首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic drift in finite populations ultimately leads to the loss of genetic variation. This paper examines the rate of neutral gene loss for a range of population structures defined by a graph. We show that, where individuals reside at fixed points on an undirected graph with equal degree nodes, the mean time to loss differs from the panmictic value by a positive additive term that depends on the number of individuals (not genes) in the population. The effect of these spatial structures is to slow the time to fixation by an amount that depends on the way individuals are distributed, rather than changing the apparent number of genes available to be sampled. This relationship breaks down, however, for a broad class of spatial structures such as random, small-world and scale-free networks. For the latter structures there is a counter-intuitive acceleration of fixation proportional to the level of ploidy.  相似文献   

2.
In all natural populations, individuals located close to one another tend to interact more than those further apart. The extent of population viscosity can have important implications for ecological and evolutionary processes. Here we develop a spatially explicit population model to examine how the rate of genetic drift depends upon both spatial population structure and habitat geometry. The results show that the time to fixation for a new and selectively neutral mutation is dramatically increased in viscous populations. Furthermore, in viscous populations the time to fixation depends critically on habitat geometry. Fixation time for populations of identical size increases markedly as landscape width decreases and length increases. We suggest that similar effects will also be important in metapopulations, with the spatial arrangement of subpopulations and their connectivity likely to determine the rate of drift. We argue that the recent increases in computer power should facilitate major advances in our understanding of evolutionary landscape ecology over the next few years, and suggest that the time is ripe for a unification of spatial population dynamics theory, landscape ecology and population genetics.  相似文献   

3.
The probability of fixation of an overdominant mutation in a finite population depends on the equilibrium gene frequency in an infinite population (m) and the product (A) of population size and selection intensity. If m < 0.5 (disadvantageous overdominant genes), the probability is generally much lower than that of neutral genes; but if m is close to 0.5 and A is relatively small, it becomes higher. If m > 0.5 (advantageous overdominant genes), the probability is largely determined by the fitness of heterozygotes rather than that of mutant homozygotes. Thus, overdominance enhances the probability of fixation of advantageous mutations. The average number of generations until fixation of an overdominant mutation also depends on m and A. This average time is long when m is close to 0.5 but short when m is close to 0 or 1. This dependence on m and A is similar to that of Robertson's retardation factor.  相似文献   

4.
The ancestral selection graph in population genetics was introduced by Krone and Neuhauser [Krone, S.M., Neuhauser, C., 1997. Ancestral process with selection. Theor. Popul. Biol. 51, 210–237] as an analogue of the coalescent genealogy of a sample of genes from a neutrally evolving population. The number of particles in this graph, followed backwards in time, is a birth and death process with quadratic death and linear birth rates. In this paper an explicit form of the probability distribution of the number of particles is obtained by using the density of the allele frequency in the corresponding diffusion model obtained by Kimura [Kimura, M., 1955. Stochastic process and distribution of gene frequencies under natural selection. Cold Spring Harbor Symposia on Quantitative Biology 20, 33–53]. It is shown that the process of fixation of the allele in the diffusion model corresponds to convergence of the ancestral process to its stationary measure. The time to fixation of the allele conditional on fixation is studied in terms of the ancestral process.  相似文献   

5.
The fixation of mutant alleles has been studied with models assuming various spatial population structures. In these models, the structure of the metapopulation that we call the “landscape” (number, size and connectivity of subpopulations) is often static. However, natural populations are subject to repetitive population size variations, fragmentation and secondary contacts at different spatiotemporal scales due to geological, climatic and ecological processes. In this paper, we examine how such dynamic landscapes can alter mutant fixation probability and time to fixation. We consider three stochastic landscape dynamics: (i) the population is subject to repetitive bottlenecks, (ii) to the repeated alternation of fragmentation and fusion of demes with a constant population carrying capacity, (iii) idem with a variable carrying capacity. We show by deriving a variance, a coalescent and a harmonic mean population effective size, and with simulations that these landscape dynamics generate repetitive founder effects which counteract selection, thereby decreasing the fixation probability of an advantageous mutant but accelerate fixation when it occurs. For models (ii) and (iii), we also highlight an antagonistic “refuge effect” which can strongly delay mutant fixation. The predominance of either founder effects or refuge effects determines the time to fixation and mainly depends on the characteristic time scales of the landscape dynamics.  相似文献   

