首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abnormal fluid accumulation in tissues, including the life-threatening cerebral and pulmonary edema, is a severe consequence of bacteria infection. Chlamydia (C.) trachomatis is an obligate intracellular gram-negative human pathogen responsible for a spectrum of diseases, causing tissue fluid accumulation and edema in various organs. However, the underlying mechanism for tissue fluid secretion induced by C. trachomatis and most of other infectious pathogens is not known. Here, we report that in mice C. trachomatis infection models, the expression of cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP activated chloride channel, is up regulated together with increased cytokine release and tissue fluid accumulation that can be reversed by treatment with antibiotic specific for C. trachomatis and CFTR channel blocker. However, C. trachomatis infection cannot induce tissue edema in CFTRtm1Unc mutant mice. Administration of exogenous IL-1beta to mice mimics the C. trachomatis infection-induced CFTR upregulation, enhanced CFTR channel activity and fluid accumulation, further confirming the involvement of CFTR in infection-induced tissue fluid secretion.  相似文献   

2.
Mammalian sperm must undergo a maturational process, named capacitation, in the female reproductive tract to fertilize the egg. Sperm capacitation is regulated by a cAMP/protein kinase A (PKA) pathway and involves increases in intracellular Ca2+, pH, Cl?, protein tyrosine phosphorylation, and in mouse and some other mammals a membrane potential hyperpolarization. The cystic fibrosis transmembrane conductance regulator (CFTR), a Cl? channel modulated by cAMP/PKA and ATP, was detected in mammalian sperm and proposed to modulate capacitation. Our whole‐cell patch‐clamp recordings from testicular mouse sperm now reveal a Cl? selective component to membrane current that is ATP‐dependent, stimulated by cAMP, cGMP, and genistein (a CFTR agonist, at low concentrations), and inhibited by DPC and CFTRinh‐172, two well‐known CFTR antagonists. Furthermore, the Cl? current component activated by cAMP and inhibited by CFTRinh‐172 is absent in recordings on testicular sperm from mice possessing the CFTR ΔF508 loss‐of‐function mutation, indicating that CFTR is responsible for this component. A Cl? selective like current component displaying CFTR characteristics was also found in wild type epididymal sperm bearing the cytoplasmatic droplet. Capacitated sperm treated with CFTRinh‐172 undergo a shape change, suggesting that CFTR is involved in cell volume regulation. These findings indicate that functional CFTR channels are present in mouse sperm and their biophysical properties are consistent with their proposed participation in capacitation. J. Cell. Physiol. 228: 590–601, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
Cystic fibrosis is caused by mutations inthe cystic fibrosis transmembrane conductance regulator (CFTR) gene.CFTR is a chloride channel whose activity requires protein kinaseA-dependent phosphorylation of an intracellular regulatory domain(R-domain) and ATP hydrolysis at the nucleotide-binding domains (NBDs).To identify potential sites of domain-domain interaction within CFTR,we expressed, purified, and refolded histidine (His)- andglutathione-S-transferase (GST)-tagged cytoplasmic domainsof CFTR. ATP-binding to his-NBD1 and his-NBD2 was demonstrated bymeasuring tryptophan fluorescence quenching. Trypticdigestion of in vitro phosphorylated his-NBD1-R and in situphosphorylated CFTR generated the same phosphopeptides. An interactionbetween NBD1-R and NBD2 was assayed by tryptophan fluorescencequenching. Binding among all pairwise combinations of R-domain, NBD1,and NBD2 was demonstrated with an overlay assay. To identifyspecific sites of interaction between domains of CFTR, an overlay assaywas used to probe an overlapping peptide library spanning allintracellular regions of CFTR with his-NBD1, his-NBD2, andGST-R-domain. By mapping peptides from NBD1 and NBD2 that bound toother intracellular domains onto crystal structures for HisP, MalK, andRad50, probable sites of interaction between NBD1 and NBD2 wereidentified. Our data support a model where NBDs form dimers with theATP-binding sites at the domain-domain interface.

