首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The emergence and maintenance of cooperation by natural selection is an enduring conundrum in evolutionary biology, which has been studied using a variety of game theoretical models inspired by different biological situations. The most widely studied games are the Prisoner's Dilemma, the Snowdrift game and by-product mutualism for pairwise interactions, as well as Public Goods games in larger groups of interacting individuals. Here, we present a general framework for cooperation in social dilemmas in which all the traditional scenarios can be recovered as special cases. In social dilemmas, cooperators provide a benefit to the group at some cost, while defectors exploit the group by reaping the benefits without bearing the costs of cooperation. Using the concepts of discounting and synergy for describing how benefits accumulate when more than one cooperator is present in a group of interacting individuals, we recover the four basic scenarios of evolutionary dynamics given by (i) dominating defection, (ii) coexistence of defectors and cooperators, (iii) dominating cooperation and (iv) bi-stability, in which cooperators and defectors cannot invade each other. Generically, for groups of three or more interacting individuals further, more complex, dynamics can occur. Our framework provides the first unifying approach to model cooperation in different kinds of social dilemmas.  相似文献   

2.
Understanding the emergence of cooperation is a central issue in evolutionary game theory. The hardest setup for the attainment of cooperation in a population of individuals is the Public Goods game in which cooperative agents generate a common good at their own expenses, while defectors “free-ride” this good. Eventually this causes the exhaustion of the good, a situation which is bad for everybody. Previous results have shown that introducing reputation, allowing for volunteer participation, punishing defectors, rewarding cooperators or structuring agents, can enhance cooperation. Here we present a model which shows how the introduction of rare, malicious agents - that we term jokers - performing just destructive actions on the other agents induce bursts of cooperation. The appearance of jokers promotes a rock-paper-scissors dynamics, where jokers outbeat defectors and cooperators outperform jokers, which are subsequently invaded by defectors. Thus, paradoxically, the existence of destructive agents acting indiscriminately promotes cooperation.  相似文献   

3.
Public goods games are models of social dilemmas where cooperators pay a cost for the production of a public good while defectors free ride on the contributions of cooperators. In the traditional framework of evolutionary game theory, the payoffs of cooperators and defectors result from interactions in groups formed by binomial sampling from an infinite population. Despite empirical evidence showing that group-size distributions in nature are highly heterogeneous, most models of social evolution assume that the group size is constant. In this article, I remove this assumption and explore the effects of having random group sizes on the evolutionary dynamics of public goods games. By a straightforward application of Jensen's inequality, I show that the outcome of general nonlinear public goods games depends not only on the average group size but also on the variance of the group-size distribution. This general result is illustrated with two nonlinear public goods games (the public goods game with discounting or synergy and the N-person volunteer's dilemma) and three different group-size distributions (Poisson, geometric, and Waring). The results suggest that failing to acknowledge the natural variation of group sizes can lead to an underestimation of the actual level of cooperation exhibited in evolving populations.  相似文献   

4.
In the animal world, performing a given task which is beneficial to an entire group requires the cooperation of several individuals of that group who often share the workload required to perform the task. The mathematical framework to study the dynamics of collective action is game theory. Here we study the evolutionary dynamics of cooperators and defectors in a population in which groups of individuals engage in N-person, non-excludable public goods games. We explore an N-person generalization of the well-known two-person snowdrift game. We discuss both the case of infinite and finite populations, taking explicitly into consideration the possible existence of a threshold above which collective action is materialized. Whereas in infinite populations, an N-person snowdrift game (NSG) leads to a stable coexistence between cooperators and defectors, the introduction of a threshold leads to the appearance of a new interior fixed point associated with a coordination threshold. The fingerprints of the stable and unstable interior fixed points still affect the evolutionary dynamics in finite populations, despite evolution leading the population inexorably to a monomorphic end-state. However, when the group size and population size become comparable, we find that spite sets in, rendering cooperation unfeasible.  相似文献   

