable and risky matrix area increased with habitat fragmentation. Food supplementation improved individual condition measured as body mass but did not affect breeding success. Our experiments demonstrated that both small-scale habitat fragmentation and resource distribution affect the behavior and condition of individuals. Increased fragmentation led to increased risk taking in both mating and foraging behavior. This should have direct survival and fitness consequences, and therefore our results may be extrapolated to population-level consequences of habitat fragmentation.  相似文献   

12.
By making field observations on the movement pattern of the agrobiont wolf spider Pardosa agrestis at two spatiotemporal scales, we explored how fine-scale foraging movements scale up to medium-scale habitat use by the spiders. For fine-scale observations, we followed individuals for several metres and for up to 1-2 h. For medium-scale observations we used marking and recapture in live-trapping pitfall grids, which allowed us to detect movements up to 70 m and for 4 weeks. The analysis of fine-scale movement indicated that spiders followed a ‘sit-and-move’ foraging strategy, which consisted of variable periods of waiting (mean 2.5 min) and brief bouts of movements between the waiting sites. Spiders spent over 90% of the total observation time waiting. Prey capture (or capture attempts) was initiated only from waiting sites. Movement between consecutive waiting sites was more directional than predicted by the correlated random walk model. At medium (2-day) timescales the mean displacement of marked spiders was 7.4 m. Simulations suggested that such a displacement could be achieved if movement observed at the fine scale followed a random path for 2 days. We concluded that movement became less directional with increasing scale. Such a phenomenon might be related to avoidance of revisiting food patches locally and an efficient sampling of the habitat at higher scales. High movement activity in a species that is primarily adapted to ephemeral habitats might increase its likelihood of colonizing new habitat patches. Copyright 2003 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.  相似文献   

13.
In this work, we propose a spatial model to analyze the West Nile Virus propagation across the USA, from east to west. West Nile Virus is an arthropod-borne flavivirus that appeared for the first time in New York City in the summer of 1999 and then spread prolifically among birds. Mammals, such as humans and horses, do not develop sufficiently high bloodstream titers to play a significant role in the transmission, which is the reason to consider the mosquito-bird cycle. The model aims to study this propagation based on a system of partial differential reaction-diffusion equations taking the mosquito and the avian populations into account. Diffusion and advection movements are allowed for both populations, being greater in the avian than in the mosquito population. The traveling wave solutions of the model are studied to determine the speed of disease dissemination. This wave speed is obtained as a function of the model's parameters, in order to assess the control strategies. The propagation of West Nile Virus from New York City to California state is established as a consequence of the diffusion and advection movements of birds. Mosquito movements do not play an important role in the disease dissemination, while bird advection becomes an important factor for lower mosquito biting rates.  相似文献   

14.
This paper presents a mathematical model for the learning of accurate human arm movements. Its main features are that the movement is the superposition of smooth submovements, the intrinsic deviation of arm movements is considered, visual and kinesthetic feedback are integrated in the motion control, and the movement duration and accuracy are optimized with practice. This model is consistent with the jerky arm movements of infants, and may explain how the adult motion behavior emerges from the infant behavior. Comparison with measurements of adult movements shows that the kinematics of accurate movements are well predicted by the model. Received: 15 May 1997 / Accepted 5 December 1997  相似文献   

15.
Using a case study of an isolated management unit of Sichuan snub‐nosed monkey (Rhinopithecus roxellana), we assess the extent that climate change will impact the species’ habitat distribution in the current period and projected into the 2050s. We identify refugia that could maintain the population under climate change and determine dispersal paths for movement of the population to future suitable habitats. Hubei Province, China. We identified climate refugia and potential movements by integrating bioclimatic models with circuit theory and least‐cost model for the current period (1960–1990) and the 2050s (2041–2060). We coupled a maximum entropy algorithm to predict suitable habitat for the current and projected future periods. Suitable habitat areas that were identified during both time periods and that also satisfied home range and dispersal distance conditions were delineated as refugia. We mapped potential movements measured as current flow and linked current and future habitats using least‐cost corridors. Our results indicate up to 1,119 km2 of currently suitable habitat within the study range. Based on our projections, a habitat loss of 67.2% due to climate change may occur by the 2050s, resulting in a reduced suitable habitat area of 406 km2 and very little new habitat. The refugia areas amounted to 286 km2 and were located in Shennongjia National Park and Badong Natural Reserve. Several connecting corridors between the current and future habitats, which are important for potential movements, were identified. Our assessment of the species predicted a trajectory of habitat loss following anticipated future climate change. We believe conservation efforts should focus on refugia and corridors when planning for future species management. This study will assist conservationists in determining high‐priority regions for effective maintenance of the endangered population under climate change and will encourage increased habitat connectivity.  相似文献   

16.
Dung beetle movements at two spatial scales   总被引:5,自引:0,他引:5  
Tomas Roslin 《Oikos》2000,91(2):323-335
To understand the dynamics of spatially structured populations, we need to know the level of movements at different spatial scales. This paper reports on Aphodius dung beetle movements at two scales: movements between dung pats within pastures, and movements between pastures. First, I test an assumption common to many recent models of spatially structured populations – that the probability of an individual moving between habitat patches decreases exponentially with distance. For dung beetles, I find sufficient evidence to reject this assumption. The distribution of dispersal distances was clearly leptokurtic, with more individuals moving short and long distances than expected on the basis of an exponential function. In contrast, the data were well described by a power function. I conclude that dung beetle movements include an element of non-randomness not captured by the simplistic exponential model. The power function offers a promising alternative, but the actual mechanisms behind the pattern need to be clarified. Second, I compare several species of Aphodius to each other. Although these species occur in the same network of habitat patches, their movement patterns are different enough to result in a mixture of different spatial population structures. Movements between pastures were more frequent the larger the species, the more specific its occurrence in relation to pat age, and the more specialized it is on cow dung and open pasture habitats. Within pastures, all species form "patchy" populations, with much movement among individual pats.  相似文献   