  相似文献   

4.
The cystic fibrosis transmembrane conductance regulator (CFTR) has been known for the past 11 years to be a membrane glycoprotein with chloride channel activity. Only recently has the glycosylation of CFTR been examined in detail, by O'Riordan et al in Glycobiology. Using cells that overexpress wild-type (wt)CFTR, the presence of polylactosamine was noted on the fully glycosylated form of CFTR. In the present commentary the results of that work are discussed in relation to the glycosylation phenotype of cystic fibrosis (CF), and the cellular localization and processing of ΔF508 CFTR. The significance of the glycosylation will be known when endogenous CFTR from primary human tissue is examined.  相似文献   

5.
Tector M  Hartl FU 《The EMBO journal》1999,18(22):6290-6298
The cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel with 12 membrane-spanning sequences, undergoes inefficient maturation in the endoplasmic reticulum (ER). Potentially charged residues in transmembrane segments may contribute to this defect in biogenesis. We demonstrate that transmembrane segment 6 of CFTR, which contains three basic amino acids, is extremely unstable in the lipid bilayer upon membrane insertion in vitro and in vivo. However, two distinct mechanisms counteract this anchoring deficiency: (i) the ribosome and the ER translocon co-operate to prevent transmembrane segment 6 from passing through the membrane co- translationally; and (ii) cytosolic domains of the ion channel post-translationally maintain this segment of CFTR in a membrane-spanning topology. Although these mechanisms are essential for successful completion of CFTR biogenesis, inefficiencies in their function retard the maturation of the protein. It seems possible that some of the disease-causing mutations in CFTR may reduce the efficiency of proper membrane anchoring of the protein.  相似文献   

6.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP and cGMP-regulated chloride channel critical to the regulation of intestinal fluid, chloride, and bicarbonate secretion. In cystic fibrosis (CF), mutations in CFTR result in downregulation of CFTR function and small intestinal obstruction. Unlike the human CF intestine, severe gastrointestinal disease and lethal obstruction is common in transgenic mice deficient in CFTR. The relevance of the physiology of CFTR and pathophysiology of CF in genetically altered mice to that of human CF disease remains incompletely understood. We hypothesized that the expression and distribution of CFTR in mouse intestine may differ from that of human and may contribute to the variation in disease expression between the two species. Using immunocytochemical and immunoblot techniques and well-characterized anti-rodent anti-CFTR antibodies, we examined the cellular distribution of CFTR in the mouse intestinal tract. We identified significant differences in villus distribution for CFTR in the mouse proximal small intestine compared to those previously reported for human and rat. These observations are important to the understanding of CFTR pathophysiology in transgenic CF mouse model systems and bear relevance to the different phenotypic expression of disease in mice compared to human.  相似文献   

7.
Phosphorylation of the cystic fibrosis transmembrane conductance regulator.   总被引:17,自引:0,他引:17  
Regulation of epithelial chloride flux, which is defective in patients with cystic fibrosis, may be mediated by phosphorylation of the cystic fibrosis transmembrane conductance regulator (CFTR) by cyclic AMP-dependent protein kinase (PKA) or protein kinase C (PKC). Part of the R-domain of CFTR (termed CF-2) was expressed in and purified from Escherichia coli. CF-2 was phosphorylated on seryl residues by PKA, PKC, cyclic GMP-dependent protein kinase (PKG), and calcium/calmodulin-dependent protein kinase I (CaM kinase I). Direct amino acid sequencing and peptide mapping of CF-2 revealed that serines 660, 700, 737, and 813 as well as serine 768, serine 795, or both were phosphorylated by PKA and PKG, and serines 686 and 790 were phosphorylated by PKC. CFTR was phosphorylated in vitro by PKA, PKC, or PKG on the same sites that were phosphorylated in CF-2. Kinetic analysis of phosphorylation of CF-2 and of synthetic peptides confirmed that these sites were excellent substrates for PKA, PKC, or PKG. CFTR was immunoprecipitated from T84 cells labeled with 32Pi. Its phosphorylation was stimulated in response to agents that activated either PKA or PKC. Peptide mapping confirmed that CFTR was phosphorylated at several sites identified in vitro. Thus, regulation of CFTR is likely to occur through direct phosphorylation of the R-domain by protein kinases stimulated by different second messenger pathways.  相似文献   