6.
In 50 million years the tetraploid catostomid fishes have lost the expression of approximately half of their duplicate genes, with species rich taxa having lost more than species poor taxa. We have constructed a phylogenetic tree of the catostomids based primarily on morphological data, and have estimated the divergence times from the fossil record and genetic distances. The losses of duplicate gene expression were then analyzed conditionally given this tree. Three probabilistic models were generated to describe the process of loss of gene expression: gene dysfunction depends on (1) time alone, (2) the number of speciation events alone, or (3) a combination of speciation and time. A maximum likelihood analysis revealed that the two component model fits the data better than the other models. The loss of duplicate gene expression is mediated by null mutations at structural and/or regulatory genes, and the rate of fixation of these nulls might have been enhanced by any reductions in population size accompanying speciation events. This reduction may explain the lower number of duplicate genes expressed in the more speciose taxa.  相似文献   

7.
Relationship between DNA Polymorphism and Fixation Time   总被引:5,自引:3,他引:2       下载免费PDF全文
F. Tajima 《Genetics》1990,125(2):447-454
When there is no recombination among nucleotide sites in DNA sequences, DNA polymorphism and fixation of mutants at nucleotide sites are mutually related. Using the method of gene genealogy, the relationship between the DNA polymorphism and the fixation of mutant nucleotide was quantitatively investigated under the assumption that mutants are selectively neutral, that there is no recombination among nucleotide sites, and that the population is a random mating population with N diploid individuals. The results obtained indicate that the expected number of nucleotide differences between two DNA sequences randomly sampled from the population is 42% less when a mutant at a particular nucleotide site reaches fixation than at a random time, and that heterozygosity is also expected to be less when fixation takes place than at a random time, but the amount of reduction depends on the value of 4Nv in this case, where v is the mutation rate per DNA sequence per generation. The formula for obtaining the expected number of nucleotide differences between the two DNA sequences for a given fixation time is also derived, and indicates that, even when it takes a large number of generations for a mutant to reach fixation, this number is 33% less than at a random time. The computer simulation conducted suggests that the expected number of nucleotide differences between the two DNA sequences at the time when an advantageous mutant becomes fixed is essentially the same as that of neutral mutant if the fixation time is the same. The effect of recombination on the amount of DNA polymorphism was also investigated by using computer simulation.  相似文献   

8.
The Probability of Fixation in Populations of Changing Size   总被引:16,自引:5,他引:11  
S. P. Otto  M. C. Whitlock 《Genetics》1997,146(2):723-733
The rate of adaptive evolution of a population ultimately depends on the rate of incorporation of beneficial mutations. Even beneficial mutations may, however, be lost from a population since mutant individuals may, by chance, fail to reproduce. In this paper, we calculate the probability of fixation of beneficial mutations that occur in populations of changing size. We examine a number of demographic models, including a population whose size changes once, a population experiencing exponential growth or decline, one that is experiencing logistic growth or decline, and a population that fluctuates in size. The results are based on a branching process model but are shown to be approximate solutions to the diffusion equation describing changes in the probability of fixation over time. Using the diffusion equation, the probability of fixation of deleterious alleles can also be determined for populations that are changing in size. The results developed in this paper can be used to estimate the fixation flux, defined as the rate at which beneficial alleles fix within a population. The fixation flux measures the rate of adaptive evolution of a population and, as we shall see, depends strongly on changes that occur in population size.  相似文献   