5.
Social dilemmas and the evolutionary conundrum of cooperation are traditionally studied through various kinds of game theoretical models such as the prisoner's dilemma, public goods games, snowdrift games or by-product mutualism. All of them exemplify situations which are characterized by different degrees of conflicting interests between the individuals and the community. In groups of interacting individuals, cooperators produce a common good benefitting the entire group at some cost to themselves, whereas defectors attempt to exploit the resource by avoiding the costly contributions. Based on synergistic or discounted accumulation of cooperative benefits a unifying theoretical framework was recently introduced that encompasses all games that have traditionally been studied separately (Hauert, Michor, Nowak, Doebeli, 2005. Synergy and discounting of cooperation in social dilemmas. J. Theor. Biol., in press.). Within this framework we investigate the effects of spatial structure with limited local interactions on the evolutionary fate of cooperators and defectors. The quantitative effects of space turn out to be quite sensitive to the underlying microscopic update mechanisms but, more general, we demonstrate that in prisoner's dilemma type interactions spatial structure benefits cooperation-although the parameter range is quite limited-whereas in snowdrift type interactions spatial structure may be beneficial too, but often turns out to be detrimental to cooperation.  相似文献   

6.
The emergence and abundance of cooperation in nature poses a tenacious and challenging puzzle to evolutionary biology. Cooperative behaviour seems to contradict Darwinian evolution because altruistic individuals increase the fitness of other members of the population at a cost to themselves. Thus, in the absence of supporting mechanisms, cooperation should decrease and vanish, as predicted by classical models for cooperation in evolutionary game theory, such as the Prisoner's Dilemma and public goods games. Traditional approaches to studying the problem of cooperation assume constant population sizes and thus neglect the ecology of the interacting individuals. Here, we incorporate ecological dynamics into evolutionary games and reveal a new mechanism for maintaining cooperation. In public goods games, cooperation can gain a foothold if the population density depends on the average population payoff. Decreasing population densities, due to defection leading to small payoffs, results in smaller interaction group sizes in which cooperation can be favoured. This feedback between ecological dynamics and game dynamics can generate stable coexistence of cooperators and defectors in public goods games. However, this mechanism fails for pairwise Prisoner's Dilemma interactions and the population is driven to extinction. Our model represents natural extension of replicator dynamics to populations of varying densities.  相似文献   

7.
Public goods games paraphrase the problem of cooperation in game theoretical terms. Cooperators contribute to a public good and thereby increase the welfare of others at a cost to themselves. Defectors consume the public good but do not pay its cost and therefore outperform cooperators. Hence, according to genetic or cultural evolution, defectors should be favored and the public good disappear – despite the fact that groups of cooperators are better off than groups of defectors. The maximization of short term individual profits causes the demise of the common resource to the detriment of all. This outcome can be averted by introducing incentives to cooperate. Negative incentives based on the punishment of defectors efficiently stabilize cooperation once established but cannot initiate cooperation. Here we consider the complementary case of positive incentives created by allowing individuals to reward those that contribute to the public good. The finite-population stochastic dynamics of the public goods game with reward demonstrate that reward initiates cooperation by providing an escape hatch out of states of mutual defection. However, in contrast to punishment, reward is unable to stabilize cooperation but, instead, gives rise to a persistent minority of cooperators.  相似文献   

8.
Cooperation is one of the essential factors for all biological organisms in major evolutionary transitions. Recent studies have investigated the effect of migration for the evolution of cooperation. However, little is known about whether and how an individuals’ cooperativeness coevolves with mobility. One possibility is that mobility enhances cooperation by enabling cooperators to escape from defectors and form clusters; the other possibility is that mobility inhibits cooperation by helping the defectors to catch and exploit the groups of cooperators. In this study we investigate the coevolutionary dynamics by using the prisoner’s dilemma game model on a lattice structure. The computer simulations demonstrate that natural selection maintains cooperation in the form of evolutionary chasing between the cooperators and defectors. First, cooperative groups grow and collectively move in the same direction. Then, mutant defectors emerge and invade the cooperative groups, after which the defectors exploit the cooperators. Then other cooperative groups emerge due to mutation and the cycle is repeated. Here, it is worth noting that, as a result of natural selection, the mobility evolves towards directional migration, but not to random or completely fixed migration. Furthermore, with directional migration, the rate of global population extinction is lower when compared with other cases without the evolution of mobility (i.e., when mobility is preset to random or fixed). These findings illustrate the coevolutionary dynamics of cooperation and mobility through the directional chasing between cooperators and defectors.  相似文献   