8.
Mismanaged protein trafficking by the proteostasis network contributes to several conformational diseases, including cystic fibrosis, the most frequent lethal inherited disease in Caucasians. Proteostasis regulators, as cystamine, enable the beneficial action of cystic fibrosis transmembrane conductance regulator (CFTR) potentiators in ΔF508-CFTR airways beyond drug washout. Here we tested the hypothesis that functional CFTR protein can sustain its own plasma membrane (PM) stability. Depletion or inhibition of wild-type CFTR present in bronchial epithelial cells reduced the availability of the small GTPase Rab5 by causing Rab5 sequestration within the detergent-insoluble protein fraction together with its accumulation in aggresomes. CFTR depletion decreased the recruitment of the Rab5 effector early endosome antigen 1 to endosomes, thus reducing the local generation of phosphatidylinositol-3-phosphate. This diverts recycling of surface proteins, including transferrin receptor and CFTR itself. Inhibiting CFTR function also resulted in its ubiquitination and interaction with SQSTM1/p62 at the PM, favoring its disposal. Addition of cystamine prevented the recycling defect of CFTR by enhancing BECN1 expression and reducing SQSTM1 accumulation. Our results unravel an unexpected link between CFTR protein and function, the latter regulating the levels of CFTR surface expression in a positive feed-forward loop, and highlight CFTR as a pivot of proteostasis in bronchial epithelial cells.  相似文献   

9.
10.
11.
We investigated the mechanisms by which S-nitrosoglutathione (GSNO) alters cystic fibrosis transmembrane conductance regulator (CFTR) mediated chloride (Cl(-)) secretion across Calu-3 cells, an extensively used model of human airway gland serous cells. Confluent monolayers of Calu-3 cells, grown under an air-liquid interface, were mounted in Ussing chambers for the measurements of chloride short circuit current (I(sc)) and trans-epithelial resistance (R(t)). Addition of GSNO into the apical compartment of these chambers resulted in significant and sustained increase of I(sc) with an IC(50) of 3.2 +/- 1 mum (mean +/- 1 S.E.; n = 6). Addition of either glibenclamide or pre-treatment of Calu-3 cells with the soluble guanylate cyclase inhibitor 1H-(1,2,4)-oxadiazolo[4,3-a]quinoxalin-1-one totally prevented the GSNO-induced increase of I(sc). Conversely, BAY 41-2272, a sGC stimulator, increased I(sc) in a dose-response fashion. The GSNO increase of I(sc) was reversed by addition of two phosphatases (PP2A1, PP2A2) into the apical compartment of Ussing chambers containing Calu-3 monolayers. Oxy-myoglobin (oxy-Mb, 300 mum) added into the apical compartment of Ussing chambers either prior or after GSNO either completely prevented or immediately reversed the increase of I(sc). However, smaller concentrations of oxy-Mb (1-10 mum), sufficient to scavenge NO in the medium (as assessed by direct measurement of NO in the Ussing chamber using an ISO-NO meter) decreased I(sc) partially. Oxy-Mb did not reverse the increase of I(sc) following addition of GSNO and cysteine (50 mum). These findings indicate that GSNO stimulates Cl secretion via both cGMP-dependent and cGMP-independent mechanisms.  相似文献   

12.
The cystic fibrosis transmembrane conductance regulator is encoded by the gene known to be mutated in patients with cystic fibrosis. This paper reports the cloning and sequencing of cDNAs for the murine homolog of the human cystic fibrosis transmembrane conductance regulator gene. A clone that, by analogy to the human sequence, extends 3' from exon 9 to the poly(A) tail was isolated from a mouse lung cDNA library. cDNA clones containing exons 4 and 6b were also isolated and sequenced, but the remainder of the mRNA proved difficult to obtain by conventional cDNA library screening. Sequences spanning exons 1-9 were cloned by PCR from mouse RNA. The deduced mouse protein sequence is 78% identical to the human cystic fibrosis transmembrane regulator, with higher conservation in the transmembrane and nucleotide-binding domains. Amino acid sequences in which known cystic fibrosis missense mutations occur are conserved between man and mouse; in particular, the predicted mouse protein has a phenylalanine residue corresponding to that deleted in the most common human cystic fibrosis mutation (delta F508), which should allow the use of transgenic strategies to introduce this mutation in attempts to create a "cystic fibrosis mouse".  相似文献   