17.
Mechanisms that determine how, where, and when ontogenetic habitat shifts occur are mostly unknown in wild populations. Differences in size and environmental characteristics of ontogenetic habitats can lead to differences in movement patterns, behavior, habitat use, and spatial distributions across individuals of the same species. Knowledge of juvenile loggerhead turtles' dispersal, movements, and habitat use is largely unknown, especially in the Mediterranean Sea. Satellite relay data loggers were used to monitor movements, diving behavior, and water temperature of eleven large juvenile loggerhead turtles (Caretta caretta) deliberately caught in an oceanic habitat in the Mediterranean Sea. Hidden Markov models were used over 4,430 spatial locations to quantify the different activities performed by each individual: transit, low‐, and high‐intensity diving. Model results were then analyzed in relation to water temperature, bathymetry, and distance to the coast. The hidden Markov model differentiated between bouts of area‐restricted search as low‐ and high‐intensity diving, and transit movements. The turtles foraged in deep oceanic waters within 60 km from the coast as well as above 140 km from the coast. They used an average area of 194,802 km2, where most individuals used the deepest part of the Southern Tyrrhenian Sea with the highest seamounts, while only two switched to neritic foraging showing plasticity in foraging strategies among turtles of similar age classes. The foraging distribution of large juvenile loggerhead turtles, including some which were of the minimum size of adults, in the Tyrrhenian Sea is mainly concentrated in a relatively small oceanic area with predictable mesoscale oceanographic features, despite the proximity of suitable neritic foraging habitats. Our study highlights the importance of collecting high‐resolution data about species distribution and behavior across different spatio‐temporal scales and life stages for implementing conservation and dynamic ocean management actions.  相似文献   

18.
The passive properties of skeletal muscle play an important role in muscle function. While the passive quasi-static elastic properties of muscle fibers have been well characterized, the dynamic visco-elastic passive behavior of fibers has garnered less attention. In particular, it is unclear how the visco-elastic properties are influenced by lengthening velocity, in particular for the range of physiologically relevant velocities. The goals of this work were to: (i) measure the effects of lengthening velocity on the peak stresses within single muscle fibers to determine how passive behavior changes over a range of physiologically relevant lengthening rates (0.1–10Lo/s), and (ii) develop a mathematical model of fiber viscoelasticity based on these measurements. We found that passive properties depend on strain rate, in particular at the low loading rates (0.1–3Lo/s), and that the measured behavior can be predicted across a range of loading rates and time histories with a quasi-linear viscoelastic model. In the future, these results can be used to determine the impact of viscoelastic behavior on intramuscular stresses and forces during a variety of dynamic movements.  相似文献   

19.

Background

For malaria control in Africa it is crucial to characterise the dispersal of its most efficient vector, Anopheles gambiae, in order to target interventions and assess their impact spatially. Our study is, we believe, the first to present a statistical model of dispersal probability against distance from breeding habitat to human settlements for this important disease vector.

Methods/Principal Findings

We undertook post-hoc analyses of mosquito catches made in The Gambia to derive statistical dispersal functions for An. gambiae sensu lato collected in 48 villages at varying distances to alluvial larval habitat along the River Gambia. The proportion dispersing declined exponentially with distance, and we estimated that 90% of movements were within 1.7 km. Although a ‘heavy-tailed’ distribution is considered biologically more plausible due to active dispersal by mosquitoes seeking blood meals, there was no statistical basis for choosing it over a negative exponential distribution. Using a simple random walk model with daily survival and movements previously recorded in Burkina Faso, we were able to reproduce the dispersal probabilities observed in The Gambia.

Conclusions/Significance

Our results provide an important quantification of the probability of An. gambiae s.l. dispersal in a rural African setting typical of many parts of the continent. However, dispersal will be landscape specific and in order to generalise to other spatial configurations of habitat and hosts it will be necessary to produce tractable models of mosquito movements for operational use. We show that simple random walk models have potential. Consequently, there is a pressing need for new empirical studies of An. gambiae survival and movements in different settings to drive this development.  相似文献   

20.
Like many marine crustaceans, mantis shrimp rely on their senseof smell to find food, mates, and habitat. In order for olfactionto function, odorant molecules in the surrounding fluid mustgain access to the animal's chemosensors. Thus fluid motionis important for olfaction, both in terms of the large scalefluid movements (currents, waves, etc.) that advect the odorantsto the vicinity of the sensors, and the small-scale viscositydominated flows that determine odorant access to the surfaceof the sensor. In order to understand how stomatopods interprettheir chemical environment, I investigated how stomatopod chemosensorymorphology and the movement of the structures bearing the chemosensorsaffect fluid access to the sensor surface in Gonodactylaceusmutatus. Preliminary results from new directions are presented,including mathematical modeling of molecular flux at the sensorsurface, field studies of the effects of ambient flow on odorsampling behavior, and flume experiments testing the abilityof stomatopods to trace odor plumes. Finally, I show how theuse of multiple techniques from several disciplines leads tonew ideas about the functional morphology of stomatopod antennules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号