首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pilus antigenic variation (Av) system of Neisseria gonorrhoeae is one of several high-frequency variation systems that utilize gene conversion to switch between numerous forms of an antigen on the cell surface. We have tested three predictions of the first models that explain the movement of DNA during pilin Av: (i) Av requires two recombinations at short regions of identity, (ii) circular intermediates exist that carry pilE/pilS hybrid loci and (iii) these pilE/pilS hybrid loci target the pilS sequences to a recipient pilE gene. We confirm that normal pilin Av utilizes recombination at very short regions of DNA sequence identity and that these recombination events can occur independent of homologous recombination functions. We have isolated covalently closed circular DNA molecules carrying hybrid pilin loci, but propose that an alternative hybrid molecule is the intermediate of pilin Av. Our most striking finding is that transformation of isolated pilE/pilS hybrid loci targets the pilS sequences of the hybrid to a recipient pilE at frequencies much higher than normal recombination frequencies. These results show that the different steps of a model that explains pilin Av can be separately tested to support the validity of these novel models that account for the high-frequency gene conversions that mediate pilin Av.  相似文献   

2.
Measures of association of genes at different loci (linkage disequilibrium) are widely used to determine whether the structure of natural populations is clonal or not, to map genes from population data, or to test for the homogeneity of response of molecular markers to background selection, for example. However, the usual definitions of parameters for gametic associations may not be suitable for all these purposes. In this paper, we derive the recursion equations for one- and two-locus identity probabilities in an infinite island model. We study the role of drift, gene flow, partial selfing and mutation model on the expected association of genes across loci. We define the 'within-subpopulation identity disequilibrium' as the difference between the joint two-locus probability of identity in state and the expected product of one-locus identity probabilities. We evaluate this parameter as a function of recombination rate, effective size, gene flow and selfing rate. Within-subpopulation identity disequilibrium attains maximum values for intermediate immigration rates, whatever the selfing rate. Moreover, identity disequilibrium may be very small, even for high selfing rates. We discuss the implications of these findings for the analysis of data from natural populations.  相似文献   

3.
Sexual identity is governed by sex chromosomes in plants and animals, and by mating type (MAT) loci in fungi. Comparative analysis of the MAT locus from a species cluster of the human fungal pathogen Cryptococcus revealed sequential evolutionary events that fashioned this large, highly unusual region. We hypothesize that MAT evolved via four main steps, beginning with acquisition of genes into two unlinked sex-determining regions, forming independent gene clusters that then fused via chromosomal translocation. A transitional tripolar intermediate state then converted to a bipolar system via gene conversion or recombination between the linked and unlinked sex-determining regions. MAT was subsequently subjected to intra- and interallelic gene conversion and inversions that suppress recombination. These events resemble those that shaped mammalian sex chromosomes, illustrating convergent evolution in sex-determining structures in the animal and fungal kingdoms.  相似文献   

4.
Plasmids capable of undergoing genetic exchange in mitotically dividing Saccharomyces cerevisiae cells were used to measure the length of gene conversion events, to determine patterns of coconversion when multiple markers were present, and to correlate the incidence of reciprocal recombination with the length of conversion tracts. To construct such plasmids, restriction site linkers were inserted both within the HIS3 gene and in the flanking sequences, and two different his3- alleles were placed in a vector. Characterization of the genetic exchanges in these plasmids showed that most occur with the conversion of one his3- allele. Many of these events included coconversions in which more than one marker along the allelic sequence was replaced. The frequency of coconversion decreased with the distance between two markers such that markers further than 1 kilobase apart were infrequently coconverted. From these results the average length of conversion was determined to be approximately 0.5 kilobase. Examination of coconversions involving three or more markers revealed an almost obligatory, simultaneous coconversion pattern of all markers. Thus, when two markers which flank an intervening marker are converted, the intervening marker is 20 times more likely to be converted than to remain unchanged. The results of these studies also showed that the incidence of reciprocal recombination, which accompanies more than 20% of the conversion events, is more frequent when the conversion tract is longer than average.  相似文献   