13.
14.
We have investigated several purification strategies for the cystic fibrosis transmembrane regulator (CFTR) based on its structural similarity to other proteins of the traffic ATPase/ABC transporter family. Recombinant CFTR expressed in heterologous cells was readily solubilized by digitonin and initially separated from the majority of other cellular proteins by sucrose density gradient centrifugation. CFTR, with two predicted nucleotide binding domains, bound avidly to several triazine dye columns, although elution with MgATP, MgCl2, or high ionic strength buffers was inefficient. CFTR did not bind to either ATP or ADP coupled to agarose. Because CFTR is a glycoprotein we investigated its binding to lectin columns. CFTR bound readily to wheat germ agglutinin, but poorly to Lens culinaris agglutinin. CFTR was enriched 9-10 times when eluted from wheat germ agglutinin with N-acetylglucosamine. This enrichment was tripled if lectin chromatography followed sucrose gradient centrifugation. Our results suggest the combination of sucrose density gradient centrifugation and lectin chromatography would be a satisfactory approach to initial purification of CFTR expressed in heterologous cells.  相似文献   

15.
Cheung JC  Deber CM 《Biochemistry》2008,47(6):1465-1473
Understanding the structural basis for defects in protein function that underlie protein-based genetic diseases is the fundamental requirement for development of therapies. This situation is epitomized by the cystic fibrosis transmembrane conductance regulator (CFTR)-the gene product known to be defective in CF patients-that appears particularly susceptible to misfolding when its biogenesis is hampered by mutations at critical loci. While the primary CF-related defect in CFTR has been localized to deletion of nucleotide binding fold (NBD1) residue Phe508, an increasing number of mutations (now ca. 1,500) are being associated with CF disease of varying severity. Hundreds of these mutations occur in the CFTR transmembrane domain, the site of the protein's chloride channel. This report summarizes our current knowledge on how mutation-dependent misfolding of the CFTR protein is recognized on the cellular level; how specific types of mutations can contribute to the misfolding process; and describes experimental approaches to detecting and elucidating the structural consequences of CF-phenotypic mutations.  相似文献   

16.
We wish to construct a mouse model for the human inherited disease cystic fibrosis. We describe here the successful targeting in embryonal stem cells of the murine homologue (Cftr) of the cystic fibrosis transmembrane conductance regulator gene, as the first critical step towards this end. The targeting event precisely disrupts exon 10, the site of the major mutation in patients with cystic fibrosis. The targeted cells are pluripotent and competent to form chimaeras.  相似文献   

17.
Younger JM  Chen L  Ren HY  Rosser MF  Turnbull EL  Fan CY  Patterson C  Cyr DM 《Cell》2006,126(3):571-582
Cystic fibrosis arises from the misfolding and premature degradation of CFTR Delta F508, a Cl- ion channel with a single amino acid deletion. Yet, the quality-control machinery that selects CFTR Delta F508 for degradation and the mechanism for its misfolding are not well defined. We identified an ER membrane-associated ubiquitin ligase complex containing the E3 RMA1, the E2 Ubc6e, and Derlin-1 that cooperates with the cytosolic Hsc70/CHIP E3 complex to triage CFTR and CFTR Delta F508. Derlin-1 serves to retain CFTR in the ER membrane and interacts with RMA1 and Ubc6e to promote CFTR's proteasomal degradation. RMA1 is capable of recognizing folding defects in CFTR Delta F508 coincident with translation, whereas the CHIP E3 appears to act posttranslationally. A folding defect in CFTR Delta F508 detected by RMA1 involves the inability of CFTR's second membrane-spanning domain to productively interact with amino-terminal domains. Thus, the RMA1 and CHIP E3 ubiquitin ligases act sequentially in ER membrane and cytosol to monitor the folding status of CFTR and CFTR Delta F508.  相似文献   