9.
Evolutionary dynamics shape the living world around us. At the centre of every evolutionary process is a population of reproducing individuals. The structure of that population affects evolutionary dynamics. The individuals can be molecules, cells, viruses, multicellular organisms or humans. Whenever the fitness of individuals depends on the relative abundance of phenotypes in the population, we are in the realm of evolutionary game theory. Evolutionary game theory is a general approach that can describe the competition of species in an ecosystem, the interaction between hosts and parasites, between viruses and cells, and also the spread of ideas and behaviours in the human population. In this perspective, we review the recent advances in evolutionary game dynamics with a particular emphasis on stochastic approaches in finite sized and structured populations. We give simple, fundamental laws that determine how natural selection chooses between competing strategies. We study the well-mixed population, evolutionary graph theory, games in phenotype space and evolutionary set theory. We apply these results to the evolution of cooperation. The mechanism that leads to the evolution of cooperation in these settings could be called ‘spatial selection’: cooperators prevail against defectors by clustering in physical or other spaces.  相似文献   

10.
One of the most direct human mechanisms of promoting cooperation is rewarding it. We study the effect of sharing a reward among cooperators in the most stringent form of social dilemma, namely the prisoner's dilemma (PD). Specifically, for a group of players that collect payoffs by playing a pairwise PD game with their partners, we consider an external entity that distributes a fixed reward equally among all cooperators. Thus, individuals confront a new dilemma: on the one hand, they may be inclined to choose the shared reward despite the possibility of being exploited by defectors; on the other hand, if too many players do that, cooperators will obtain a poor reward and defectors will outperform them. By appropriately tuning the amount to be shared a vast variety of scenarios arises, including the traditional ones in the study of cooperation as well as more complex situations where unexpected behavior can occur. We provide a complete classification of the equilibria of the n-player game as well as of its evolutionary dynamics.  相似文献   

11.
Public goods games have become the mathematical metaphor for game theoretical investigations of cooperative behavior in groups of interacting individuals. Cooperation is a conundrum because cooperators make a sacrifice to benefit others at some cost to themselves. Exploiters or defectors reap the benefits and forgo costs. Despite the fact that groups of cooperators outperform groups of defectors, Darwinian selection or utilitarian principles based on rational choice should favor defectors. In order to overcome this social dilemma, much effort has been expended for investigations pertaining to punishment and sanctioning measures against defectors. Interestingly, the complementary approach to create positive incentives and to reward cooperation has received considerably less attention—despite being heavily advocated in education and social sciences for increasing productivity or preventing conflicts. Here we show that rewards can indeed stimulate cooperation in interaction groups of arbitrary size but, in contrast to punishment, fail to stabilize it. In both cases, however, reputation is essential. The combination of reward and reputation result in complex dynamics dominated by unpredictable oscillations.  相似文献   

12.
The joint venture of many members is common both in animal world and human society. In these public enterprizes, highly cooperative groups are more likely to while low cooperative groups are still possible but not probable to succeed. Existent literature mostly focuses on the traditional public goods game, in which cooperators create public wealth unconditionally and benefit all group members unbiasedly. We here institute a model addressing this public goods dilemma with incorporating the public resource foraging failure risk. Risk-averse individuals tend to lead a autarkic life, while risk-preferential ones tend to participate in the risky public goods game. For participants, group''s success relies on its cooperativeness, with increasing contribution leading to increasing success likelihood. We introduce a function with one tunable parameter to describe the risk removal pattern and study in detail three representative classes. Analytical results show that the widely replicated population dynamics of cyclical dominance of loner, cooperator and defector disappear, while most of the time loners act as savors while eventually they also disappear. Depending on the way that group''s success relies on its cooperativeness, either cooperators pervade the entire population or they coexist with defectors. Even in the later case, cooperators still hold salient superiority in number as some defectors also survive by parasitizing. The harder the joint venture succeeds, the higher level of cooperation once cooperators can win the evolutionary race. Our work may enrich the literature concerning the risky public goods games.  相似文献   

13.
We propose a theory of evolution of social systems which generalizes the standard proportional fitness rule of the evolutionary game theory. The formalism is applied to describe the dynamics of two-person one-shot population games. In particular it predicts the non-zero level of cooperation in the long run for the Prisoner's Dilemma games, the increase of the fraction of cooperators for general classes of the Snow-Drift game, and stable nonzero cooperation level for coordination games.  相似文献   