5.
Summary With the goal of studying directly the inheritance and recombination of physically mapped markers on the chloroplast genome, we have recently identified and localized physical differences between the chloroplast DNAs (cpDNAs) of the interfertile algae Chlamydomonas eugametos and C. moewusii. Here we report the inheritance patterns of 24 polymorphic loci mapping throughout the chloroplast genome in hybrids recovered from reciprocal crosses between the two algae. Most polymorphic loci were found to be inherited mainly from the mt + parent, with no apparent preference for one or the other parental alternatives in reciprocal crosses. Virtually all hybrids, however, inherited exclusively the long alleles of three loci; i.e. an intron in the large subunit ribosomal RNA gene of C. eugametos, a 21 kbp sequence addition in the inverted repeat of the C. moewusii cpDNA and a 5.8 kbp sequence addition in one of the single-copy regions of C. moewusii cpDNA. As these alleles are derived from opposite parental strains, their unidirectional inheritance in hybrids results necessarily from interspecific recombination of cpDNA molecules. We propose that gene conversion events led to the spreading of the long alleles of the three loci.  相似文献   

6.
Extrachromosomal and chromosomal gene conversion in mammalian cells.   总被引:17,自引:5,他引:12       下载免费PDF全文
We constructed substrates to study gene conversion in mammalian cells specifically without the complication of reciprocal recombination events. These substrates contain both an insertion mutation of the neomycin resistance gene (neoX) and an internal, homologous fragment of the neo gene (neo-526), such that gene conversion from neo-526 to neoX restores a functional neo gene. Although two reciprocal recombination events can also produce an intact neo gene, these double recombination events occur much less frequently that gene conversion in mammalian cells, We used our substrates to characterize extrachromosomal gene conversion in recombination-deficient bacteria and in monkey COS cells. Chromosomal recombination was also studied after stable integration of these substrates into the genome of mouse 3T6 cells. All extrachromosomal and chromosomal recombination events analyzed in mammalian cells resulted from gene conversion. Chromosomal gene conversion events occurred at frequencies of about 10(-6) per cell generation and restored a functional neo gene without overall effects on sequence organization.  相似文献   

7.
Bacteria may undergo recombinational exchange either by conjugation followed by crossing over, or by transformation of small segments of DNA into the cell followed by incorporation into the chromosome by gene conversion. These two forms of recombination may have very different consequences on the patterns of linkage disequilibrium seen within bacterial genomes. In this paper deterministic recursions are obtained for three linked loci in populations having these two forms of recombination. Both neutral genetic variation and the case of one selected gene are considered. It is shown that the two forms of exchange have identical consequences on two-locus linkage disequilibria, but that three-locus disequilibria can have different behaviors. Hitchhiking also has different consequences on the pattern of disequilibrium seen between linked neutral genes in the region of the selected locus. Inference of the relative importance of these two modes of recombination from static samples of DNA sequences will hinge on the relationship between linkage map distance and disequilibria.  相似文献   

8.
We have inserted a histone H1-GFP fusion gene adjacent to three loci on different chromosomes of Neurospora crassa and made mating pairs in which a wild type version of GFP is crossed to one with a mutation in the 5' end of GFP. The loci are his-3, am and his-5, chosen because recombination mechanisms appear to differ between his-3 and am, and because crossing over adjacent to his-5, like his-3, is regulated by rec-2. At his-3, the frequencies of crossing over between GFP and the centromere and of conversion of 5'GFP to GFP(+) are comparable to those obtained by classical recombination assays, as is the effect of rec-2 on these frequencies, suggesting that our system does not alter the process of recombination. At each locus we have obtained sufficient data, on both gene conversion and crossing over, to be able to assess the effect of deletion of any gene involved in recombination. In addition, crosses between a GFP(+) strain and one with normal sequence at all three loci have been used to measure the interval to the centromere and to show that GFP experiences gene conversion with this system. Since any gene expressed in meiosis is silenced in Neurospora if hemizygous, any of our GFP(+) strains can be used as a quick screen to determine if a gene deleted by the Neurospora Genome Project is involved in crossing over or gene conversion.  相似文献   

9.
Duplicated genes and repetitive sequences are distributed throughout the genomes of complex organisms. The homology between related sequences can promote nonallelic (ectopic) recombination, including gene conversion and reciprocal exchange. Resolution of these events can result in translocations, deletions, or other harmful rearrangements. In yeast, ectopic recombination between sequences on nonhomologous chromosomes occurs at high frequency. Because the mammalian genome is replete with duplicated sequences and repetitive elements, high levels of ectopic exchange would cause aneuploidy and genome instability. To understand the factors regulating ectopic recombination in mice, we evaluated the effects of homology length on gene conversion between unlinked sequences in the male germline. Previously, we found high levels of gene conversion between lacZ transgenes containing 2557 bp of homology. We report here that genetic background can play a major role in ectopic recombination; frequency of gene conversion was reduced by more than an order of magnitude by transferring the transgenes from a CF1 strain background to C57BL/6J. Additionally, conversion rates decreased as the homology length decreased. Sequences sharing 1214 bp of sequence identity underwent ectopic conversion less frequently than a pair sharing 2557 bp of identity, while 624 bp was insufficient to catalyze gene conversion at significant levels. These results suggest that the germline recombination machinery in mammals has evolved in a way that prevents high levels of ectopic recombination between smaller classes of repetitive sequences, such as the Alu family. Additionally, genomic location appeared to influence the availability of sequences for ectopic recombination. Received: 12 September 1997 / Accepted: 29 December 1997  相似文献   