9.
The study of evolutionary dynamics on graphs is an interesting topic for researchers in various fields of science and mathematics. In systems with finite population, different model dynamics are distinguished by their effects on two important quantities: fixation probability and fixation time. The isothermal theorem declares that the fixation probability is the same for a wide range of graphs and it only depends on the population size. This has also been proved for more complex graphs that are called complex networks. In this work, we propose a model that couples the population dynamics to the network structure and show that in this case, the isothermal theorem is being violated. In our model the death rate of a mutant depends on its number of neighbors, and neutral drift holds only in the average. We investigate the fixation probability behavior in terms of the complexity parameter, such as the scale-free exponent for the scale-free network and the rewiring probability for the small-world network.  相似文献   

10.
On the persistence and pervasiveness of a new mutation   总被引:2,自引:0,他引:2  
It has frequently been assumed that the persistence of a deleterious mutation (the average number of generations before its loss) and its pervasiveness (the average number of individuals carrying the gene before its loss) are equal. This is true for a particular simple, widely used infinite model, but this agreement is not general. If hs > 1/(4N(e)), where hs is the selective disadvantage of mutant heterozygotes and N(e) is the effective population number, the contribution of homozygous mutants can be neglected and the simple approximate formula 1/hs gives the mean pervasiveness. But the expected persistence is usually much smaller, 2(log(e)(1/2hs) + 1 - gamma) where gamma = 0.5772. For neutral mutations, the total number of heterozygotes until fixation or loss is often the quantity of interest, and its expected value is 2N(e), with remarkable generality for various population structures. In contrast, the number of generations until fixation or loss, 2(N(e)/N)(1 + log(e)2N), is much smaller than the total number of heterozygotes. In general the number of generations is less than the number of individuals.  相似文献   

11.
A. Caballero  W. G. Hill 《Genetics》1992,131(2):493-507
Diffusion methods were used to investigate the fixation probability, average time until fixation and extinction, and cumulative heterozygosity and genetic variance for single mutant genes in finite populations with partial inbreeding. The critical parameters in the approximation are the coefficient of inbreeding due to nonrandom mating (F) and the effective population size (Ne), which also depends on F and the variance of family size. For large Ns, the fixation probability (u) is u = 2(Ne/N)s (F + h - Fh), where N is the population census, s is the coefficient of selection of the mutant homozygote and h is the coefficient of dominance. For Poisson family size (independent Poisson distributions of selfed and nonselfed offspring with partial selfing, and independent Poisson distributions of male and female numbers with partial sib mating), Ne = N/(1 + F), and the time until fixation is approximately equal to Ne/N times the time to fixation with random mating, but this relation does not hold, however, for other distributions of family size. The cumulative nonadditive variance until fixation or loss for dominant genes is reduced with increasing F while for recessive genes it is increased with intermediate values of F. The average time until extinction of deleterious mutations is reduced by increasing F. This reduction, when expressed as a proportion, is approximately independent of the initial gene frequency as well as the selective disadvantage if this is large.  相似文献   

12.
In 2012 Broom and Rychtar developed a new framework to consider the evolution of a population over a non-homogeneous underlying structure, where fitness depends upon multiplayer interactions amongst the individuals within the population played in groups of various sizes (including one). This included the independent model, and as a special case the territorial raider model, which has been considered in a series of subsequent papers. Here individuals are based upon the vertex of a graph but move to interact with their neighbours, sometimes meeting in large groups. The most important single property of such populations is the fixation probability, the probability of a single mutant completely replacing the existing population. In a recent paper we considered the fixation probability for the Birth Death Birth (BDB) dynamics for three games, a Public Goods game, the Hawk–Dove game and for fixed fitnesses for a large number of randomly generated graphs, in particular seeing if important underlying graph properties could be used as predictors. We found two good predictors, temperature and mean group size, but some interesting and unusual features for one type of graph, Barabasi–Albert graphs. In this paper we use a regression analysis to investigate (the usual) three alternative evolutionary dynamics (BDD, DBB, DBD) in addition to the original BDB. In particular, we find that the dynamics split into two pairs, BDB/DBD and BDD/DBB, each of which give essentially the same results and found a good fit to the data using a quadratic regression involving the above two variables. Further we find that temperature is the most important predictor for the Hawk–Dove game, whilst for the Public Goods game the group size also plays a key role, and is more important than the temperature for the BDD/DBB dynamics.  相似文献   