14.
The evolution of cooperation is an enduring conundrum in biology and the social sciences. Two social dilemmas, the prisoner's dilemma and the snowdrift game have emerged as the most promising mathematical metaphors to study cooperation. Spatial structure with limited local interactions has long been identified as a potent promoter of cooperation in the prisoner's dilemma but in the spatial snowdrift game, space may actually enhance or inhibit cooperation. Here we investigate and link the microscopic interaction between individuals to the characteristics of the emerging macroscopic patterns generated by the spatial invasion process of cooperators in a world of defectors. In our simulations, individuals are located on a square lattice with Moore neighborhood and update their strategies by probabilistically imitating the strategies of better performing neighbors. Under sufficiently benign conditions, cooperators can survive in both games. After rapid local equilibration, cooperators expand quadratically until global saturation is reached. Under favorable conditions, cooperators expand as a large contiguous cluster in both games with minor differences concerning the shape of embedded defectors. Under less favorable conditions, however, distinct differences arise. In the prisoner's dilemma, cooperators break up into isolated, compact clusters. The compact clustering reduces exploitation and leads to positive assortment, such that cooperators interact more frequently with other cooperators than with defectors. In contrast, in the snowdrift game, cooperators form small, dendritic clusters, which results in negative assortment and cooperators interact more frequently with defectors than with other cooperators. In order to characterize and quantify the emerging spatial patterns, we introduce a measure for the cluster shape and demonstrate that the macroscopic patterns can be used to determine the characteristics of the underlying microscopic interactions.  相似文献   

15.
Cooperation is a mysterious evolutionary phenomenon and its mechanisms require elucidation. When cooperators can stop interactions with defectors, the evolution of cooperation becomes possible; this is one mechanism that facilitates the evolution of cooperation. Here, stopping interactions with defectors is beneficial not only for cooperators but also for defectors. The question then arises, for whom is stopping interactions with defectors more beneficial: cooperators or defectors? By utilizing evolutionary game theory, I addressed this question using a two-player game involving four strategies: (1) cooperators who stop the interaction if the current partner is a defector, (2) cooperators who attempt to maintain a relationship with anyone, (3) defectors who stop the interaction if the current partner is a defector, and (4) defectors who attempt to maintain a relationship with anyone. Our results show that, at equilibrium, the ratio of cooperators who stop the interaction if the current partner is a defector to cooperators who attempt to maintain a relationship with anyone is larger than the ratio of defectors who stop the interaction if the current partner is a defector to defectors who attempt to maintain a relationship with anyone. Thus, cooperators rather than defectors are more likely to stop interactions with defectors at equilibrium. This result is consistent with a previous experimental study in which a positive correlation was detected between the degree of individuals’ cooperativeness and how accurately the individuals recognize whether other individuals are cooperators or defectors. Thus, the theoretical work presented in this study provides relevant insights into the natural phenomena of cooperation and recognition.  相似文献   

16.
We study a model in which cooperation and defection coexist in a dynamical steady state. In our model, subpopulations of cooperators and defectors inhabit sites on a lattice. The interactions among the individuals at a site, in the form of a prisoner's dilemma (PD) game, determine their fitnesses. The chosen PD payoff allows cooperators, but not defectors, to maintain a homogeneous population. Individuals mutate between types and migrate to neighboring sites with low probabilities. We consider both density-dependent and density-independent versions of the model. The persistence of cooperation in this model can be explained in terms of the life cycle of a population at a site. This life cycle starts when one cooperator establishes a population. Then defectors invade and eventually take over, resulting finally in the death of the population. During this life cycle, single cooperators migrate to empty neighboring sites to found new cooperator populations. The system can reach a steady state where cooperation prevails if the global "birth" rate of populations is equal to their global "death" rate. The dynamic persistence of cooperation ranges over a large section of the model's parameter space. We compare these dynamics to those from other models for the persistence of altruism and to predator-prey models.  相似文献   

17.
Spatial invasion of cooperation   总被引:2,自引:0,他引:2  
The evolutionary puzzle of cooperation describes situations where cooperators provide a fitness benefit to other individuals at some cost to themselves. Under Darwinian selection, the evolution of cooperation is a conundrum, whereas non-cooperation (or defection) is not. In the absence of supporting mechanisms, cooperators perform poorly and decrease in abundance. Evolutionary game theory provides a powerful mathematical framework to address the problem of cooperation using the prisoner's dilemma. One well-studied possibility to maintain cooperation is to consider structured populations, where each individual interacts only with a limited subset of the population. This enables cooperators to form clusters such that they are more likely to interact with other cooperators instead of being exploited by defectors. Here we present a detailed analysis of how a few cooperators invade and expand in a world of defectors. If the invasion succeeds, the expansion process takes place in two stages: first, cooperators and defectors quickly establish a local equilibrium and then they uniformly expand in space. The second stage provides good estimates for the global equilibrium frequencies of cooperators and defectors. Under hospitable conditions, cooperators typically form a single, ever growing cluster interspersed with specks of defectors, whereas under more hostile conditions, cooperators form isolated, compact clusters that minimize exploitation by defectors. We provide the first quantitative assessment of the way cooperators arrange in space during invasion and find that the macroscopic properties and the emerging spatial patterns reveal information about the characteristics of the underlying microscopic interactions.  相似文献   