10.
Hughes JF  Coffin JM 《Genetics》2005,171(3):1183-1194
HERV elements make up a significant fraction of the human genome and, as interspersed repetitive elements, have the capacity to provide substrates for ectopic recombination and gene conversion events. To understand the extent to which these events occur and gain further insight into the complex evolutionary history of these elements in our genome, we undertook a phylogenetic study of the long terminal repeat sequences of 15 HERV-K(HML-2) elements in various primate species. This family of human endogenous retroviruses first entered the primate genome between 35 and 45 million years ago. Throughout primate evolution, these elements have undergone bursts of amplification. From this analysis, which is the largest-scale study of HERV sequence dynamics during primate evolution to date, we were able to detect intraelement gene conversion and recombination at five HERV-K loci. We also found evidence for replacement of an ancient element by another HERV-K provirus, apparently reflecting an occurrence of retroviral integration by homologous recombination. The high frequency of these events casts doubt on the accuracy of integration time estimates based only on divergence between retroelement LTRs.  相似文献   

11.
We generalize a recently introduced graphical framework to compute the probability that haplotypes or genotypes of two individuals drawn from a finite, subdivided population match. As in the previous work, we assume an infinite-alleles model. We focus on the case of a population divided into two subpopulations, but the underlying framework can be applied to a general model of population subdivision. We examine the effect of population subdivision on the match probabilities and the accuracy of the product rule which approximates multi-locus match probabilities as a product of one-locus match probabilities. We quantify the deviation from predictions of the product rule by R, the ratio of the multi-locus match probability to the product of the one-locus match probabilities. We carry out the computation for two loci and find that ignoring subdivision can lead to underestimation of the match probabilities if the population under consideration actually has subdivision structure and the individuals originate from the same subpopulation. On the other hand, under a given model of population subdivision, we find that the ratio R for two loci is only slightly greater than 1 for a large range of symmetric and asymmetric migration rates. Keeping in mind that the infinite-alleles model is not the appropriate mutation model for STR loci, we conclude that, for two loci and biologically reasonable parameter values, population subdivision may lead to results that disfavor innocent suspects because of an increase in identity-by-descent in finite populations. On the other hand, for the same range of parameters, population subdivision does not lead to a substantial increase in linkage disequilibrium between loci. Those results are consistent with established practice.  相似文献   

12.
Saccharomyces cerevisiae cells that are mutated at TOP3, a gene that encodes a protein homologous to bacterial type I topoisomerases, have a variety of defects, including reduced growth rate, altered gene expression, blocked sporulation, and elevated rates of mitotic recombination at several loci. The rate of ectopic recombination between two unlinked, homologous loci, SAM1 and SAM2, is sixfold higher in cells containing a top3 null mutation than in wild-type cells. Mutations in either of the two other known topoisomerase genes in S. cerevisiae, TOP1 and TOP2, do not affect the rate of recombination between the SAM genes. The top3 mutation also changes the distribution of recombination events between the SAM genes, leading to the appearance of novel deletion-insertion events in which conversion tracts extend beyond the coding sequence, replacing the DNA flanking the 3' end of one SAM gene with nonhomologous DNA flanking the 3' end of the other. The effects of the top3 null mutation on recombination are dependent on the presence of an intact RAD1 excision repair gene, because both the rate of SAM ectopic gene conversion and the conversion tract length were reduced in rad1 top3 mutant cells compared with top3 mutants. These results suggest that a RAD1-dependent function is involved in the processing of damaged DNA that results from the loss of Top3 activity, targeting such DNA for repair by recombination.  相似文献   