13.
We analyze evolutionary dynamics on graphs, where the nodes represent individuals of a population. The links of a node describe which other individuals can be displaced by the offspring of the individual on that node. Amplifiers of selection are graphs for which the fixation probability is increased for advantageous mutants and decreased for disadvantageous mutants. A few examples of such amplifiers have been developed, but so far it is unclear how many such structures exist and how to construct them. Here, we show that almost any undirected random graph is an amplifier of selection for Birth-death updating, where an individual is selected to reproduce with probability proportional to its fitness and one of its neighbors is replaced by that offspring at random. If we instead focus on death-Birth updating, in which a random individual is removed and its neighbors compete for the empty spot, then the same ensemble of graphs consists of almost only suppressors of selection for which the fixation probability is decreased for advantageous mutants and increased for disadvantageous mutants. Thus, the impact of population structure on evolutionary dynamics is a subtle issue that will depend on seemingly minor details of the underlying evolutionary process.  相似文献   

14.
N. Takahata 《Genetics》1991,129(2):585-595
In a geographically structured population, the interplay among gene migration, genetic drift and natural selection raises intriguing evolutionary problems, but the rigorous mathematical treatment is often very difficult. Therefore several approximate formulas were developed concerning the coalescence process of neutral genes and the fixation process of selected mutations in an island model, and their accuracy was examined by computer simulation. When migration is limited, the coalescence (or divergence) time for sampled neutral genes can be described by the convolution of exponential functions, as in a panmictic population, but it is determined mainly by migration rate and the number of demes from which the sample is taken. This time can be much longer than that in a panmictic population with the same number of breeding individuals. For a selected mutation, the spreading over the entire population was formulated as a birth and death process, in which the fixation probability within a deme plays a key role. With limited amounts of migration, even advantageous mutations take a large number of generations to spread. Furthermore, it is likely that these mutations which are temporarily fixed in some demes may be swamped out again by non-mutant immigrants from other demes unless selection is strong enough. These results are potentially useful for testing quantitatively various hypotheses that have been proposed for the origin of modern human populations.  相似文献   

15.
Evolutionary graph theory is a well established framework for modelling the evolution of social behaviours in structured populations. An emerging consensus in this field is that graphs that exhibit heterogeneity in the number of connections between individuals are more conducive to the spread of cooperative behaviours. In this article we show that such a conclusion largely depends on the individual-level interactions that take place. In particular, averaging payoffs garnered through game interactions rather than accumulating the payoffs can altogether remove the cooperative advantage of heterogeneous graphs while such a difference does not affect the outcome on homogeneous structures. In addition, the rate at which game interactions occur can alter the evolutionary outcome. Less interactions allow heterogeneous graphs to support more cooperation than homogeneous graphs, while higher rates of interactions make homogeneous and heterogeneous graphs virtually indistinguishable in their ability to support cooperation. Most importantly, we show that common measures of evolutionary advantage used in homogeneous populations, such as a comparison of the fixation probability of a rare mutant to that of the resident type, are no longer valid in heterogeneous populations. Heterogeneity causes a bias in where mutations occur in the population which affects the mutant''s fixation probability. We derive the appropriate measures for heterogeneous populations that account for this bias.  相似文献   

16.
We study fixation probabilities and times as a consequence of neutral genetic drift in subdivided populations, motivated by a model of the cultural evolutionary process of language change that is described by the same mathematics as the biological process. We focus on the growth of fixation times with the number of subpopulations, and variation of fixation probabilities and times with initial distributions of mutants. A general formula for the fixation probability for arbitrary initial condition is derived by extending a duality relation between forwards- and backwards-time properties of the model from a panmictic to a subdivided population. From this we obtain new formulae(formally exact in the limit of extremely weak migration) for the mean fixation time from an arbitrary initial condition for Wright's island model, presenting two cases as examples. For more general models of population subdivision, formulae are introduced for an arbitrary number of mutants that are randomly located, and a single mutant whose position is known. These formulae contain parameters that typically have to be obtained numerically, a procedure we follow for two contrasting clustered models. These data suggest that variation of fixation time with the initial condition is slight, but depends strongly on the nature of subdivision. In particular, we demonstrate conditions under which the fixation time remains finite even in the limit of an infinite number of demes. In many cases-except this last where fixation in a finite time is seen--the time to fixation is shown to be in precise agreement with predictions from formulae for the asymptotic effective population size.  相似文献   