18.
As selection frequently favors noncooperating defectors in mixed populations with cooperators, mechanisms that promote cooperation stability clearly exist. One potential mechanism is bacterial cell-to-cell communication, quorum sensing (QS), which can allow cooperators to prevent invasion by defectors. However, the impact of QS on widespread maintenance of cooperation in well-mixed conditions has not been experimentally demonstrated over extended evolutionary timescales. Here, we use wild-type (WT) Vibrio campbellii that regulates cooperation with QS and an unconditional cooperating (UC) mutant to examine the evolutionary origins and dynamics of novel defectors during a long-term evolution experiment. We found that UC lineages were completely outcompeted by defectors, whereas functioning QS enabled the maintenance of cooperative variants in most WT populations. Sequencing evolved populations revealed multiple luxR mutations that swept the UC lineages. However, the evolution of mutant lineages with reduced levels of bioluminescence (dims) occurred in many WT lineages. These dim variants also decreased other cooperative phenotypes regulated by QS, including protease production, indicating they result from changes to QS regulation. This diminished investment phenotype optimizes a tradeoff between cooperative input and growth output and suggests that decreasing the cost of QS could be a favorable strategy for maintaining the cooperative behaviors it regulates.Subject terms: Bacterial evolution, Microbial ecology, Molecular evolution  相似文献   

19.
Cooperation based on the production of costly common goods is observed throughout nature. This is puzzling, as cooperation is vulnerable to exploitation by defectors which enjoy a fitness advantage by consuming the common good without contributing fairly. Depletion of the common good can lead to population collapse and the destruction of cooperation. However, population collapse implies small population size, which, in a structured population, is known to favor cooperation. This happens because small population size increases variability in cooperator frequency across different locations. Since individuals in cooperator-dominated locations (which are most likely cooperators) will grow more than those in defector-dominated locations (which are most likely defectors), cooperators can outgrow defectors globally despite defectors outgrowing cooperators in each location. This raises the possibility that defectors can lead to conditions that sometimes rescue cooperation from defector-induced destruction. We demonstrate multiple mechanisms through which this can occur, using an individual-based approach to model stochastic birth, death, migration, and mutation events. First, during defector-induced population collapse, defectors occasionally go extinct before cooperators by chance, which allows cooperators to grow. Second, empty locations, either preexisting or created by defector-induced population extinction, can favor cooperation because they allow cooperator but not defector migrants to grow. These factors lead to the counterintuitive result that the initial presence of defectors sometimes allows better survival of cooperation compared to when defectors are initially absent. Finally, we find that resource limitation, inducible by defectors, can select for mutations adaptive to resource limitation. When these mutations are initially present at low levels or continuously generated at a moderate rate, they can favor cooperation by further reducing local population size. We predict that in a structured population, small population sizes precipitated by defectors provide a “built-in” mechanism for the persistence of cooperation.  相似文献   

20.
Transforming the dilemma   总被引:1,自引:0,他引:1  
How does natural selection lead to cooperation between competing individuals? The Prisoner's Dilemma captures the essence of this problem. Two players can either cooperate or defect. The payoff for mutual cooperation, R, is greater than the payoff for mutual defection, P. But a defector versus a cooperator receives the highest payoff, T, where as the cooperator obtains the lowest payoff, S. Hence, the Prisoner's Dilemma is defined by the payoff ranking T > R > P > S . In a well‐mixed population, defectors always have a higher expected payoff than cooperators, and therefore natural selection favors defectors. The evolution of cooperation requires specific mechanisms. Here we discuss five mechanisms for the evolution of cooperation: direct reciprocity, indirect reciprocity, kin selection, group selection, and network reciprocity (or graph selection). Each mechanism leads to a transformation of the Prisoner's Dilemma payoff matrix. From the transformed matrices, we derive the fundamental conditions for the evolution of cooperation. The transformed matrices can be used in standard frameworks of evolutionary dynamics such as the replicator equation or stochastic processes of game dynamics in finite populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号