13.
T. Nagylaki 《Genetics》1990,126(1):261-276
The evolution of the probabilities of genetic identity within and between the loci of a multigene family dispersed among multiple chromosomes is investigated. Unbiased gene conversion, equal crossing over, random genetic drift, and mutation to new alleles are incorporated. Generations are discrete and nonoverlapping; the diploid, monoecious population mates at random. The linkage map is arbitrary, but the same for every chromosome; the dependence of the probabilities of identity on the location on each chromosome is formulated exactly. The greatest of the rates of gene conversion, random drift, and mutation is epsilon much less than 1. Under the assumption of loose linkage (i.e., all the crossover rates greatly exceed epsilon, though they may still be much less than 1/2), explicit approximations are obtained for the equilibrium values of the probabilities of identity and of the linkage of disequilibria. The probabilities of identity are of order one [i.e., O(1)] and do not depend on location; the linkage disequilibria are of O(epsilon) and, within each chromosome, depend on location through the crossover rates. It is demonstrated also that the ultimate rate and pattern of convergence to equilibrium are close to that of a much simpler, location-independent model. If intrachromosomal conversion is absent, the above results hold even without the assumption of loose linkage. In all cases, the relative errors are of O(epsilon). Even if the conversion rate between genes on nonhomologous chromosomes is considerably less than between genes on the same chromosome or homologous chromosomes, the probabilities of identity between the former genes are still almost as high as those between the latter, and the rate of convergence is still not much less than with equal conversion rates. If the crossover rates are much less than 1/2, then most of the linkage disequilibrium is due to intrachromosomal conversion. If linkage is loose, the reduction of the linkage disequilibria to O(epsilon) requires only O(-ln epsilon) generations.  相似文献   

14.
On Genetic Map Functions   总被引:2,自引:1,他引:1       下载免费PDF全文
H. Zhao  T. P. Speed 《Genetics》1996,142(4):1369-1377
Various genetic map functions have been proposed to infer the unobservable genetic distance between two loci from the observable recombination fraction between them. Some map functions were found to fit data better than others. When there are more than three markers, multilocus recombination probabilities cannot be uniquely determined by the defining property of map functions, and different methods have been proposed to permit the use of map functions to analyze multilocus data. If for a given map function, there is a probability model for recombination that can give rise to it, then joint recombination probabilities can be deduced from this model. This provides another way to use map functions in multilocus analysis. In this paper we show that stationary renewal processes give rise to most of the map functions in the literature. Furthermore, we show that the interevent distributions of these renewal processes can all be approximated quite well by gamma distributions.  相似文献   

15.
We have examined meiotic and mitotic recombination between repeated genes on nonhomologous chromosomes in the yeast Saccharomyces cerevisiae. The results of these experiments can be summarized in three statements. First, gene conversion events between repeats on nonhomologous chromosomes occur frequently in meiosis. The frequency of such conversion events is only 17-fold less than the analogous frequency of conversion between genes at allelic positions on homologous chromosomes. Second, meiotic and mitotic conversion events between repeated genes on nonhomologous chromosomes are associated with reciprocal recombination to the same extent as conversion between allelic sequences. The reciprocal exchanges between the repeated genes result in chromosomal translocations. Finally, recombination between repeated genes on nonhomologous chromosomes occurs much more frequently in meiosis than in mitosis.  相似文献   

16.
The pma1-105 mutation reduces the activity of the yeast plasma membrane H(+)-ATPase and causes cells to be both low pH and ammonium ion sensitive and resistant to the antibiotic hygromycin B. Revertants that can grow at pH 3.0 and on ammonium-containing plates frequently arise by ectopic recombination between pma1-105 and PMA2, a diverged gene that shares 85% DNA sequence identity with PMA1. The gene conversion tracts of revertants of pma1-105 were determined by DNA sequencing the hybrid PMA1::PMA2 genes. Gene conversion tracts ranged from 18-774 bp. The boundaries of these replacements were short (3-26 bp) regions of sequences that were identical between PMA1 and PMA2. These boundaries were not located at the regions of greatest shared identity between the two PMA genes. Similar results were obtained among low pH-resistant revertants of another mutation, pma1-147. One gene conversion was obtained in which the resulting PMA1::PMA2 hybrid was low pH-resistant but still hygromycin B-resistant. This partially active gene differs from a wild-type revertant only by the presence of two PMA2-encoded amino acid substitutions. Thus, some regions of PMA2 are not fully interchangeable with PMA1. We have also compared the efficiency of recombination between pma1-105 and either homeologous PMA2 sequence or homologous PMA1 donor sequences inserted at the same location. PMA2 X pma1-105 recombination occurred at a rate approximately 75-fold less than PMA1 X pma1-105 events. The difference in homology between the interacting sequences did not affect the proportion of gene conversion events associated with a cross-over, as in both cases approximately 5% of the Pma(+) recombinants had undergone reciprocal translocations between the two chromosomes carrying pma1-105 and the donor PMA sequences. Reciprocal translocations were identified by a simple and generally useful nutritional test.  相似文献   