17.
It has been shown that natural selection favors cooperation in a homogenous graph if the benefit-to-cost ratio exceeds the degree of the graph. However, most graphs related to interactions in real populations are heterogeneous, in which some individuals have many more neighbors than others. In this paper, we introduce a new state variable to measure the time evolution of cooperation in a heterogeneous graph. Based on the diffusion approximation, we find that the fixation probability of a single cooperator depends crucially on the number of its neighbors. Under weak selection, a cooperator with more neighbors has a larger probability of fixation in the population. We then investigate the average fixation probability of a randomly chosen cooperator. If a cooperator pays a cost for each of its neighbors (the so called fixed cost per game case), natural selection favors cooperation if the benefit-to-cost ratio is larger than the average degree. In contrast, if a cooperator pays a fixed cost and all its neighbors share the benefit (the fixed cost per individual case), cooperation is favored if the benefit-to-cost ratio is larger than the harmonic mean of the degree distribution. Moreover, increasing the graph heterogeneity will reduce the effect of natural selection.  相似文献   

18.
Direct reciprocity on graphs   总被引:1,自引:0,他引:1  
Direct reciprocity is a mechanism for the evolution of cooperation based on the idea of repeated encounters between the same two individuals. Here we examine direct reciprocity in structured populations, where individuals occupy the vertices of a graph. The edges denote who interacts with whom. The graph represents spatial structure or a social network. For birth-death or pairwise comparison updating, we find that evolutionary stability of direct reciprocity is more restrictive on a graph than in a well-mixed population, but the condition for reciprocators to be advantageous is less restrictive on a graph. For death-birth and imitation updating, in contrast, both conditions are easier to fulfill on a graph. Moreover, for all four update mechanisms, reciprocators can dominate defectors on a graph, which is never possible in a well-mixed population. We also study the effect of an error rate, which increases with the number of links per individual; interacting with more people simultaneously enhances the probability of making mistakes. We provide analytic derivations for all results.  相似文献   

19.
Evolutionary graph theory studies the evolutionary dynamics of populations structured on graphs. A central problem is determining the probability that a small number of mutants overtake a population. Currently, Monte Carlo simulations are used for estimating such fixation probabilities on general directed graphs, since no good analytical methods exist. In this paper, we introduce a novel deterministic framework for computing fixation probabilities for strongly connected, directed, weighted evolutionary graphs under neutral drift. We show how this framework can also be used to calculate the expected number of mutants at a given time step (even if we relax the assumption that the graph is strongly connected), how it can extend to other related models (e.g. voter model), how our framework can provide non-trivial bounds for fixation probability in the case of an advantageous mutant, and how it can be used to find a non-trivial lower bound on the mean time to fixation. We provide various experimental results determining fixation probabilities and expected number of mutants on different graphs. Among these, we show that our method consistently outperforms Monte Carlo simulations in speed by several orders of magnitude. Finally we show how our approach can provide insight into synaptic competition in neurology.  相似文献   

20.
There are two key characteristic of animal and human societies: (1) degree heterogeneity, meaning that not all individual have the same number of associates; and (2) the interaction topology is not static, i.e. either individuals interact with different set of individuals at different times of their life, or at least they have different associations than their parents. Earlier works have shown that population structure is one of the mechanisms promoting cooperation. However, most studies had assumed that the interaction network can be described by a regular graph (homogeneous degree distribution). Recently there are an increasing number of studies employing degree heterogeneous graphs to model interaction topology. But mostly the interaction topology was assumed to be static. Here we investigate the fixation probability of the cooperator strategy in the prisoner's dilemma, when interaction network is a random regular graph, a random graph or a scale-free graph and the interaction network is allowed to change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号