18.
Expression of thecystic fibrosis transmembrane conductance regulator (CFTR), and of atleast one other member of the ATP-binding cassette family of transportproteins, P-glycoprotein, is associated with the electrodiffusionalmovement of the nucleotide ATP. Evidence directly implicating CFTRexpression with ATP channel activity, however, is still missing. Hereit is reported that reconstitution into a lipid bilayer of highlypurified CFTR of human epithelial origin enables the permeation of bothCl and ATP. Similar topreviously reported data for in vivo ATP currents of CFTR-expressingcells, the reconstituted channels displayed competition betweenCl and ATP and had multipleconductance states in the presence of Cl and ATP. PurifiedCFTR-mediated ATP currents were activated by protein kinase A and ATP(1 mM) from the "intracellular" side of the molecule and wereinhibited by diphenylamine-2-carboxylate, glibenclamide, and anti-CFTRantibodies. The absence of CFTR-mediated electrodiffusional ATPmovement may thus be a relevant component of the pleiotropic cysticfibrosis phenotype.

  相似文献   

19.
Based on electrophysiological measurements, it has been argued that the active form of cystic fibrosis trans-membrane conductance regulator (CFTR) Cl(-) channel is a multimer. It has also been demonstrated that this multimerization is likely due to PDZ domain-interacting partners. Here we demonstrate that although CFTR in vitro can self-associate into multimers, which depends on PDZ-based interactions, this may not be the case in cell membrane. Using chemical cross-linking, we demonstrated that CFTR exists as a higher order complex in cell membrane. However, this higher order complex is predominantly CFTR dimers, and the PDZ-interacting partners (Na(+)/H(+) exchanger regulatory factor-1 (NHERF1) and NHERF2) constitute approximately 2% of this complex. Interestingly solubilizing membrane expressing CFTR in detergents such as Triton X-100, Nonidet P-40, deoxycholate, and SDS tended to destabilize the CFTR dimers and dissociate them into monomeric form. The dimerization of CFTR was tightly regulated by cAMP-dependent protein kinase-dependent phosphorylation and did not depend on the active form of the channel. In addition, the dimerization was not influenced by either the PDZ motif or its interacting partners (NHERF1 and NHERF2). We also demonstrated that other signaling-related proteins such as Gbeta and syntaxin 1A can be in this higher order complex of CFTR as well. Our studies provide a deeper understanding of how the CFTR assembly takes place in native cell membrane.  相似文献   

20.
Cystic fibrosis (CF) results from the absence or dysfunction of a single protein, the CF transmembrane conductance regulator (CFTR). CFTR plays a critical role in the regulation of ion transport in a number of exocrine epithelia. Improvement or restoration of CFTR function, where it is deficient, should improve the CF phenotype. There are >1000 reported disease-causing mutations of the CFTR gene. Recent investigations have afforded a better understanding of the mechanism of dysfunction of many of these mutant CFTRs, and have allowed them to be classified according to their mechanism of dysfunction. These data, as well as an enhanced understanding of the role of CFTR in regulating epithelial ion transport, have led to the development of therapeutic strategies based on pharmacologic enhancement or repair of mutant CFTR dysfunction. The strategy, termed 'protein repair therapy', is aimed at improving the regulation of epithelial ion transport by mutant CFTRs in a mutation-specific fashion. The grouping of CFTR gene mutations, according to mechanism of dysfunction, yields some guidance as to which pharmacologic repair agents may be useful for specific CFTR mutations. Recent data has suggested that combinations of pharmacologic repair agents may be necessary to obtain clinically meaningful CFTR repair. Nevertheless, such strategies to improve mutant CFTR function hold great promise for the development of novel therapies aimed at correcting the underlying pathophysiology of CF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号