17.
Coincident Gene Conversion during Mitosis in Saccharomyces   总被引:9,自引:5,他引:4       下载免费PDF全文
During mitosis, gene conversion events at the TRP5 locus on chromosome VII are coupled with conversion events at LEU1 , a locus 18 cM away, 1200 times more frequently than would be expected for two independent acts of recombination. Such coincident conversion events that occur over relatively long distances could be due to several mechanisms. We discuss these possibilities and describe an experiment that indicates that a portion of coincident events is due to extensive heteroduplexes. The phenomenon of coincident gene conversion is discussed in relation to our earlier evidence that spontaneous recombination between homologues occurs prereplicationally in mitosis.  相似文献   

18.
We investigated the evolution of 6 genes from the Treponema pallidum repeat (tpr) gene family, which encode potential virulence factors and are assumed to have evolved through gene duplication and gene conversion events. The 6 loci (tprC, D, G, J, I, and K) were sequenced and analyzed in several members of the genus Treponema, including the 3 subspecies of human T. pallidum (T. pallidum subsp. pallidum, pertenue, and endemicum), Treponema paraluiscuniculi (rabbit syphilis), and the unclassified Fribourg-Blanc (simian) isolate. Phylogenetic methods, recombination analysis, and measures of nucleotide diversity were used to investigate the evolutionary history of the tpr genes. Numerous instances of gene conversion were detected by all 3 methods including both homogenizing gene conversion that involved the entire length of the sequence as well as site-specific conversions that affected smaller regions. We determined the relative age and directionality of the gene conversion events whenever possible. Our data are also relevant to a discussion of the evolution of the treponemes themselves. Higher levels of variation exist between the human subspecies than within them, supporting the classification of the human treponemes into 3 subspecies. In contrast to published theories, the divergence and diversity of T. pallidum subsp. pertenue relative to the other subspecies does not support a much older origin of yaws at the emergence of modern human, nor is the level of divergence seen in T. pallidum subsp. pallidum consistent with a very recent (< 500 years) origin of this subspecies. In general, our results demonstrate that intragenomic recombination has played a significant role in the evolution of the studied tpr genes and emphasize that efforts to infer evolutionary history of the treponemes can be complicated if past recombination events are not recognized.  相似文献   

19.
Abstract.— We examined genetic variation at 21 polymorphic allozyme loci, 15 nuclear DNA loci, and mitochondrial DNA in four spawning populations of sockeye salmon ( Oncorhynchus nerka ) from Cook Inlet, Alaska, to test for differences in the patterns of divergence among different types of markers. We were specifically interested in testing the suggestion that natural selection at allozyme loci compromises the effectiveness of these markers for describing the amount and patterns of gene flow among populations. We found concordance among markers in the amount of genetic variation within and among populations, with the striking exception of one allozyme locus ( sAH ), which exhibited more than three times the amount of among-population differentiation as other loci. A consideration of reports of discordance between allozymes and other loci indicates that these differences usually result from one or two exceptional loci. We conclude that it is important to examine many loci when estimating genetic differentiation to infer historical amounts of gene flow and patterns of genetic exchange among populations. It is less important whether those loci are allozymes or nuclear DNA markers.  相似文献   

20.
Cutter AD 《Genetics》2008,178(3):1661-1672
Natural selection and neutral processes such as demography, mutation, and gene conversion all contribute to patterns of polymorphism within genomes. Identifying the relative importance of these varied components in evolution provides the principal challenge for population genetics. To address this issue in the nematode Caenorhabditis remanei, I sampled nucleotide polymorphism at 40 loci across the X chromosome. The site-frequency spectrum for these loci provides no evidence for population size change, and one locus presents a candidate for linkage to a target of balancing selection. Selection for codon usage bias leads to the non-neutrality of synonymous sites, and despite its weak magnitude of effect (N(e)s approximately 0.1), is responsible for profound patterns of diversity and divergence in the C. remanei genome. Although gene conversion is evident for many loci, biased gene conversion is not identified as a significant evolutionary process in this sample. No consistent association is observed between synonymous-site diversity and linkage-disequilibrium-based estimators of the population recombination parameter, despite theoretical predictions about background selection or widespread genetic hitchhiking, but genetic map-based estimates of recombination are needed to rigorously test for a diversity-recombination relationship. Coalescent simulations also illustrate how a spurious correlation between diversity and linkage-disequilibrium-based estimators of recombination can occur, due in part to the presence of unbiased gene conversion. These results illustrate the influence that subtle natural selection can exert on polymorphism and divergence, in the form of codon usage bias, and demonstrate the potential of C. remanei for detecting natural selection from genomic scans of polymorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号